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Introduction
Image pyramid

@ Very useful for representing images

@ Pyramid is built as multiple resolution approximations of a same
image

@ Each level in the pyramid is 1/4 of the size of the previous level
@ Lowest level has highest resolution
@ Highest level has lowest resolution
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Introduction

https://www.pyimagesearch.com/2015/03/16/image-pyramids-with-
python-and-opencv/
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Introduction
Gaussian pyramid
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Introduction

Laplacian pyramid
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Things to learn today

@ Gaussian and Laplacian pyramid

@ Reduce
e Expand

@ Applications of Laplacian pyramid

e Image compression
e Image composting
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Gaussian pyramid Reduce

Reduce operation

9/ = REDUCE[g,_4]

2
o)~ Y Y wmmgi(@i-m2j—n

I—1-level
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Gaussian pyramid Reduce

Reduce operation

9/ = REDUCE[g,_4]

2 2
Q//,I > w(m, n)gi_1(2i — m,2j — n)

m=—-2n=-2

I- Ievel I—1-level

Note that it is different from convolution that we skip every one sample
per dimension for the input
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Gaussian pyramid Reduce




Gaussian pyramid Reduce




Gaussian pyramid Reduce
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Gaussian pyramid Expand

Expand operation

91 = EXPAND[g,+]

h= 3 5w (57 57)

n=—2m=-2

EXPAND is approximately the inverse operation of REDUCE
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Gaussian pyramid Expand

1-D case
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Gaussian pyramid Expand
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Gaussian pyramid Expand

o) - 3 wimar (%7)

m=-2
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Gaussian pyramid Expand

m=-2

~ 242 ~
a(2) = /1( > w—He—&
2-2

(5] vt 35

= w(-2)g1-1(2) + w(0)g-1(1) + w(2)g1-1(0)
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Gaussian pyramid Expand

w1 (5) +wiaerz + w@ao (257)
= w(-2)91-1(2) + w(0)gi-1(1) + w(2)31-1(0)

a19) = w21 (25%) + w357 ) - w0 ()
+ w(1)91—1 (5;1) + w(2)g_1 (5;2)
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Gaussian pyramid Expand

m=-2

~ 242 ~
a(2) = /1( > w—He—&
2-2

(5] vt 35

= w(-2)g1-1(2) + w(0)g-1(1) + w(2)g1-1(0)

01(5) = w2552+ wi- 1)1 (25 ) + oY)
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Gaussian pyramid Expand

2 ,
ol = 37 wimai (%7)
a1(2) 91—1 (2+2> W=

~

a(5) = 52 | w(—1)g)_+ (521> + WY {3)
+w(1)gi_1 (5;1> +W625§7T%
=w(=1)g_1(3) +w(1)g_1(2)

S. Cheng (OU ECE) Image pyramids Feb 2017 13/23



Gaussian pyramid Expand

[ X
._..
onr
Qo
[ N

Note that since we have discard half of the coefficients during
expansion, we should double the weights w(m) comparing to those
during reduction




Gaussian pyramid Expand

Note that since we have discard half of the coefficients during
expansion, we should double the weights w(m) comparing to those
during reduction




Gaussian pyramid Expand

Note that since we have discard half of the coefficients during
expansion, we should double the weights w(m) comparing to those
during reduction

S. Cheng (OU ECE) Image pyramids Feb 2017 14/23



Gaussian pyramid Convolution mask

Design properties of convolution mask

Separable @ Thatis, w(m,n) = w(m)w(n)
@ We can save computational cost (from N? to 2N)
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Gaussian pyramid Convolution mask

Design properties of convolution mask

Separable @ Thatis, w(m,n) = w(m)w(n)

@ We can save computational cost (from N? to 2N)
Symmetric @ Thatis, w(i) = w(—/)

@ [w(—-2),w(—1),w(0),w(1),w(2)] =[c, b,a,b,c]
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Gaussian pyramid Convolution mask

