ECE 4973: Lecture 12
 Kanade-Lucas-Tomasi (KLT) Tracker

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2018

Slides inspired by Prof Shah's lecture at UCF

Simple Kanade-Lucas-Tomasi (KLT) Algorithm

(1) Detect Harris corners in the first frame
© For each Harris corner, compute motion (translation or affine) between consecutive frames
(3) Link motion vectors in successive frames to get a track for each Harris point
(1) Introduce new Harris points by applying Harris detector at every m (10 or 15) frames
© Track new and old Harris points using steps 1-3

Simple Kanade-Lucas-Tomasi (KLT) Algorithm

(1) Detect Harris corners in the first frame
(2) For each Harris corner, compute motion (translation or affine) between consecutive frames
(3) Link motion vectors in successive frames to get a track for each Harris point
© Introduce new Harris points by applying Harris detector at every m (10 or 15) frames
(Track new and old Harris points using steps 1-3

Simple Kanade-Lucas-Tomasi (KLT) Algorithm

(1) Detect Harris corners in the first frame
(2) For each Harris corner, compute motion (translation or affine) between consecutive frames
(3) Link motion vectors in successive frames to get a track for each Harris point

- Introduce new Harris points by applying Harris detector at every m (10 or 15) frames
© Track new and old Harris points using steps 1-3

Simple Kanade-Lucas-Tomasi (KLT) Algorithm

(1) Detect Harris corners in the first frame
(2) For each Harris corner, compute motion (translation or affine) between consecutive frames
(3) Link motion vectors in successive frames to get a track for each Harris point
(1) Introduce new Harris points by applying Harris detector at every m (10 or 15) frames
© Track new and old Harris points using steps 1-3

Simple Kanade-Lucas-Tomasi (KLT) Algorithm

(1) Detect Harris corners in the first frame
(2) For each Harris corner, compute motion (translation or affine) between consecutive frames
(3) Link motion vectors in successive frames to get a track for each Harris point
(1) Introduce new Harris points by applying Harris detector at every m (10 or 15) frames
(0 Track new and old Harris points using steps 1-3

Simple Kanade-Lucas-Tomasi (KLT) Algorithm

(1) Detect Harris corners in the first frame
(2) For each Harris corner, compute motion (translation or affine) between consecutive frames
(3) Link motion vectors in successive frames to get a track for each Harris point
(9) Introduce new Harris points by applying Harris detector at every m (10 or 15) frames
(6) Track new and old Harris points using steps 1-3

Basic set of 2-D Transformation Richard Szeliski, "Computer Vision: Algorithms and Application"

- Need to register a patch of the current frame to another patch of the next frame
- Coordinate transformation can be done by different "motions"

Summary of displacement models (2-D transformations)

- Translation:

$$
\begin{array}{lr}
x^{\prime}=x+b_{1} & \text { Approximate transformations } \\
y^{\prime}=y+b_{2} & \text { Bi-quadratic: }
\end{array}
$$

- Rigid:

- Bi-linear:
- Affine:

- Pseudo-perspective:
- Projective:

Summary of displacement models (2-D transformations)

- Translation:

$$
\begin{array}{lr}
x^{\prime}=x+b_{1} & \text { Approximate transformations } \\
y^{\prime}=y+b_{2} & \text { Bi-quadratic: }
\end{array}
$$

- Rigid:
$x^{\prime}=x \cos \theta-y \sin \theta+b_{1}$
$y^{\prime}=x \sin \theta+y \cos \theta+b_{2}$
- Affine:
- Bi-linear:

- Projective:

- Pseudo-perspective:

Summary of displacement models (2-D transformations)

- Translation:

$$
\begin{array}{lr}
x^{\prime}=x+b_{1} & \text { Approximate transformations } \\
y^{\prime}=y+b_{2} & \text { Bi-quadratic: }
\end{array}
$$

- Rigid:

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta+b_{1} \\
& y^{\prime}=x \sin \theta+y \cos \theta+b_{2}
\end{aligned}
$$

- Affine:

$$
\begin{aligned}
& x^{\prime}=a_{1} x+a_{2} y+b_{1} \\
& y^{\prime}=a_{3} x+a_{4} y+b_{2}
\end{aligned}
$$

