
Lucas-Kanade Tracker

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2018

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 1 / 19

Simple Kanade-Lucas-Tomasi (KLT) Algorithm

1 Detect Harris corners in the first frame

2 For each Harris corner, compute motion (translation or affine)
between consecutive frames

3 Link motion vectors in successive frames to get a track for each
Harris point

4 Introduce new Harris points by applying Harris detector at every
m (10 or 15) frames

5 Track new and old Harris points using steps 1-3

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 2 / 19

Simple Kanade-Lucas-Tomasi (KLT) Algorithm

1 Detect Harris corners in the first frame

2 For each Harris corner, compute motion (translation or affine)
between consecutive frames

3 Link motion vectors in successive frames to get a track for each
Harris point

4 Introduce new Harris points by applying Harris detector at every
m (10 or 15) frames

5 Track new and old Harris points using steps 1-3

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 2 / 19

Simple Kanade-Lucas-Tomasi (KLT) Algorithm

1 Detect Harris corners in the first frame

2 For each Harris corner, compute motion (translation or affine)
between consecutive frames

3 Link motion vectors in successive frames to get a track for each
Harris point

4 Introduce new Harris points by applying Harris detector at every
m (10 or 15) frames

5 Track new and old Harris points using steps 1-3

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 2 / 19

Simple Kanade-Lucas-Tomasi (KLT) Algorithm

1 Detect Harris corners in the first frame

2 For each Harris corner, compute motion (translation or affine)
between consecutive frames

3 Link motion vectors in successive frames to get a track for each
Harris point

4 Introduce new Harris points by applying Harris detector at every
m (10 or 15) frames

5 Track new and old Harris points using steps 1-3

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 2 / 19

Simple Kanade-Lucas-Tomasi (KLT) Algorithm

1 Detect Harris corners in the first frame

2 For each Harris corner, compute motion (translation or affine)
between consecutive frames

3 Link motion vectors in successive frames to get a track for each
Harris point

4 Introduce new Harris points by applying Harris detector at every
m (10 or 15) frames

5 Track new and old Harris points using steps 1-3

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 2 / 19

Simple Kanade-Lucas-Tomasi (KLT) Algorithm

1 Detect Harris corners in the first frame

2 For each Harris corner, compute motion (translation or affine)
between consecutive frames

3 Link motion vectors in successive frames to get a track for each
Harris point

4 Introduce new Harris points by applying Harris detector at every
m (10 or 15) frames

5 Track new and old Harris points using steps 1-3

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 2 / 19

Basic set of 2-D Transformation
Richard Szeliski, “Computer Vision: Algorithms and Application”

Need to register a patch of the current frame to another patch of
the next frame

Coordinate transformation can be done by different “motions”

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 3 / 19

Summary of displacement models (2-D transformations)

Translation:
x′ = x+ b1
y′ = y + b2

Rigid:
x′ = x cos θ − y sin θ + b1
y′ = x sin θ + y cos θ + b2

Affine:
x′ = a1x+ a2y + b1
y′ = a3x+ a4y + b2

Projective:
x′ = a1x+a2y+b1

c1x+c2y+1

y′ = a3x+a4y+b2
c1x+c2y+1

Approximate transformations

Bi-quadratic:

x′ = a1 + a2x+ a3y + a4x
2 + a5y

2 + a6xy
y′ = a7 + a8x+ a9y + a10x

2 + a11y
2 + a12xy

Bi-linear:
x′ = a1 + a2x+ a3y + a4xy
y′ = a5 + a6x+ a7y + a8xy

Pseudo-perspective:
x′ = a1 + a2x+ a3y + a4x

2 + a5xy
y′ = a6 + a7x+ a8y + a4xy + a5y

2

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 4 / 19

Summary of displacement models (2-D transformations)

Translation:
x′ = x+ b1
y′ = y + b2

Rigid:
x′ = x cos θ − y sin θ + b1
y′ = x sin θ + y cos θ + b2

Affine:
x′ = a1x+ a2y + b1
y′ = a3x+ a4y + b2

Projective:
x′ = a1x+a2y+b1

c1x+c2y+1

y′ = a3x+a4y+b2
c1x+c2y+1

Approximate transformations

Bi-quadratic:

x′ = a1 + a2x+ a3y + a4x
2 + a5y

2 + a6xy
y′ = a7 + a8x+ a9y + a10x

2 + a11y
2 + a12xy

Bi-linear:
x′ = a1 + a2x+ a3y + a4xy
y′ = a5 + a6x+ a7y + a8xy

Pseudo-perspective:
x′ = a1 + a2x+ a3y + a4x

2 + a5xy
y′ = a6 + a7x+ a8y + a4xy + a5y

2

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 4 / 19

Summary of displacement models (2-D transformations)

Translation:
x′ = x+ b1
y′ = y + b2

Rigid:
x′ = x cos θ − y sin θ + b1
y′ = x sin θ + y cos θ + b2

Affine:
x′ = a1x+ a2y + b1
y′ = a3x+ a4y + b2

Projective:
x′ = a1x+a2y+b1

c1x+c2y+1

y′ = a3x+a4y+b2
c1x+c2y+1

Approximate transformations

Bi-quadratic:

x′ = a1 + a2x+ a3y + a4x
2 + a5y

2 + a6xy
y′ = a7 + a8x+ a9y + a10x

2 + a11y
2 + a12xy

Bi-linear:
x′ = a1 + a2x+ a3y + a4xy
y′ = a5 + a6x+ a7y + a8xy

Pseudo-perspective:
x′ = a1 + a2x+ a3y + a4x

2 + a5xy
y′ = a6 + a7x+ a8y + a4xy + a5y

2

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 4 / 19

Summary of displacement models (2-D transformations)

