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Introduction

Image pyramid

Very useful for representing images
Pyramid is built as multiple resolution approximations of a same
image
Each level in the pyramid is 1/4 of the size of the previous level
Lowest level has highest resolution
Highest level has lowest resolution
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Introduction
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Introduction

Gaussian pyramid

S. Cheng (OU ECE) Image pyramids Feb 2019 7 / 23



Introduction

Laplacian pyramid
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Introduction

Things to learn today

Gaussian and Laplacian pyramid
Reduce
Expand

Applications of Laplacian pyramid
Image compression
Image composting
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Gaussian pyramid Reduce

Reduce operation

gl = REDUCE[gl−1]

gl(i, j)︸ ︷︷ ︸
l-level

=
2∑

m=−2

2∑
n=−2

w̃(m,n)gl−1(2i − m, 2j − n)︸ ︷︷ ︸
l−1-level

Remark
Note that it is different from convolution that we skip every one sample
per dimension for the input
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Gaussian pyramid Reduce

1-D case

gl(i) =
2∑

m=−2
w(m)gl−1(2i − m)
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Gaussian pyramid Expand

Expand operation

ĝl = EXPAND[ĝl−1]

ĝl(i, j) =
2∑

n=−2

2∑
m=−2

w̃(m,n)ĝl−1

(
i − n

2
,
j − m

2

)

Remark
EXPAND is approximately the inverse operation of REDUCE
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Gaussian pyramid Expand

1-D case

ĝl(i) =
2∑

m=−2
w(m)ĝl−1
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= w(−1)ĝl−1 (3) + w(1)ĝl−1(2)
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ĝl(5) = +w(−1)ĝl−1
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ĝl(i) =
2∑

m=−2
w(m)ĝl−1
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= w(−2)ĝl−1(2) + w(0)ĝl−1(1) + w(2)ĝl−1(0)
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Remark
Note that since we have discard half of the coefficients during
expansion, we should double the weights w(m) comparing to those
during reduction
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Gaussian pyramid Convolution mask

Design properties of convolution mask

Separable That is, w̃(m,n) = w(m)w(n)
We can save computational cost (from N2 to 2N)

Symmetric That is, w(i) = w(−i)
[w(−2),w(−1),w(0),w(1),w(2)] = [c,b, a,b, c]

Normalized Sum of mask should be 1
Thus, a + 2b + 2c = 1

“Unbiased” All nodes at a given level should contribute the same
to nodes at the next level

(2b = 2c + a)

0 1 2 3 4 5 6 7 8

0 1 2 3 4

c b a

b cc b a

b c c b a

b cb bc

a c
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Gaussian pyramid Convolution mask

Mask parameters

From the previous slide,{
a + 2c = 2b
a + 2b + 2c = 1

⇒ 4b = 1 ⇒ b =
1
4

Substitute b = 1
4 back to the equations, we have{

b = 1
4

c = 1
4 − a

2

a = 0.4 ≈ Gaussian, a = 0.5 ≈ triangular

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

a=0.5
a=0.4
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Laplacian pyramids

Laplacian pyramids

Derive from Gaussian pyramid
First construct Gaussian pyramid: g0 (original image),
g1 = REDUCE[g0], g2 = REDUCE[g1], · · ·
One level of pyramid is difference between the level and
approximation through expanding the next level

L0 = g0 − EXPAND[g1]

L1 = g1 − EXPAND[g2]

L2 = g2 − EXPAND[g3]

Most coefficients of the pyramid are zero ⇒ can be used for compression
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Applications Image compression with Laplacian pyramid

Image encoding

Compute Gaussian pyramid

g0, g1, g2, g3

Compute Laplacian pyramid

L0 = g0 − EXPAND[g1]

L1 = g1 − EXPAND[g2]

L2 = g2 − EXPAND[g3]

L3 = g3

Quantize and code Laplacian pyramid (e.g., by Huffmann coding)
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Applications Image compression with Laplacian pyramid

Image encoding
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Applications Image compression with Laplacian pyramid

Image decoding

Decode Laplacian pyramid

L0,L1,L2,L3

Compute Gaussian pyramid from Laplacian pyramid

g3 = L3

g2 = L2 + EXPAND[g3]

g1 = L1 + EXPAND[g2]

g0 = L0 + EXPAND[g1]

g0 is the reconstructed image

S. Cheng (OU ECE) Image pyramids Feb 2019 20 / 23



Applications Image compression with Laplacian pyramid

Image decoding

Decode Laplacian pyramid

L0,L1,L2,L3

Compute Gaussian pyramid from Laplacian pyramid

g3 = L3

g2 = L2 + EXPAND[g3]

g1 = L1 + EXPAND[g2]

g0 = L0 + EXPAND[g1]

g0 is the reconstructed image

S. Cheng (OU ECE) Image pyramids Feb 2019 20 / 23



Applications Image compression with Laplacian pyramid

Image decoding

Decode Laplacian pyramid

L0,L1,L2,L3

Compute Gaussian pyramid from Laplacian pyramid

g3 = L3

g2 = L2 + EXPAND[g3]

g1 = L1 + EXPAND[g2]

g0 = L0 + EXPAND[g1]

g0 is the reconstructed image

S. Cheng (OU ECE) Image pyramids Feb 2019 20 / 23



Applications Image compression with Laplacian pyramid

Compression result
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Applications Image composting

Image composting
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Applications Image composting

HW2

Algorithm for image composting
Generate Laplacian pyramid Lo of the orange image

Generate Laplacian pyramid La of the apple image
Generate Laplacian pyramid Lc by

Copy left half of nodes at each level from apple pyramid
Copy right half of nodes at each level from orange pyramid

Reconstruct combined image from pyramid Lc
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