- Bi-linear:

$$
\begin{aligned}
x^{\prime} & =a_{1}+a_{2} x+a_{3} y+a_{4} x y \\
y^{\prime} & =a_{5}+a_{6} x+a_{7} y+a_{8} x y
\end{aligned}
$$

- Pseudo-perspective:
- Projective:

Summary of displacement models (2-D transformations)

- Translation:

$$
\begin{array}{lr}
x^{\prime}=x+b_{1} & \text { Approximate transformations } \\
y^{\prime}=y+b_{2} & \text { Bi-quadratic: }
\end{array}
$$

- Rigid:
$x^{\prime}=x \cos \theta-y \sin \theta+b_{1}$
$y^{\prime}=x \sin \theta+y \cos \theta+b_{2}$
- Affine:

$$
\begin{aligned}
& x^{\prime}=a_{1} x+a_{2} y+b_{1} \\
& y^{\prime}=a_{3} x+a_{4} y+b_{2}
\end{aligned}
$$

- Bi-linear:
- Projective:

$$
\begin{aligned}
& x^{\prime}=\frac{a_{1} x+a_{2} y+b_{1}}{c_{1} x+c_{2} y+1} \\
& y^{\prime}=\frac{a_{3} x+a_{4} y+b_{2}}{c_{1} x+c_{2} y+1}
\end{aligned}
$$

Summary of displacement models (2-D transformations)

- Translation:

$$
x^{\prime}=x+b_{1}
$$

$$
y^{\prime}=y+b_{2}
$$

- Rigid:

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta+b_{1} \\
& y^{\prime}=x \sin \theta+y \cos \theta+b_{2}
\end{aligned}
$$

- Affine:

$$
\begin{aligned}
& x^{\prime}=a_{1} x+a_{2} y+b_{1} \\
& y^{\prime}=a_{3} x+a_{4} y+b_{2}
\end{aligned}
$$

- Projective:

$$
\begin{aligned}
& x^{\prime}=\frac{a_{1} x+a_{2} y+b_{1}}{c_{1} x+c_{2} y+1} \\
& y^{\prime}=\frac{a_{3} x+a_{4} y+b_{2}}{c_{1} x+c_{2} y+1}
\end{aligned}
$$

- Bi-quadratic:

$$
\begin{gathered}
x^{\prime}=a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} y^{2}+a_{6} x y \\
y^{\prime}=a_{7}+a_{8} x+a_{9} y+a_{10} x^{2}+a_{11} y^{2}+a_{12} x y
\end{gathered}
$$

- Bi-linear:

$$
\begin{aligned}
x^{\prime} & =a_{1}+a_{2} x+a_{3} y+a_{4} x y \\
y^{\prime} & =a_{5}+a_{6} x+a_{7} y+a_{8} x y
\end{aligned}
$$

- Pseudo-perspective:

$$
\begin{aligned}
& x^{\prime}=a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} x y \\
& y^{\prime}=a_{6}+a_{7} x+a_{8} y+a_{4} x y+a_{5} y^{2}
\end{aligned}
$$

Review of Taylor series expansion

Consider first order approximation of a scalar function $f(x)$, from undergrad calculus,

$$
f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\left.\frac{d f(x)}{d x}\right|_{x=x_{0}} \Delta x
$$

Review of Taylor series expansion

Consider first order approximation of a scalar function $f(x)$, from undergrad calculus,

$$
f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\left.\frac{d f(x)}{d x}\right|_{x=x_{0}} \Delta x
$$

Now consider a vector function $F(\mathbf{x})=\left[f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \cdots, f_{M}(\mathbf{x})\right]^{T}$, where $\mathbf{x}=\left[x_{1}, x_{2}, \cdots, x_{N}\right]^{T}$,

Review of Taylor series expansion

Consider first order approximation of a scalar function $f(x)$, from undergrad calculus,

$$
f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\left.\frac{d f(x)}{d x}\right|_{x=x_{0}} \Delta x
$$

Now consider a vector function $F(\mathbf{x})=\left[f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \cdots, f_{M}(\mathbf{x})\right]^{T}$, where $\mathbf{x}=\left[x_{1}, x_{2}, \cdots, x_{N}\right]^{T}$, we have

$$
f_{1}\left(\mathbf{x}_{0}+\Delta \mathbf{x}\right) \approx f_{1}\left(\mathbf{x}_{0}\right)+\left.\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}}\right|_{\mathbf{x}=\mathbf{x}_{0}} \Delta x_{1}+\cdots+\left.\frac{\partial f_{1}(\mathbf{x})}{\partial x_{N}}\right|_{\mathbf{x}=\mathbf{x}_{0}} \Delta x_{N}
$$