Translation:
x′ = x+ b1
y′ = y + b2

Rigid:
x′ = x cos θ − y sin θ + b1
y′ = x sin θ + y cos θ + b2

Affine:
x′ = a1x+ a2y + b1
y′ = a3x+ a4y + b2

Projective:
x′ = a1x+a2y+b1

c1x+c2y+1

y′ = a3x+a4y+b2
c1x+c2y+1

Approximate transformations

Bi-quadratic:

x′ = a1 + a2x+ a3y + a4x
2 + a5y

2 + a6xy
y′ = a7 + a8x+ a9y + a10x

2 + a11y
2 + a12xy

Bi-linear:
x′ = a1 + a2x+ a3y + a4xy
y′ = a5 + a6x+ a7y + a8xy

Pseudo-perspective:
x′ = a1 + a2x+ a3y + a4x

2 + a5xy
y′ = a6 + a7x+ a8y + a4xy + a5y

2

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 4 / 19

Summary of displacement models (2-D transformations)

Translation:
x′ = x+ b1
y′ = y + b2

Rigid:
x′ = x cos θ − y sin θ + b1
y′ = x sin θ + y cos θ + b2

Affine:
x′ = a1x+ a2y + b1
y′ = a3x+ a4y + b2

Projective:
x′ = a1x+a2y+b1

c1x+c2y+1

y′ = a3x+a4y+b2
c1x+c2y+1

Approximate transformations

Bi-quadratic:

x′ = a1 + a2x+ a3y + a4x
2 + a5y

2 + a6xy
y′ = a7 + a8x+ a9y + a10x

2 + a11y
2 + a12xy

Bi-linear:
x′ = a1 + a2x+ a3y + a4xy
y′ = a5 + a6x+ a7y + a8xy

Pseudo-perspective:
x′ = a1 + a2x+ a3y + a4x

2 + a5xy
y′ = a6 + a7x+ a8y + a4xy + a5y

2

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 4 / 19

Review of Taylor series expansion

Consider first order approximation of a scalar function f(x), from
undergrad calculus,

f(x0 +∆x) ≈ f(x0) +
df(x)

dx

∣∣∣∣
x=x0

∆x

Now consider a vector function F (x) = [f1(x), f2(x), · · · , fM (x)]T ,
where x = [x1, x2, · · · , xN]T , we have

f1(x0 +∆x) ≈f1(x0) +
∂f1(x)

∂x1

∣∣∣∣
x=x0

∆x1 + · · ·+ ∂f1(x)

∂xN

∣∣∣∣
x=x0

∆xN

· · ·

fM (x0 +∆x) ≈fM (x0) +
∂fM (x)

∂x1

∣∣∣∣
x=x0

∆x1 + · · ·+ ∂fM (x)

∂xN

∣∣∣∣
x=x0

∆xN ,

where ∆x = [∆x1,∆x2, · · · ,∆xN]T

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 5 / 19

Review of Taylor series expansion

Consider first order approximation of a scalar function f(x), from
undergrad calculus,

f(x0 +∆x) ≈ f(x0) +
df(x)

dx

∣∣∣∣
x=x0

∆x

Now consider a vector function F (x) = [f1(x), f2(x), · · · , fM (x)]T ,
where x = [x1, x2, · · · , xN]T , we have

f1(x0 +∆x) ≈f1(x0) +
∂f1(x)

∂x1

∣∣∣∣
x=x0

∆x1 + · · ·+ ∂f1(x)

∂xN

∣∣∣∣
x=x0

∆xN

· · ·

fM (x0 +∆x) ≈fM (x0) +
∂fM (x)

∂x1

∣∣∣∣
x=x0

∆x1 + · · ·+ ∂fM (x)

∂xN

∣∣∣∣
x=x0

∆xN ,

where ∆x = [∆x1,∆x2, · · · ,∆xN]T

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 5 / 19

Review of Taylor series expansion

Consider first order approximation of a scalar function f(x), from
undergrad calculus,

f(x0 +∆x) ≈ f(x0) +
df(x)

dx

∣∣∣∣
x=x0

∆x

Now consider a vector function F (x) = [f1(x), f2(x), · · · , fM (x)]T ,
where x = [x1, x2, · · · , xN]T , we have

f1(x0 +∆x) ≈f1(x0) +
∂f1(x)

∂x1

∣∣∣∣
x=x0

∆x1 + · · ·+ ∂f1(x)

∂xN

∣∣∣∣
x=x0

∆xN

· · ·

fM (x0 +∆x) ≈fM (x0) +
∂fM (x)

∂x1

∣∣∣∣
x=x0

∆x1 + · · ·+ ∂fM (x)

∂xN

∣∣∣∣
x=x0

∆xN ,

where ∆x = [∆x1,∆x2, · · · ,∆xN]T

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 5 / 19

Review of Taylor series expansion

Consider first order approximation of a scalar function f(x), from
undergrad calculus,

f(x0 +∆x) ≈ f(x0) +
df(x)

dx

∣∣∣∣
x=x0

∆x

Now consider a vector function F (x) = [f1(x), f2(x), · · · , fM (x)]T ,
where x = [x1, x2, · · · , xN]T , we have

f1(x0 +∆x) ≈f1(x0) +
∂f1(x)

∂x1

∣∣∣∣
x=x0

∆x1 + · · ·+ ∂f1(x)

∂xN

∣∣∣∣
x=x0

∆xN

· · ·

fM (x0 +∆x) ≈fM (x0) +
∂fM (x)

∂x1

∣∣∣∣
x=x0

∆x1 + · · ·+ ∂fM (x)

