Convnet Applications

Samuel Cheng

(Slide credit: James Thompkins, Juan Carlos
Niebles and Ranjay Krishna)
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Neural Networks: example

input
1-st layer hidden units

h* 2-nd layer hidden units
0 output

Example of a 2 hidden layer neural network (or 4 layer network,

counting also input and output).
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Images as input to neural

networks
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Images as input to neural

networks Example: 200x200 image
~ 40K hidden units

m) ~2B parameters!!!
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Images as input to neural

networks Example: 200x200 image
, 40K hidden units

m) ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough

. . 33
training samples anyway.. Ranzatol]
anzato




Motivation

e Sparse interactions — receptive fields

* Assume that in an image, we care about ‘local neighborhoods’ only for a
given neural network layer.

* Composition of layers will expand local -> global.



Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., "
face recognition). Ranzatoll]




Motivation

e Sparse interactions — receptive fields

* Assume that in an image, we care about ‘local neighborhoods’ only for a
given neural network layer.

* Composition of layers will expand local -> global.

* Parameter sharing

* ‘Tied weights’ — use same weights for more than one perceptron in the
neural network.

* Leads to equivariant representation
* If input changes (e.g., translates), then output changes similarly
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Share the same parameters across
( N different locations (assuming input is

| " b / stationary):
v ‘.\
i' g ~10x 10 =100
\ % parameters
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Filtering reminder: £ -1 [EE
Correlation (rotated convolution) pene

I[.,.] hL.,.]

h[m,n] =3 F[k, 1] 1[m+k,n+I]

Credit: S. Seitz



Convolutional Layer

0 ifw-z4+56<0

Perceptron: oufput =
P b {1 ifw-z+b>0

w--Ir = ij_f.?:j,

: . This is convolution!

s 4 Share the same parameters across
A different locations (assuming input is
W

'y
( ' stationary):
\ Convolutions with learned kernels

36
Ranzaton




Convolutional Layer

A\

Ranzaton




Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer




Stride =1
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Some boundary consideration ...
N

Output size:
(N - F) / stride + 1

Andrej Karpathy



Single filter ...

Convolution Layer

activation map

_— 32X%32x3 Image

/ - 5x5x3 filter /
2

2

o ___. [ ]

convolve (slide) over all

spatial locations
A 28

w |
—

Andrej Karpathy




Multiple filters ...

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps
/ .
Convolution Layer

74
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AN
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We stack these up to get a “new image” of size 28x28x6!

Andrej Karpathy



A common activation function:
Rectified Linear Unit

* ReLU f(z) = max(0, x).

1.0
0.8
0.6
0.4

0.2

0.0



Stacking conv layers ...

4

A

Andrej Karpathy

32

CONYV,

RelLU
e.g. 6
IXOX3
filters

4

A

o |

28

CONYV,

RelLU
e.g. 10
oXoX6
filters

24
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RelLU




Interpretation

prediction of class

high-level
parts

= distributed representations
s feature sharing
= compositionality

mid-level
parts

low level
parts

Input Image Y |

—
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Pooling Layer

We summarize responses from different
locations by “pooling”

61
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Pooling is similar to downsampling

Level 4
Blur and 41/16 resolution
subsample S . Leveld
Blur and ! 1/8 resolution
subsample | L~ Level 2
< 1/4 resolution
Blur and _
subsample :
< ' Level 1
1/2 resolution
Blur and
subsample
: Level 0
Original

image

...except sometimes we don’t want to blur,
as other functions might be better for classification.



Max pooling

Single depth slice

-

Wikipedia




Pooling Layer: Receptive Field Size

h”_l hn hn+1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)}x(P+K-1

S

\ LN\
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Pooling Layer: Receptive Field Size

h"_l hn hn+1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)
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Local Contrast Normalization

68
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Local Contrast Normalization
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Local Contrast Normalization

K )= (N (x, )
S ]

N(x,y) = model pixel values in window
as a normal distribution

m = mean
O = variance

Note: computational cost is
negligible w.r.t. conv. layer.