Design properties of convolution mask

Separable @ Thatis, w(m,n) = w(m)w(n)
@ We can save computational cost (from N? to 2N)
Symmetric @ Thatis, w(i) = w(—/)
@ [w(—-2),w(—1),w(0),w(1),w(2)] =[c, b,a,b,c]
Normalized @ Sum of mask should be 1
@ Thus,a+2b+2c=1
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Gaussian pyramid Convolution mask

Design properties of convolution mask

Separable @ Thatis, w(m,n) = w(m)w(n)

@ We can save computational cost (from N? to 2N)
Symmetric @ Thatis, w(i) = w(—/)

@ [w(—-2),w(—1),w(0),w(1),w(2)] =[c, b,a,b,c]
Normalized @ Sum of mask should be 1

@ Thus,a+2b+2c=1
“Unbiased” @ All nodes at a given level should contribute the same

to nodes at the next level
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Gaussian pyramid Convolution mask

Design properties of convolution mask

Separable @ Thatis, w(m,n) = w(m)w(n)

@ We can save computational cost (from N? to 2N)
Symmetric @ Thatis, w(i) = w(—/)

@ [w(—-2),w(—1),w(0),w(1),w(2)] =[c, b,a,b,c]
Normalized @ Sum of mask should be 1

@ Thus,a+2b+2c=1
“Unbiased” @ All nodes at a given level should contribute the same

to nodes at the next level
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Gaussian pyramid Convolution mask

Design properties of convolution mask

Separable @ Thatis, w(m,n) = w(m)w(n)

@ We can save computational cost (from N? to 2N)
Symmetric @ Thatis, w(i) = w(—/)

@ [w(—-2),w(—1),w(0),w(1),w(2)] =[c, b,a,b,c]
Normalized @ Sum of mask should be 1

@ Thus,a+2b+2c=1
“Unbiased” @ All nodes at a given level should contribute the same

to nodes at the next level
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Gaussian pyramid Convolution mask

Design properties of convolution mask

Separable @ Thatis, w(m,n) = w(m)w(n)

@ We can save computational cost (from N? to 2N)
Symmetric @ Thatis, w(i) = w(—/)

@ [w(—-2),w(—1),w(0),w(1),w(2)] =[c, b,a,b,c]
Normalized @ Sum of mask should be 1

@ Thus,a+2b+2c=1
“Unbiased” @ All nodes at a given level should contribute the same

to nodes at the next level
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Gaussian pyramid Convolution mask

Design properties of convolution mask

Separable @ Thatis, w(m,n) = w(m)w(n)

@ We can save computational cost (from N? to 2N)
Symmetric @ Thatis, w(i) = w(—/)

@ [w(—-2),w(—1),w(0),w(1),w(2)] =[c, b,a,b,c]
Normalized @ Sum of mask should be 1

@ Thus,a+2b+2c=1
“Unbiased” @ All nodes at a given level should contribute the same

to nodes at the next level

0 1 2 3 4
o o o o

o Q

® 6 6 ¢ 6 6 o6 o o
o 1 2 3 4 5 6 7 8

S. Cheng (OU ECE) Image pyramids Feb 2017 15/23



Gaussian pyramid Convolution mask

Design properties of convolution mask

Separable @ Thatis, w(m,n) = w(m)w(n)

@ We can save computational cost (from N? to 2N)
Symmetric @ Thatis, w(i) = w(—/)

@ [w(—-2),w(—1),w(0),w(1),w(2)] =[c, b,a,b,c]
Normalized @ Sum of mask should be 1

@ Thus,a+2b+2c=1
“Unbiased” @ All nodes at a given level should contribute the same

to nodes at the next level

[ X
|
[
o
[ N

e 6 0 ¢ ® 6 0 ¢
o 1 2 3 5 6 7 8

S. Cheng (OU ECE) Image pyramids Feb 2017 15/23



Gaussian pyramid Convolution mask

Design properties of convolution mask

Separable @ Thatis, w(m,n) = w(m)w(n)

@ We can save computational cost (from N2 to 2N)
Symmetric @ Thatis, w(i) = w(—/)

@ [w(—-2),w(—1),w(0),w(1),w(2)] =[c, b,a,b,c]
Normalized @ Sum of mask should be 1