∂xN

∣∣∣∣
x=x0

∆xN ,

where ∆x = [∆x1,∆x2, · · · ,∆xN]T

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 5 / 19

Review of Jacobian

So we have,

F (x0 +∆x) ≈ F (x0) +

∂f1(x)
∂x1

, ∂f1(x)∂x2
, · · · , ∂f1(x)∂xN

∂f2(x)
∂x1

, ∂f2(x)∂x2
, · · · , ∂f2(x)∂xN

· · ·
∂fM (x)
∂x1

, ∂fM (x)
∂x2

, · · · , ∂fM (x)
∂xN

∣∣∣∣∣∣∣∣∣
x=x0︸ ︷︷ ︸

∂F (x0)
∂x

∆x,

where we denote the matrix as ∂F (x0)
∂x , which is also known to be the

Jacobian of F (·) w.r.t x at point x0

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 6 / 19

Finding alignment

Goal: Given template T (x), find p to minimize∑
x

[I(W (x;p))− T (x)]2

Consider p0 +∆p, p0 is optimum if

∂

∂∆p

∑
x

[I(W (x;p0 +∆p))− T (x)]2 = 0

By Taylor series expansion,∑
x

[I(W (x;p0 +∆p))− T (x)]2

≈
∑
x

[I(W (x;p0)) + (∇I)T
∂W (x;p0)

∂p
∆p− T (x)]2

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 7 / 19

Finding alignment

Goal: Given template T (x), find p to minimize∑
x

[I(W (x;p))− T (x)]2

Consider p0 +∆p, p0 is optimum if

∂

∂∆p

∑
x

[I(W (x;p0 +∆p))− T (x)]2 = 0

By Taylor series expansion,∑
x

[I(W (x;p0 +∆p))− T (x)]2

≈
∑
x

[I(W (x;p0)) + (∇I)T
∂W (x;p0)

∂p
∆p− T (x)]2

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 7 / 19

Finding alignment

Goal: Given template T (x), find p to minimize∑
x

[I(W (x;p))− T (x)]2

Consider p0 +∆p, p0 is optimum if

∂

∂∆p

∑
x

[I(W (x;p0 +∆p))− T (x)]2 = 0

By Taylor series expansion,∑
x

[I(W (x;p0 +∆p))− T (x)]2

≈
∑
x

[I(W (x;p0)) + (∇I)T
∂W (x;p0)

∂p
∆p− T (x)]2

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 7 / 19

∂
∂∆p

∑
x[I(W (x;p0 +∆p))− T (x)]2 = 0

∂

∂∆p

∑
x

[I(W (x;p0)) + (∇I)T
∂W (x;p0)

∂p
∆p− T (x)]2

=2
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[I(W (x;p0)) + (∇I)T

∂W (x;p0)

∂p
∆p− T (x)] = 0

⇒
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T [
(∇I)T

∂W (x;p0)

∂p

]
∆p =

∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[T (x)− I(W (x;p0))]

∴ ∆p = H−1
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[T (x)− I(W (x;p0))],

where H =
∑

x

[
(∇I)T ∂W (x;p0)

∂p

]T [
(∇I)T ∂W (x;p0)

∂p

]
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 8 / 19

∂
∂∆p

∑
x[I(W (x;p0 +∆p))− T (x)]2 = 0

∂

∂∆p

∑
x

[I(W (x;p0)) + (∇I)T
∂W (x;p0)

∂p
∆p− T (x)]2

=2
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[I(W (x;p0)) + (∇I)T

∂W (x;p0)

∂p
∆p− T (x)] = 0

⇒
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T [
(∇I)T

∂W (x;p0)

∂p

]
∆p =

∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[T (x)− I(W (x;p0))]

∴ ∆p = H−1
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[T (x)− I(W (x;p0))],

where H =
∑

x

[
(∇I)T ∂W (x;p0)

∂p

]T [
(∇I)T ∂W (x;p0)

∂p

]
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 8 / 19

∂
∂∆p

∑
x[I(W (x;p0 +∆p))− T (x)]2 = 0

∂

∂∆p

∑
x

[I(W (x;p0)) + (∇I)T
∂W (x;p0)

∂p
∆p− T (x)]2

=2
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[I(W (x;p0)) + (∇I)T

∂W (x;p0)

∂p
∆p− T (x)] = 0

⇒
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T [
(∇I)T

∂W (x;p0)

∂p

]
∆p =

∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[T (x)− I(W (x;p0))]

∴ ∆p = H−1
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[T (x)− I(W (x;p0))],

where H =
∑

x

[
(∇I)T ∂W (x;p0)

∂p

]T [
(∇I)T ∂W (x;p0)

∂p

]
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 8 / 19

∂
∂∆p

∑
x[I(W (x;p0 +∆p))− T (x)]2 = 0

∂

∂∆p

∑
x

[I(W (x;p0)) + (∇I)T
∂W (x;p0)

∂p
∆p− T (x)]2

=2
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[I(W (x;p0)) + (∇I)T

∂W (x;p0)

∂p
∆p− T (x)] = 0

⇒
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T [
(∇I)T

∂W (x;p0)

∂p

]
∆p =

∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[T (x)− I(W (x;p0))]

∴ ∆p = H−1
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[T (x)− I(W (x;p0))],

where H =
∑

x

[
(∇I)T ∂W (x;p0)

∂p

]T [
(∇I)T ∂W (x;p0)

∂p

]
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 8 / 19

∂
∂∆p

∑
x[I(W (x;p0 +∆p))− T (x)]2 = 0

∂

∂∆p

∑
x

[I(W (x;p0)) + (∇I)T
∂W (x;p0)