Ranzaton




Local Contrast Normalization

K )= (N (x, )
S ]

Performed also across features
and in the higher layers..

Effects:

— improves invariance
— improves optimization
— increases sparsity

Note: computational cost is
negligible w.r.t. conv. layer.

Ranzaton




ConvNets: Typical Stage

One stage (zoom)

Rectification
+
Contrast

Filter Bank
courtesy of

Normalization
K. Kavukcuoglu F{anzaton




ConvNets: Typical Architecture

One stage (zoom)

Whole system

Input
Image
_’

Class
Fully Conn. |Labels

Layers .

1°' stage 2" stage 3" stage

73
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ConvNets: Typical Architecture

Whole system

Input Class
mage ) Fully Conn, |Labels
Layers
1% stage 2"! stage 3" stage

Conceptually similar to:

SIFT —» K-Means — Pyramid Pooling —» SVM
Lazebnik et al. “...Spatial Pyramid Matching...” CVPR 2006

SIFT — Fisher Vect. —» Pooling —» SVM
Sanchez et al. “Image classifcation with F.V.: Theory and practice” IJCV 2012
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Yann LeCun’s MINIST CNN architecture

GE 1 maps 16EH0x10
S4: 1L maps 165x5

S52:f. maps 5: _
B@14x14 i R Jajar TEUE

C1: leature maps
INPUT
3232 G@28:28

I
| Full conmectian Gaussian cornmestians

Canvalutions Subsampling Convolutions  Subsampling Full connection Ranzato




Our connectomics diagram

Auto-generated from network declaration by nolearn (for Lasagne / Theano)

Input
75x75x4
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Label Input Convolution Pooling Convolution Pooling Convolution Pooling Convolution Pooling Dense Dense
B (Max) (Max) (Max) (Max) ReLU  Softmax
Dropout Dropout Dropout Dropout Dropout
Border p=.2 p=.2 p=.2 p=.2 p=.5
Conv 1 Conv 2 Conv 3 Conv4
3x3x4 3x3x64 3x3x48 3x3x48
64 filters 48 filters 48 filters 48 filters

Max pooling Max pooling Max pooling Max pooling
2x2 per 2x2 per 2x2 per 2x2 per
filter filter filter filter



Reading
architecture
diagrams

Layers

- Kernel sizes
- Strides

- #channels

- #kernels

- Max pooling

params

AlexNet




AlexNet diagram (simplified)

Input size
227 x 227 x 3

55
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Input 5 L1
age 55
(RGB)
256
Max
Stride Pochng
&
227 of4 L9 3x3
'-3 Stride 2
Conv1 Conv 2

11x11x3 5x5x48
Stride 4 Stride 1
96 filters 256 filters

[Krizhevsky et al. 2012]
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Outline

« Examples
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CONV NETS: EXAMPLES
- OCR / House number & Traffic sign classification
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Ciresan et al. “MCDNN for image classification” CVPR 2012
Wan et al. “Regularization of neural networks using dropconnect” ICML 2013 82
Jaderberg et al. “Synthetic data and ANN for natural scene text recognition” arXiv 2014



CONV NETS: EXAMPLES

- Scene Parsing

Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013 85
Pinheiro et al. “Recurrent CNN for scene parsing” arxiv 2013 RanzatolR 3




CONV NETS: EXAMPLES

- Segmentation 3D volumetric images

Ciresan et al. “DNN segment neuronal membranes...” NIPS 2012 86
Turaga et al. “Maximin learning of image segmentation” NIPS 2009 Ranzaton




CONV NETS: EXAMPLES

- Object detection

Sermanet et al. “OverFeat: Integrated recognition, localization, ...” arxiv 2013
Girshick et al. “Rich feature hierarchies for accurate object detection...” arxiv 2013 o1
Szegedy et al. “DNN for object detection” NIPS 2013 Ranzatol d




CONV NETS: EXAMPLES

- Face Verification & Identification
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Dataset: ImageNet 2012