Review of Taylor series expansion

Consider first order approximation of a scalar function $f(x)$, from undergrad calculus,

$$
f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\left.\frac{d f(x)}{d x}\right|_{x=x_{0}} \Delta x
$$

Now consider a vector function $F(\mathbf{x})=\left[f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \cdots, f_{M}(\mathbf{x})\right]^{T}$, where $\mathbf{x}=\left[x_{1}, x_{2}, \cdots, x_{N}\right]^{T}$, we have
$f_{1}\left(\mathbf{x}_{0}+\Delta \mathbf{x}\right) \approx f_{1}\left(\mathbf{x}_{0}\right)+\left.\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}}\right|_{\mathbf{x}=\mathbf{x}_{0}} \Delta x_{1}+\cdots+\left.\frac{\partial f_{1}(\mathbf{x})}{\partial x_{N}}\right|_{\mathbf{x}=\mathbf{x}_{0}} \Delta x_{N}$
$f_{M}\left(\mathbf{x}_{0}+\Delta \mathbf{x}\right) \approx f_{M}\left(\mathbf{x}_{0}\right)+\left.\frac{\partial f_{M}(\mathbf{x})}{\partial x_{1}}\right|_{\mathbf{x}=\mathbf{x}_{0}} \Delta x_{1}+\cdots+\left.\frac{\partial f_{M}(\mathbf{x})}{\partial x_{N}}\right|_{\mathbf{x}=\mathbf{x}_{0}} \Delta x_{N}$,
where $\Delta \mathbf{x}=\left[\Delta x_{1}, \Delta x_{2}, \cdots, \Delta x_{N}\right]^{T}$

Review of Jacobian

So we have,

$$
F\left(\mathbf{x}_{0}+\Delta \mathbf{x}\right) \approx F\left(\mathbf{x}_{0}\right)+\underbrace{\left.\left(\begin{array}{c}
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}}, \frac{\partial f_{1}(\mathbf{x})}{\partial x_{2}}, \cdots, \frac{\partial f_{1}(\mathbf{x})}{\partial x_{N}} \\
\frac{\partial f_{2}(\mathbf{x})}{\partial x_{1}}, \frac{\partial f_{2}(\mathbf{x})}{\partial x_{2}}, \cdots, \frac{\partial f_{2}(\mathbf{x})}{\partial x_{N}} \\
\cdots \\
\frac{\partial f_{M}(\mathbf{x})}{\partial x_{1}}, \frac{\partial f_{M}(\mathbf{x})}{\partial x_{2}}, \cdots, \frac{\partial f_{M}(\mathbf{x})}{\partial x_{N}}
\end{array}\right)\right|_{\mathbf{x}=\mathbf{x}_{0}}}_{\frac{\partial F\left(\mathbf{x}_{0}\right)}{\partial \mathbf{x}}} \Delta \mathbf{x}
$$

where we denote the matrix as $\frac{\partial F\left(\mathbf{x}_{0}\right)}{\partial \mathbf{x}}$, which is also known to be the Jacobian of $F(\cdot)$ w.r.t \mathbf{x} at point \mathbf{x}_{0}

Finding alignment

- Goal: Given template $T(\mathbf{x})$, find \mathbf{p} to minimize

$$
\sum_{\mathbf{x}}[I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x})]^{2}
$$

- Consider $\mathrm{p}_{0}+\Delta \mathrm{p}, \mathrm{p}_{0}$ is optimum if

- By Taylor series expansion,

Finding alignment

- Goal: Given template $T(\mathbf{x})$, find \mathbf{p} to minimize

$$
\sum_{\mathbf{x}}[I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x})]^{2}
$$

- Consider $\mathbf{p}_{0}+\Delta \mathbf{p}, \mathbf{p}_{0}$ is optimum if

$$
\frac{\partial}{\partial \Delta \mathbf{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}+\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2}=0
$$

- By Taylor series expansion,

Finding alignment

- Goal: Given template $T(\mathbf{x})$, find \mathbf{p} to minimize

$$
\sum_{\mathbf{x}}[I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x})]^{2}
$$