∂p
∆p− T (x)]2

=2
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[I(W (x;p0)) + (∇I)T

∂W (x;p0)

∂p
∆p− T (x)] = 0

⇒
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T [
(∇I)T

∂W (x;p0)

∂p

]
∆p =

∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[T (x)− I(W (x;p0))]

∴ ∆p = H−1
∑
x

[
(∇I)T

∂W (x;p0)

∂p

]T
[T (x)− I(W (x;p0))],

where H =
∑

x

[
(∇I)T ∂W (x;p0)

∂p

]T [
(∇I)T ∂W (x;p0)

∂p

]
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 8 / 19

Example: Hessian for translation motion

For translation motion, we may write W (x;p) = x+ p, thus

∂W
∂p =

(
∂

∂p1
(x1 + p1)

∂
∂p2

(x1 + p1)
∂

∂p1
(x2 + p2)

∂
∂p2

(x2 + p2)

)
=

(
1 0
0 1

)
. Then

(∇I)T
∂W

∂p
=
(
∂I
∂x

∂I
∂y

)(1 0
0 1

)
=
(
∂I
∂x

∂I
∂y

)
and

H =
∑
x

[
(∇I)T

∂W

∂p0

]T [
(∇I)T

∂W

∂p0

]
=
∑
x

(∂I∂x)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(
∂I
∂y

)2
 ,

which btw is really a Harris corner detector

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 9 / 19

Example: Hessian for translation motion

For translation motion, we may write W (x;p) = x+ p, thus

∂W
∂p =

(
∂

∂p1
(x1 + p1)

∂
∂p2

(x1 + p1)
∂

∂p1
(x2 + p2)

∂
∂p2

(x2 + p2)

)
=

(
1 0
0 1

)
. Then

(∇I)T
∂W

∂p
=
(
∂I
∂x

∂I
∂y

)(1 0
0 1

)
=
(
∂I
∂x

∂I
∂y

)
and

H =
∑
x

[
(∇I)T

∂W

∂p0

]T [
(∇I)T

∂W

∂p0

]
=
∑
x

(∂I∂x)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(
∂I
∂y

)2
 ,

which btw is really a Harris corner detector

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 9 / 19

Example: Hessian for translation motion

For translation motion, we may write W (x;p) = x+ p, thus

∂W
∂p =

(
∂

∂p1
(x1 + p1)

∂
∂p2

(x1 + p1)
∂

∂p1
(x2 + p2)

∂
∂p2

(x2 + p2)

)
=

(
1 0
0 1

)
. Then

(∇I)T
∂W

∂p
=
(
∂I
∂x

∂I
∂y

)(1 0
0 1

)
=
(
∂I
∂x

∂I
∂y

)
and

H =
∑
x

[
(∇I)T

∂W

∂p0

]T [
(∇I)T

∂W

∂p0

]
=
∑
x

(∂I∂x)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(
∂I
∂y

)2
 ,

which btw is really a Harris corner detector

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 9 / 19

Example: Hessian for translation motion

For translation motion, we may write W (x;p) = x+ p, thus

∂W
∂p =

(
∂

∂p1
(x1 + p1)

∂
∂p2

(x1 + p1)
∂

∂p1
(x2 + p2)

∂
∂p2

(x2 + p2)

)
=

(
1 0
0 1

)
. Then

(∇I)T
∂W

∂p
=
(
∂I
∂x

∂I
∂y

)(1 0
0 1

)
=
(
∂I
∂x

∂I
∂y

)
and

H =
∑
x

[
(∇I)T

∂W

∂p0

]T [
(∇I)T

∂W

∂p0

]
=
∑
x

(∂I∂x)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(
∂I
∂y

)2
 ,

which btw is really a Harris corner detector

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 9 / 19

Computing the Jacobian ∂W
∂p

Richard Szeliski, “Computer Vision: Algorithms and Applications”

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 10 / 19

Lucas-Kanade

∆p = H−1
∑
x

[
(∇I)T

∂W

∂p

]T (
T (x)− I(W (x;p))

)
1 Warp I with W (x;p)

2 Subtract I from T

3 Compute gradient ∇I

4 Evaluate the Jacobian ∂W
∂p at (x;p)

5 Compute the steepest descent (∇I)T ∂W
∂p

6 Compute inverse Hessian H =
∑

x

(
(∇I)T ∂W

∂p

)T (
(∇I)T ∂W

∂p

)
7 Compute descend-error product

∑
x

[
(∇I)T ∂W

∂p

]T (
T (x)− I(W (x;p))

)
8 Compute ∆p

9 Update parameters p → p+∆p

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 11 / 19

Lucas-Kanade

∆p = H−1
∑
x

[
(∇I)T

∂W

∂p

]T (
T (x)− I(W (x;p))

)
1 Warp I with W (x;p)

2 Subtract I from T

3 Compute gradient ∇I

4 Evaluate the Jacobian ∂W
∂p at (x;p)

5 Compute the steepest descent (∇I)T ∂W
∂p

6 Compute inverse Hessian H =
∑

x

(
(∇I)T ∂W

∂p

)T (
(∇I)T ∂W

∂p

)
7 Compute descend-error product

∑
x

[
(∇I)T ∂W

∂p

]T (
T (x)− I(W (x;p))

)
8 Compute ∆p

9 Update parameters p → p+∆p

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 11 / 19

Lucas-Kanade

∆p = H−1
∑
x

[
(∇I)T

∂W

∂p

]T (
T (x)− I(W (x;p))

)
1 Warp I with W (x;p)