@ Thus,a+2b+2c=1
“Unbiased” @ All nodes at a given level should contribute the same

to nodes at the next level (2b = 2¢ + a)
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Gaussian pyramid Convolution mask

Mask parameters

@ From the previous slide,

at+2c=2b :>4b:1:>b:1
a+2b+2c=1 4

@ Substitute b = 1 back to the equations, we have
b=
C =

N
. . o3 2 N\
@ a= 0.4~ Gaussian, a = 0.5 ~ triangular \

ENJENNEN
T

0.5

0.4 A \ —a=0.4

N\

0.2

-2 -1 0 1 2
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Laplacian pyramids
Laplacian pyramids

@ Similar to edge detected images
@ Most pixels are zero
@ Can be used for image compression

L1 =01 — EXPAND[QQ]
Lg =00 — EXPAND[gg]
L3 =03 — EXPAND[g4]
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Applications Image compression with Laplacian pyramid

Image encoding

@ Compute Gaussian pyramid

91,92, 93,94
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Applications Image compression with Laplacian pyramid

Image encoding

@ Compute Gaussian pyramid

91,92, 93,94

@ Compute Laplacian pyramid

Ly = g1 — EXPAND|g:]
L2 =00 — EXPAND[Q3]
L3 = g3 — EXPAND[g4]

Ly = g4
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Applications Image compression with Laplacian pyramid

Image encoding

@ Compute Gaussian pyramid

91,92, 93,94

@ Compute Laplacian pyramid

Ly = g1 — EXPAND|g:]
L2 =00 — EXPAND[Q3]
L3 = g3 — EXPAND[g4]

Ly = g4

@ Quantize and code Laplacian pyramid (e.g., by Huffmann coding)
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Applications Image compression with Laplacian pyramid

Image encoding

o?:255 H=3 36

K)%I H=563

0 128

178 Q 28
S. Cheng (OU ECE) Image pyramids eb 2017 19/23



Applications Image compression with Laplacian pyramid

Image decoding

@ Decode Laplacian pyramid

Ly, Lo, L3, L4
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Applications Image compression with Laplacian pyramid

Image decoding

@ Decode Laplacian pyramid
Ly, Lo, L3, Ly
@ Compute Gaussian pyramid from Laplacian pyramid

gs =Ly

s = Ly + EXPAND|ga]
0 = Lo + EXPAND|gs]
01 = Ly + EXPAND[gs]
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Applications Image compression with Laplacian pyramid

Image decoding

@ Decode Laplacian pyramid
Ly, Lo, L3, Ly
@ Compute Gaussian pyramid from Laplacian pyramid

gs =Ly

s = Ly + EXPAND|ga]
0 = Lo + EXPAND|gs]
01 = Ly + EXPAND[gs]

@ gq is the reconstructed image
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Applications Image compression with Laplacian pyramid

Compression result

(c) (d)

Fig 8. Examples of image data compression using the Laplacian Pyramid code. (a) and (c) give the original "Lady" and "Walter” images,
while (b) and (d) give their encoded versions of the data rates are 1.58 and 0.73 bits/pixel for "Lady" and "Walter," respectively. The
corresponding mean square errors were .88 percent and 0,43 percent, respectively
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Applications Image composting

Image composting

Orange
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Applications Image composting

Algorithm for image composting

@ Generate Laplacian pyramid L, of the orange image
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Applications Image composting

Algorithm for image composting

@ Generate Laplacian pyramid L, of the orange image
@ Generate Laplacian pyramid L, of the apple image
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Applications Image composting

Algorithm for image composting

@ Generate Laplacian pyramid L, of the orange image
@ Generate Laplacian pyramid L, of the apple image

@ Generate Laplacian pyramid L. by

o Copy left half of nodes at each level from apple pyramid
o Copy right half of nodes at each level from orange pyramid
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Applications Image composting

Algorithm for image composting

@ Generate Laplacian pyramid L, of the orange image

@ Generate Laplacian pyramid L, of the apple image
@ Generate Laplacian pyramid L. by

o Copy left half of nodes at each level from apple pyramid
o Copy right half of nodes at each level from orange pyramid

@ Reconstruct combined image from pyramid L.
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