- Consider $\mathbf{p}_{0}+\Delta \mathbf{p}, \mathbf{p}_{0}$ is optimum if

$$
\frac{\partial}{\partial \Delta \mathbf{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}+\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2}=0
$$

- By Taylor series expansion,

$$
\begin{aligned}
& \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}+\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2} \\
\approx & \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)+(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2}
\end{aligned}
$$

$\frac{\partial}{\partial \Delta \mathrm{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}+\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2}=0$

$$
\frac{\partial}{\partial \boldsymbol{\Delta} \mathbf{p}} \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)+(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2}
$$

$\frac{\partial}{\partial \Delta \mathrm{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}+\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2}=0$

$$
\begin{aligned}
& \frac{\partial}{\partial \boldsymbol{\Delta} \mathbf{p}} \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)+(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2} \\
= & 2 \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right]^{T}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)+(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]=0
\end{aligned}
$$

$\frac{\partial}{\partial \Delta \mathrm{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}+\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2}=0$

$$
\begin{aligned}
& \frac{\partial}{\partial \boldsymbol{\Delta} \mathbf{p}} \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)+(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2} \\
= & 2 \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right]^{T}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)+(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]=0
\end{aligned}
$$

$\frac{\partial}{\partial \Delta \mathrm{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}+\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2}=0$

$$
\begin{aligned}
& \frac{\partial}{\partial \boldsymbol{\Delta} \mathbf{p}} \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)+(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2} \\
= & 2 \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right]^{T}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)+(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]=0 \\
\Rightarrow & \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right]^{T}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right] \Delta \mathbf{p}= \\
& \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right]^{T}\left[T(\mathbf{x})-I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)\right] \\
& \therefore \mathrm{p}=H^{-1} \sum_{\mathrm{x}}\left[(\nabla I)^{T} \frac{\partial W\left(\mathrm{x} ; \mathrm{p}_{0}\right)}{\partial \mathrm{p}}\right]^{T}\left[T(\mathrm{x})-I\left(W\left(\mathrm{x} ; \mathrm{p}_{0}\right)\right)\right],
\end{aligned}
$$

$\frac{\partial}{\partial \Delta \mathrm{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}+\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2}=0$

$$
\begin{aligned}
& \frac{\partial}{\partial \Delta \mathbf{p}} \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)+(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2} \\
&= 2 \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right]^{T}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)+(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]=0 \\
& \Rightarrow \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right]^{T}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right] \Delta \mathbf{p}= \\
& \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right]^{T}\left[T(\mathbf{x})-I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)\right] \\
& \therefore \Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right]^{T}\left[T(\mathbf{x})-I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)\right]
\end{aligned}
$$

where $H=\sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right]^{T}\left[(\nabla I)^{T} \frac{\partial W\left(\mathbf{x} ; \mathbf{p}_{0}\right)}{\partial \mathbf{p}}\right]$

Example: Hessian for translation motion

For translation motion, we may write $W(\mathbf{x} ; \mathbf{p})=\mathbf{x}+\mathbf{p}$, thus $\frac{\partial W}{\partial \mathbf{p}}=\left(\begin{array}{cc}\frac{\partial}{\partial p_{1}}\left(x_{1}+p_{1}\right) & \frac{\partial}{\partial p_{2}}\left(x_{1}+p_{1}\right) \\ \frac{\partial}{\partial p_{1}}\left(x_{2}+p_{2}\right) & \frac{\partial}{\partial p_{2}}\left(x_{2}+p_{2}\right)\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Then

which btw is the same matrix we saw in a Harris corner detector

Example: Hessian for translation motion

For translation motion, we may write $W(\mathbf{x} ; \mathbf{p})=\mathbf{x}+\mathbf{p}$, thus

$$
\frac{\partial W}{\partial \mathbf{p}}=\left(\begin{array}{ll}
\frac{\partial}{\partial p_{1}}\left(x_{1}+p_{1}\right) & \frac{\partial}{\partial p_{2}}\left(x_{1}+p_{1}\right) \\
\frac{\partial}{\partial p_{1}}\left(x_{2}+p_{2}\right) & \frac{\partial}{\partial p_{2}}\left(x_{2}+p_{2}\right)
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