2 Subtract I from T

3 Compute gradient ∇I

4 Evaluate the Jacobian ∂W
∂p at (x;p)

5 Compute the steepest descent (∇I)T ∂W
∂p

6 Compute inverse Hessian H =
∑

x

(
(∇I)T ∂W

∂p

)T (
(∇I)T ∂W

∂p

)
7 Compute descend-error product

∑
x

[
(∇I)T ∂W

∂p

]T (
T (x)− I(W (x;p))

)
8 Compute ∆p

9 Update parameters p → p+∆p

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 11 / 19

Lucas-Kanade

∆p = H−1
∑
x

[
(∇I)T

∂W

∂p

]T (
T (x)− I(W (x;p))

)
1 Warp I with W (x;p)

2 Subtract I from T

3 Compute gradient ∇I

4 Evaluate the Jacobian ∂W
∂p at (x;p)

5 Compute the steepest descent (∇I)T ∂W
∂p

6 Compute inverse Hessian H =
∑

x

(
(∇I)T ∂W

∂p

)T (
(∇I)T ∂W

∂p

)
7 Compute descend-error product

∑
x

[
(∇I)T ∂W

∂p

]T (
T (x)− I(W (x;p))

)
8 Compute ∆p

9 Update parameters p → p+∆p

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 11 / 19

Lucas-Kanade

∆p = H−1
∑
x

[
(∇I)T

∂W

∂p

]T (
T (x)− I(W (x;p))

)
1 Warp I with W (x;p)

2 Subtract I from T

3 Compute gradient ∇I

4 Evaluate the Jacobian ∂W
∂p at (x;p)

5 Compute the steepest descent (∇I)T ∂W
∂p

6 Compute inverse Hessian H =
∑

x

(
(∇I)T ∂W

∂p

)T (
(∇I)T ∂W

∂p

)
7 Compute descend-error product

∑
x

[
(∇I)T ∂W

∂p

]T (
T (x)− I(W (x;p))

)
8 Compute ∆p

9 Update parameters p → p+∆p

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 11 / 19

Lucas-Kanade

∆p = H−1
∑
x

[
(∇I)T

∂W

∂p

]T (
T (x)− I(W (x;p))

)
1 Warp I with W (x;p)

2 Subtract I from T

3 Compute gradient ∇I

4 Evaluate the Jacobian ∂W
∂p at (x;p)

5 Compute the steepest descent (∇I)T ∂W
∂p

6 Compute inverse Hessian H =
∑

x

(
(∇I)T ∂W

∂p

)T (
(∇I)T ∂W

∂p

)
7 Compute descend-error product

∑
x

[
(∇I)T ∂W

∂p

]T (
T (x)− I(W (x;p))

)
8 Compute ∆p

9 Update parameters p → p+∆p

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 11 / 19

Lucas-Kanade

∆p = H−1
∑
x

[
(∇I)T

∂W

∂p

]T (
T (x)− I(W (x;p))

)
1 Warp I with W (x;p)

2 Subtract I from T

3 Compute gradient ∇I

4 Evaluate the Jacobian ∂W
∂p at (x;p)

5 Compute the steepest descent (∇I)T ∂W
∂p

6 Compute inverse Hessian H =
∑

x

(
(∇I)T ∂W

∂p

)T (
(∇I)T ∂W

∂p

)
7 Compute descend-error product

∑
x

[
(∇I)T ∂W

∂p

]T (
T (x)− I(W (x;p))

)
8 Compute ∆p

9 Update parameters p → p+∆p

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 11 / 19

Lucas-Kanade

∆p = H−1
∑
x

[
(∇I)T

∂W

∂p

]T (
T (x)− I(W (x;p))

)
1 Warp I with W (x;p)

2 Subtract I from T

3 Compute gradient ∇I

4 Evaluate the Jacobian ∂W
∂p at (x;p)

5 Compute the steepest descent (∇I)T ∂W
∂p

6 Compute inverse Hessian H =
∑

x

(
(∇I)T ∂W

∂p

)T (
(∇I)T ∂W

∂p

)
7 Compute descend-error product

∑
x

[
(∇I)T ∂W

∂p

]T (
T (x)− I(W (x;p))

)
8 Compute ∆p

9 Update parameters p → p+∆p

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 11 / 19

Lucas-Kanade

∆p = H−1
∑
x

[
(∇I)T

∂W

∂p

]T (
T (x)− I(W (x;p))

)
1 Warp I with W (x;p)

2 Subtract I from T

3 Compute gradient ∇I

4 Evaluate the Jacobian ∂W
∂p at (x;p)

5 Compute the steepest descent (∇I)T ∂W
∂p

6 Compute inverse Hessian H =
∑

x

(
(∇I)T ∂W

∂p

)T (
(∇I)T ∂W

∂p

)
7 Compute descend-error product

∑
x

[
(∇I)T ∂W

∂p

]T (
T (x)− I(W (x;p))

)
8 Compute ∆p

9 Update parameters p → p+∆p

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 11 / 19

Lucas-Kanade

∆p = H−1
∑
x

[
(∇I)T

∂W

∂p

]T (
T (x)− I(W (x;p))

)
1 Warp I with W (x;p)

2 Subtract I from T

3 Compute gradient ∇I

4 Evaluate the Jacobian ∂W
∂p at (x;p)

5 Compute the steepest descent (∇I)T ∂W
∂p

6 Compute inverse Hessian H =
∑

x

(
(∇I)T ∂W

∂p

)T (
(∇I)T ∂W

∂p

)
7 Compute descend-error product

∑
x

[
(∇I)T ∂W

∂p

]T (
T (x)− I(W (x;p))