% l‘l
R4 Pl R N 2

mammal —— placental — camivore — canine dog —— working dog

# 5: () Eskimo dog, busky (breed of heavy-coated Arctic sled dog)
o direct fpernym | inherited Rypernym | sister term
* §: (o) working dog (anv of sevaral breeds of usually large powesfil dogs bred to work as draft armals and muard and mide dogs)
» 5 (1) dog, domestic dog, Cands familiaris (a member of the genns Cants (probably descended from the common wolf) that has been domesticated by man since prebistoric times; ocours in many
breeds) "the dog barkad all might”
® S: (1) canme, canid (any of various fissiped mammals with noneetractde claws and typically loag nmuzdes)
® § (o) camnivere (3 lervestrial or agquatic flesh-eating mammal) "terrestrial carnivares have four or five clawed digits on each imb™
LI ﬂi‘lM mgtemalmammal.ﬂﬁmiau ﬂlhﬂimmammal(mmalshmtgaphcmaﬂmmmbmcptmmmesmdmmak)
monetremes ane nowrshed with malk)
® 5 (n) vertebrate, craniate {animals having a bony or cartilaginous skeleton with a sagmented spinal coluen and a largs brain anclosed i & skl or cranmm)
® S:(a) dmda!e (an} animal oflhe phiylum Chmdatahaving a mlochmd ar zpinal coum}

igar)o_rw._g(ahmgdmgﬂmhns(mcmdndm}ﬂtabiﬂq wmmﬁnmnmdcpmdmﬂy}
o 5 (1) bving thing, ansnate thing (a Bving (or once biving) entity)
® 5 ) vdmk unit (an asmblage of parts that is regarded as a ingle entity) "how big is that part comparad to the
whole?": "the team is a unit™
. § {1 object, physical obiect (a tangible and visble entity, an entity that can cast a shadow) " was fill of rackess,
balls and othar objects"
» . (1) physical eniiy (an entity that has physical existence)
® 5: (n) entity (that which is perceved or known or mferrad to have its own distinct existence (ving or
neoaliving)

Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009
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Architecture for Classification

category _
Total nr. params: 60M prediction Total nr. flops: 832M
4M LINEAR 4M
i
16M FULLY CONNECTED 16M
37M FULLY CONNECTED 37M
|
MAX POOLING
442K CONV 74M
|
1.3M CONV 224M
884K CONV 149M
|
MAX POOLING
LOCAL CONTRAST NORM
307K CONV 223M
|
MAX POOLING
LOCAL CONTRAST NORM
35K CONV 105M

96
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Krizhevsky et al. “ImageNet Classification wlltlﬂpéjeep CNNs” NIPS 2012 F{anzaton




Results: ILSVRC 2012

TASK 1 - CLASSIFICATION TASK 2 - DETECTION

CNN  SIFT+FV  SVM1  SVM2 NCM
CNN DPM-SVM1 DPM-SyM2

98
Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012 F{anzaton




Why study computer vision?

* Millions of images being captured all the time

f book
. 4- Picasa. ﬂlckr \gog

B.21.06a04:30:02
0522 20015588

‘.,L

 Loads of useful applications



Computer vision and Al

* The development of computer vision have benefit enormously from
signal processing and “Al”

* Three pillars of Al
» Symbolic model (expert systems)
* Probabilistic (Bayesian) model
e Neural networks

* We see a little bit of neural networks from the last couple weeks (will
look deeper in my ANN class next spring)

* More on probabilistic models in ECE 5973: information theory and
probabilistic programming



Information theory and Probabilistic
programming (coming fall)

e Use probabilistic model for inference (prediction)
* Organized unknown with graphical models
* Infer unknown given observations
* Learn variable models

* Applications like
* Predict stock markets
* Recommending products (movies, books, etc.)
* Medical diagnosis and prognosis
* Predict trend (e.g., COVID-19, when it is going to end?)



Hope to see you all in future

classes!

Good luck with finals and have a fruitful
summer break!