which btw is the same matrix we saw in a Harris corner detector

Example: Hessian for translation motion

For translation motion, we may write $W(\mathbf{x} ; \mathbf{p})=\mathbf{x}+\mathbf{p}$, thus $\frac{\partial W}{\partial \mathbf{p}}=\left(\begin{array}{cc}\frac{\partial}{\partial p_{1}}\left(x_{1}+p_{1}\right) & \frac{\partial}{\partial p_{2}}\left(x_{1}+p_{1}\right) \\ \frac{\partial}{\partial p_{1}}\left(x_{2}+p_{2}\right) & \frac{\partial}{\partial p_{2}}\left(x_{2}+p_{2}\right)\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$. Then

$$
(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}=\left(\begin{array}{ll}
\frac{\partial I}{\partial x} & \frac{\partial I}{\partial y}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
\frac{\partial I}{\partial x} & \frac{\partial I}{\partial y}
\end{array}\right)
$$

and

which btw is the same matrix we saw in a Harris corner detector

Example: Hessian for translation motion

For translation motion, we may write $W(\mathbf{x} ; \mathbf{p})=\mathbf{x}+\mathbf{p}$, thus

$$
\begin{array}{r}
\frac{\partial W}{\partial \mathbf{p}}=\left(\begin{array}{ll}
\frac{\partial}{\partial p_{1}}\left(x_{1}+p_{1}\right) & \frac{\partial}{\partial p_{2}}\left(x_{1}+p_{1}\right) \\
\frac{\partial}{\partial p_{1}}\left(x_{2}+p_{2}\right) & \frac{\partial}{\partial p_{2}}\left(x_{2}+p_{2}\right)
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) . \text { Then } \\
(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}=\left(\begin{array}{ll}
\frac{\partial I}{\partial x} & \frac{\partial I}{\partial y}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
\frac{\partial I}{\partial x} & \frac{\partial I}{\partial y}
\end{array}\right)
\end{array}
$$

and

$$
H=\sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}_{0}}\right]^{T}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}_{0}}\right]=\sum_{\mathbf{x}}\left(\begin{array}{cc}
\left(\frac{\partial I}{\partial x}\right)^{2} & \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} \\
\frac{\partial I}{\partial x} \frac{\partial I}{\partial y} & \left(\frac{\partial I}{\partial y}\right)^{2}
\end{array}\right)
$$

which btw is the same matrix we saw in a Harris corner detector

Computing the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$

Richard Szeliski, "Computer Vision: Algorithms and Applications"

Transformation	Matrix	\# DoF	Preserves	Icon	Parameters \boldsymbol{p}	Jacobian J
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation		$\left(t_{x}, t_{y}\right)$	$\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]$
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths		$\left(t_{x}, t_{y}, \theta\right)$	$\begin{aligned} & {\left[\begin{array}{lll} 0 & 1 & c_{\theta} x-s_{\theta} y \end{array}\right]} \\ & {\left[\begin{array}{llll} 1 & 0 & x & -y \end{array}\right.} \end{aligned}$
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles		$\left(t_{x}, t_{y}, a, b\right)$	$\begin{aligned} & {\left[\begin{array}{llll} 0 & 1 & y & x \end{array}\right]} \\ & {\left[\begin{array}{llllll} 1 & 0 & x & y & 0 & 0 \end{array}\right.} \end{aligned}$
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism	\square	$\left(t_{x}, t_{y}, a_{00}, a_{01}, a_{10}, a_{11}\right)$	$\left[\begin{array}{llllll}0 & 1 & 0 & 0 & x & y\end{array}\right]$
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines		$\left(h_{00}, h_{01}, \ldots, h_{21}\right)$	(see Section 6.1.3)

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

- KLT is an iterative algorithm
- Similar to iternative Lucas-Kanade but extend to arbitrary transform

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

- KLT is an iterative algorithm
- Similar to iternative Lucas-Kanade but extend to arbitrary transform

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

- KLT is an iterative algorithm
- Similar to iternative Lucas-Kanade but extend to arbitrary transform
- $\Delta \mathbf{p} \leftarrow H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))$

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

- KLT is an iterative algorithm
- Similar to iternative Lucas-Kanade but extend to arbitrary transform
- $\Delta \mathbf{p} \leftarrow H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))$
- $\mathbf{p} \leftarrow \mathbf{p}+\Delta \mathbf{p}$