)
8 Compute ∆p

9 Update parameters p → p+∆p

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 11 / 19

Some variations of Lucas-Kanade algorithms

Instead of considering

∂

∂∆p

∑
x

[I(W (x;p0 +∆p))− T (x)]2 = 0

We can approximate the above as

∂

∂∆p

∑
x

[I(W (W (x;p0);∆p)))− T (x)]2 = 0

If we go through the same deviation, this will lead to the so-called
“compositional algorithm”
More interestingly, note that our goal is that p0 should be stationary
w.r.t. any ∆p, therefore we can also consider (“inverse compositional
alignment”)

∂

∂∆p

∑
x

[I(W (W (x;p0);−∆p))− T (x)]2

≈ ∂

∂∆p

∑
x

[I(W (x;p0))− T (W (x;∆p))]2 = 0

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 12 / 19

Some variations of Lucas-Kanade algorithms

Instead of considering

∂

∂∆p

∑
x

[I(W (x;p0 +∆p))− T (x)]2 = 0

We can approximate the above as

∂

∂∆p

∑
x

[I(W (W (x;p0);∆p)))− T (x)]2 = 0

If we go through the same deviation, this will lead to the so-called
“compositional algorithm”
More interestingly, note that our goal is that p0 should be stationary
w.r.t. any ∆p, therefore we can also consider (“inverse compositional
alignment”)

∂

∂∆p

∑
x

[I(W (W (x;p0);−∆p))− T (x)]2

≈ ∂

∂∆p

∑
x

[I(W (x;p0))− T (W (x;∆p))]2 = 0

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 12 / 19

Some variations of Lucas-Kanade algorithms

Instead of considering

∂

∂∆p

∑
x

[I(W (x;p0 +∆p))− T (x)]2 = 0

We can approximate the above as

∂

∂∆p

∑
x

[I(W (W (x;p0);∆p)))− T (x)]2 = 0

If we go through the same deviation, this will lead to the so-called
“compositional algorithm”
More interestingly, note that our goal is that p0 should be stationary
w.r.t. any ∆p, therefore we can also consider (“inverse compositional
alignment”)

∂

∂∆p

∑
x

[I(W (W (x;p0);−∆p))− T (x)]2

≈ ∂

∂∆p

∑
x

[I(W (x;p0))− T (W (x;∆p))]2 = 0

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 12 / 19

∂
∂∆p

∑
x[I(W (x;p0)))− T (W (x; ∆p))]2 = 0

∂

∂∆p

∑
x

[I(W (x;p0))− T (W (x;∆p))]2

≈ ∂

∂∆p

∑
x

[I(W (x;p0))− T (W (x;0))− (∇T)T
∂W (x;0)

∂p
∆p]2

=− 2
∑
x

[
(∇T)T

∂W (x;0)

∂p

]T
[I(W (x;p0))− T (x)− (∇T)T

∂W (x;0)

∂p
∆p] = 0

∴ ∆p = H−1
∑
x

[
(∇T)T

∂W (x;0)

∂p

]T
[I(W (x;p0))− T (x)],

where H =
∑

x

[
(∇T)T ∂W (x;0)

∂p

]T [
(∇T)T ∂W (x;0)

∂p

]
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 13 / 19

∂
∂∆p

∑
x[I(W (x;p0)))− T (W (x; ∆p))]2 = 0

∂

∂∆p

∑
x

[I(W (x;p0))− T (W (x;∆p))]2

≈ ∂

∂∆p

∑
x

[I(W (x;p0))− T (W (x;0))− (∇T)T
∂W (x;0)

∂p
∆p]2

=− 2
∑
x

[
(∇T)T

∂W (x;0)

∂p

]T
[I(W (x;p0))− T (x)− (∇T)T

∂W (x;0)

∂p
∆p] = 0

∴ ∆p = H−1
∑
x

[
(∇T)T

∂W (x;0)

∂p

]T
[I(W (x;p0))− T (x)],

where H =
∑

x

[
(∇T)T ∂W (x;0)

∂p

]T [
(∇T)T ∂W (x;0)

∂p

]
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 13 / 19

∂
∂∆p

∑
x[I(W (x;p0)))− T (W (x; ∆p))]2 = 0

∂

∂∆p

∑
x

[I(W (x;p0))− T (W (x;∆p))]2

≈ ∂

∂∆p

∑
x

[I(W (x;p0))− T (W (x;0))− (∇T)T
∂W (x;0)

∂p
∆p]2

=− 2
∑
x

[
(∇T)T

∂W (x;0)

∂p

]T
[I(W (x;p0))− T (x)− (∇T)T

∂W (x;0)

∂p
∆p] = 0

∴ ∆p = H−1
∑
x

[
(∇T)T

∂W (x;0)

∂p

]T
[I(W (x;p0))− T (x)],

where H =
∑

x

[
(∇T)T ∂W (x;0)

∂p

]T [
(∇T)T ∂W (x;0)

∂p

]
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 13 / 19

(Inverse compositional) Modified Lucas-Kanade
Baker et al., IJCV 2004

∆p = H−1
∑
x

[
(∇T)T

∂W

∂p

]T (
I(W (x;p))− T (x)

)
1 Warp I with W (x;p)

2 Subtract T from I

3 Compute gradient ∇T (only do once)

4 Evaluate the Jacobian ∂W
∂p at (x;0) (only do once)

5 Compute the steepest descent (∇T)T ∂W
∂p (only do once)

6 Compute Hessian H =
∑

x

(
(∇T)T ∂W

∂p

)T (
(∇T)T ∂W

∂p

)
(only do once)

7 Multiply steepest descend with error∑
x

[
(∇T)T ∂W

∂p

]T (
I(W (x;p))− T (x)

)
8 Compute ∆p

9 Update parameters p → p+∆p
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 14 / 19

http://www.ncorr.com/download/publications/bakerunify.pdf

(Inverse compositional) Modified Lucas-Kanade
Baker et al., IJCV 2004

∆p = H−1
∑
x

[
(∇T)T

∂W

∂p

]T (
I(W (x;p))− T (x)

)
1 Warp I with W (x;p)

2 Subtract T from I

3 Compute gradient ∇T (only do once)

4 Evaluate the Jacobian ∂W
∂p at (x;0) (only do once)

5 Compute the steepest descent (∇T)T ∂W
∂p (only do once)

6 Compute Hessian H =
∑

x

(
(∇T)T ∂W

∂p

)T (
(∇T)T ∂W

∂p

)
(only do once)

7 Multiply steepest descend with error∑
x

[
(∇T)T ∂W

∂p

]T (
I(W (x;p))− T (x)

)
8 Compute ∆p

9 Update parameters p → p+∆p
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 14 / 19

http://www.ncorr.com/download/publications/bakerunify.pdf

(Inverse compositional) Modified Lucas-Kanade
Baker et al., IJCV 2004

∆p = H−1
∑
x

[
(∇T)T

∂W

∂p

]T (
I(W (x;p))− T (x)

)
1 Warp I with W (x;p)

2 Subtract T from I

3 Compute gradient ∇T (only do once)

4 Evaluate the Jacobian ∂W
∂p at (x;0) (only do once)

5 Compute the steepest descent (∇T)T ∂W
∂p (only do once)

6 Compute Hessian H =
∑

x

(
(∇T)T ∂W

∂p

)T (
(∇T)T ∂W

∂p

)
(only do once)

7 Multiply steepest descend with error∑
x

[
(∇T)T ∂W

∂p

]T (
I(W (x;p))− T (x)

)
8 Compute ∆p

9 Update parameters p → p+∆p
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 14 / 19

http://www.ncorr.com/download/publications/bakerunify.pdf

(Inverse compositional) Modified Lucas-Kanade
Baker et al., IJCV 2004

∆p = H−1
∑
x

[
(∇T)T

∂W

∂p

]T (
I(W (x;p))− T (x)

)
1 Warp I with W (x;p)

2 Subtract T from I

3 Compute gradient ∇T (only do once)

4 Evaluate the Jacobian ∂W
∂p at (x;0) (only do once)

5 Compute the steepest descent (∇T)T ∂W
∂p (only do once)

6 Compute Hessian H =
∑

x

(
(∇T)T ∂W

∂p

)T (
(∇T)T ∂W

∂p

)
(only do once)

7 Multiply steepest descend with error∑
x

[
(∇T)T ∂W

∂p

]T (
I(W (x;p))− T (x)

)
8 Compute ∆p

9 Update parameters p → p+∆p
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 14 / 19

http://www.ncorr.com/download/publications/bakerunify.pdf

(Inverse compositional) Modified Lucas-Kanade
Baker et al., IJCV 2004

∆p = H−1
∑
x

[
(∇T)T

∂W

∂p

]T (
I(W (x;p))− T (x)

)
1 Warp I with W (x;p)

2 Subtract T from I

3 Compute gradient ∇T (only do once)

4 Evaluate the Jacobian ∂W
∂p at (x;0) (only do once)

5 Compute the steepest descent (∇T)T ∂W
∂p (only do once)

6 Compute Hessian H =
∑

x

(
(∇T)T ∂W

∂p

)T (
(∇T)T ∂W

∂p

)
(only do once)

7 Multiply steepest descend with error∑
x

[
(∇T)T ∂W

∂p

]T (
I(W (x;p))− T (x)

)
8 Compute ∆p

9 Update parameters p → p+∆p
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 14 / 19

http://www.ncorr.com/download/publications/bakerunify.pdf

(Inverse compositional) Modified Lucas-Kanade
Baker et al., IJCV 2004

∆p = H−1
∑
x

[
(∇T)T

∂W

∂p

]T (
I(W (x;p))− T (x)

)
1 Warp I with W (x;p)

2 Subtract T from I

3 Compute gradient ∇T (only do once)

4 Evaluate the Jacobian ∂W
∂p at (x;0) (only do once)

5 Compute the steepest descent (∇T)T ∂W
∂p (only do once)

6 Compute Hessian H =
∑

x

(
(∇T)T ∂W

∂p

)T (
(∇T)T ∂W

∂p

)
(only do once)

7 Multiply steepest descend with error∑
x

[
(∇T)T ∂W

∂p

]T (
I(W (x;p))− T (x)

)
8 Compute ∆p

9 Update parameters p → p+∆p
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 14 / 19

http://www.ncorr.com/download/publications/bakerunify.pdf

(Inverse compositional) Modified Lucas-Kanade
Baker et al., IJCV 2004

∆p = H−1
∑
x

[
(∇T)T

∂W

∂p

]T (
I(W (x;p))− T (x)

)
1 Warp I with W (x;p)

2 Subtract T from I

3 Compute gradient ∇T (only do once)

4 Evaluate the Jacobian ∂W
∂p at (x;0) (only do once)

5 Compute the steepest descent (∇T)T ∂W
∂p (only do once)

6 Compute Hessian H =
∑

x

(
(∇T)T ∂W

∂p

)T (
(∇T)T ∂W

∂p

)
(only do once)

7 Multiply steepest descend with error∑
x

[
(∇T)T ∂W

∂p

]T (
I(W (x;p))− T (x)

)
8 Compute ∆p

9 Update parameters p → p+∆p
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 14 / 19

http://www.ncorr.com/download/publications/bakerunify.pdf

(Inverse compositional) Modified Lucas-Kanade
Baker et al., IJCV 2004

∆p = H−1
∑
x

[
(∇T)T

∂W

∂p

]T (
I(W (x;p))− T (x)