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
© Subtract I from T
(3) Compute gradient ∇I of warped image
(- Evaluate the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$ at ($\mathbf{x} ; \mathbf{p}$)
© Compute the product $(\nabla I)^{T} \frac{\partial W}{\partial \mathrm{p}}$
(0) Compute inverse Hessian $H=\sum_{\mathbf{x}}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$

- Compute descond ecrror product $\sum_{\mathrm{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathrm{p}}\right]^{T}(T(\mathrm{x})-I(\mathrm{~W} /(\mathrm{x} ; \mathrm{p})))$
© Compute $\triangle \mathrm{p}$
© Update parameters $\mathrm{p} \rightarrow \mathrm{p}+\Delta \mathrm{p}$

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract I from T
© Compute gradient ∇I of warped image
(Evaluate the Jacobian $\frac{\partial W}{\partial \mathbf{p}}$ at $(\mathbf{x} ; \mathbf{p})$
© Compute the product $(\nabla I)^{T} \frac{\partial W}{\partial \mathrm{n}}$
(c) Compute inverse Hessian $H=\sum_{\mathrm{x}}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathrm{p}}\right)^{T}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathrm{p}}\right)$
(3) Compute desc
(c) Compute $\Delta \mathrm{p}$
(1) Update parameters $p \rightarrow p+\Delta p$

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract I from T
(3) Compute gradient ∇I of warped image

- Evaluate the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$ at ($\mathrm{x} ; \mathrm{p}$)
(6) Compute the product $(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}$
(a Compute inverse Hescian $H=\sum_{\mathrm{x}}\left((\nabla I)^{T} \frac{\partial \mathrm{~W}}{\partial \mathrm{P}}\right)^{T}\left((\nabla I)^{T} \frac{\partial \mathrm{~W}}{\partial \mathrm{P}}\right)$
(1) Compute descend-error product $\sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathrm{p}}\right]$
(त) Compute $\Delta \mathbf{p}$
- Update parameters $\mathrm{p} \rightarrow \mathrm{p}+\Delta \mathrm{p}$

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract I from T
(3) Compute gradient ∇I of warped image
(4) Evaluate the Jacobian $\frac{\partial W}{\partial \mathbf{p}}$ at $(\mathbf{x} ; \mathbf{p})$
(0) Compute the product $(\nabla I)^{T} \frac{\partial W}{\partial \mathrm{p}}$
(6) Compute inverse Hessian $H=\sum_{\mathbf{x}}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$
© Compute descend-error product $\sum_{\mathrm{X}}\left[(\nabla I)^{T} \frac{\partial W T}{\partial \mathrm{P}}\right]$
(8) Compute $\Delta \mathrm{p}$

- Undate parameters $\mathrm{p} \rightarrow \mathrm{p}+\Delta \mathrm{p}$

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract I from T
(3) Compute gradient ∇I of warped image
(4) Evaluate the Jacobian $\frac{\partial W}{\partial \mathbf{p}}$ at $(\mathbf{x} ; \mathbf{p})$
(5) Compute the product $(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}$
(B) Compute inverse Hessian $H=\sum_{\mathbf{x}}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathrm{p}}\right)^{T}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathrm{p}}\right)$
(0) Compute descend-error product $\sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]$
(8) Compute $\Delta \mathbf{p}$
(-) Update parameters $\mathrm{p} \rightarrow \mathrm{p}+\Delta \mathrm{p}$

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract I from T
(8) Compute gradient ∇I of warped image
(4) Evaluate the Jacobian $\frac{\partial W}{\partial \mathbf{p}}$ at $(\mathbf{x} ; \mathbf{p})$
(5) Compute the product $(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}$
(6) Compute inverse Hessian $H=\sum_{\mathbf{x}}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$
(0) Compute descend-error product $\sum_{\mathrm{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathrm{p}}\right]^{I}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))$
(8) Compute $\Delta \mathbf{p}$
© Undate parameters $\mathrm{p} \rightarrow \mathrm{p}+\Delta \mathrm{p}$