)
1 Warp I with W (x;p)

2 Subtract T from I

3 Compute gradient ∇T (only do once)

4 Evaluate the Jacobian ∂W
∂p at (x;0) (only do once)

5 Compute the steepest descent (∇T)T ∂W
∂p (only do once)

6 Compute Hessian H =
∑

x

(
(∇T)T ∂W

∂p

)T (
(∇T)T ∂W

∂p

)
(only do once)

7 Multiply steepest descend with error∑
x

[
(∇T)T ∂W

∂p

]T (
I(W (x;p))− T (x)

)
8 Compute ∆p

9 Update parameters p → p+∆p
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 14 / 19

http://www.ncorr.com/download/publications/bakerunify.pdf

(Inverse compositional) Modified Lucas-Kanade
Baker et al., IJCV 2004

∆p = H−1
∑
x

[
(∇T)T

∂W

∂p

]T (
I(W (x;p))− T (x)

)
1 Warp I with W (x;p)

2 Subtract T from I

3 Compute gradient ∇T (only do once)

4 Evaluate the Jacobian ∂W
∂p at (x;0) (only do once)

5 Compute the steepest descent (∇T)T ∂W
∂p (only do once)

6 Compute Hessian H =
∑

x

(
(∇T)T ∂W

∂p

)T (
(∇T)T ∂W

∂p

)
(only do once)

7 Multiply steepest descend with error∑
x

[
(∇T)T ∂W

∂p

]T (
I(W (x;p))− T (x)

)
8 Compute ∆p

9 Update parameters p → p+∆p
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 14 / 19

http://www.ncorr.com/download/publications/bakerunify.pdf

(Inverse compositional) Modified Lucas-Kanade
Baker et al., IJCV 2004

∆p = H−1
∑
x

[
(∇T)T

∂W

∂p

]T (
I(W (x;p))− T (x)

)
1 Warp I with W (x;p)

2 Subtract T from I

3 Compute gradient ∇T (only do once)

4 Evaluate the Jacobian ∂W
∂p at (x;0) (only do once)

5 Compute the steepest descent (∇T)T ∂W
∂p (only do once)

6 Compute Hessian H =
∑

x

(
(∇T)T ∂W

∂p

)T (
(∇T)T ∂W

∂p

)
(only do once)

7 Multiply steepest descend with error∑
x

[
(∇T)T ∂W

∂p

]T (
I(W (x;p))− T (x)

)
8 Compute ∆p

9 Update parameters p → p+∆p
S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 14 / 19

http://www.ncorr.com/download/publications/bakerunify.pdf

(Inverse compositional) Modified-KLT
Baker et al., IJCV 2004

Initialize:

1 Compute gradient ∇T

2 Evaluate the Jacobian ∂W
∂p at (x;0)

3 Compute the steepest descent (∇T)T ∂W
∂p

4 Compute Hessian H =
∑

x

(
(∇T)T ∂W

∂p

)T (
(∇T)T ∂W

∂p

)
Loop:

1 Warp I with W (x;p)

2 Subtract T from I

3 Multiply steepest descend with error∑
x

[
(∇T)T ∂W

∂p

]T (
I(W (x;p))− T (x)

)
4 Compute ∆p

5 Update parameters p → p+∆p

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 15 / 19

http://www.ncorr.com/download/publications/bakerunify.pdf

Modified Lucas-Kanade
Baker et al., IJCV 2004

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 16 / 19

References

Simon Baker and Iain Matthews, “Lucas-Kanade 20 Years On: A
Unifying Framework,” IJCV, 2004

Section 8.2, Richard Szeliski, “Computer Vision: Algorithms and
Applications”

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 17 / 19

http://www.ncorr.com/download/publications/bakerunify.pdf
http://www.ncorr.com/download/publications/bakerunify.pdf

Implementations

OpenCV implementation: http://www.ces.clemson.edu/∼stb/klt/

Some Matlab Implementation: Lucas Kanade with Pyramid

http://www.mathworks.com/matlabcentral/fileexchange/30822
Affine tracking: http://www.mathworks.com/matlabcentral/
fileexchange/24677-lucas-kanade-affine-template-tracking
http://vision.eecs.ucf.edu/Code/Optical Flow/Lucas%20Kanade.zip

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 18 / 19

http://www.ces.clemson.edu/~stb/klt/
http://www.mathworks.com/matlabcentral/fileexchange/30822
http://www.mathworks.com/matlabcentral/fileexchange/24677-lucas-kanade-affine-template-tracking
http://www.mathworks.com/matlabcentral/fileexchange/24677-lucas-kanade-affine-template-tracking
http://vision.eecs.ucf.edu/Code/Optical_Flow/Lucas%20Kanade.zip

Some follow-up works from UCF

Hamid Izadinia, Imran Saleemi, Wenhui Li, and Mubarak Shah,
‘‘(MP)2T : Multiple People Multiple Parts Tracker,” ECCV 2012

Amir Roshan Zamir, Afshi Dehghan, and Mubarak Shah,
‘‘GMCP-Tracker: Global Multi-object Tracking Using Generalized
Minimum clique Graphs,” ECCV 2012

S. Cheng (OU-ECE) Lucas-Kanade Tracker Jan 2017 19 / 19

http://www.youtube.com/watch?v=YhyMcWnJf9g&feature=plcp
http://www.youtube.com/watch?v=f4Muu1d7NhA&feature=plcp
http://www.youtube.com/watch?v=f4Muu1d7NhA&feature=plcp