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract I from T
(3) Compute gradient ∇I of warped image
(9) Evaluate the Jacobian $\frac{\partial W}{\partial \mathbf{p}}$ at $(\mathbf{x} ; \mathbf{p})$
(6) Compute the product $(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}$
(0) Compute inverse Hessian $H=\sum_{\mathbf{x}}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$
(1) Compute descend-error product $\sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))$
© Compute $\Delta \mathrm{p}$
(- Update parameters $\mathrm{p} \rightarrow \mathrm{p}+\Delta \mathrm{p}$

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract I from T
(3) Compute gradient ∇I of warped image
(9) Evaluate the Jacobian $\frac{\partial W}{\partial \mathbf{p}}$ at $(\mathbf{x} ; \mathbf{p})$
(6) Compute the product $(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}$
(0) Compute inverse Hessian $H=\sum_{\mathbf{x}}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$
(-) Compute descend-error product $\sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))$
(8) Compute $\Delta \mathbf{p}$

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract I from T
(3) Compute gradient ∇I of warped image
(1) Evaluate the Jacobian $\frac{\partial W}{\partial \mathbf{p}}$ at $(\mathbf{x} ; \mathbf{p})$
(6) Compute the product $(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}$
(0) Compute inverse Hessian $H=\sum_{\mathbf{x}}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$
(0) Compute descend-error product $\sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))$
(8) Compute $\Delta \mathbf{p}$
(0) Update parameters $\mathbf{p} \rightarrow \mathbf{p}+\Delta \mathbf{p}$

Kanade-Lucas-Tomasi

$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract I from T
(3) Compute gradient ∇I of warped image
(1) Evaluate the Jacobian $\frac{\partial W}{\partial \mathbf{p}}$ at $(\mathbf{x} ; \mathbf{p})$
(6) Compute the product $(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}$
(0) Compute inverse Hessian $H=\sum_{\mathbf{x}}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$
(0) Compute descend-error product $\sum_{\mathbf{x}}\left[(\nabla I)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(T(\mathbf{x})-I(W(\mathbf{x} ; \mathbf{p})))$
(8) Compute $\Delta \mathbf{p}$
(0) Update parameters $\mathbf{p} \rightarrow \mathbf{p}+\Delta \mathbf{p}$

Some variations of Kanade-Lucas-Tomasi algorithms

- Instead of considering

$$
\frac{\partial}{\partial \Delta \mathbf{p}} \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{\mathbf{0}}+\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2}=0
$$

- We can approximate the above as

$$
\left.\frac{\partial}{\partial \Delta \mathbf{p}} \sum_{x}\left[I\left(W\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right) ; \Delta \mathbf{p}\right)\right)\right)-T(\mathbf{x})\right]^{2}=0
$$

If we go through the same deviation, this will lead to the so-called "compositional algorithm" w.r.t. any $\Delta \mathrm{p}$, therefore we can also consider ("inverse compositional alignment")

Some variations of Kanade-Lucas-Tomasi algorithms

- Instead of considering

$$
\frac{\partial}{\partial \Delta \mathbf{p}} \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{\mathbf{0}}+\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2}=0
$$

- We can approximate the above as

$$
\left.\frac{\partial}{\partial \Delta \mathbf{p}} \sum_{x}\left[I\left(W\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right) ; \Delta \mathbf{p}\right)\right)\right)-T(\mathbf{x})\right]^{2}=0
$$

If we go through the same deviation, this will lead to the so-called "compositional algorithm"

- More interestingly, note that our goal is that \mathbf{p}_{0} should be stationary w.r.t. any $\Delta \mathbf{p}$, therefore we can also consider ("inverse compositional alignment")

$$
\frac{\partial}{\partial \Delta \mathbf{p}} \sum_{x}\left[I\left(W\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right) ;-\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2}
$$

Some variations of Kanade-Lucas-Tomasi algorithms

- Instead of considering

$$
\frac{\partial}{\partial \Delta \mathbf{p}} \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{\mathbf{0}}+\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2}=0
$$

- We can approximate the above as

$$
\left.\frac{\partial}{\partial \Delta \mathbf{p}} \sum_{x}\left[I\left(W\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right) ; \Delta \mathbf{p}\right)\right)\right)-T(\mathbf{x})\right]^{2}=0
$$

If we go through the same deviation, this will lead to the so-called "compositional algorithm"

- More interestingly, note that our goal is that \mathbf{p}_{0} should be stationary w.r.t. any $\Delta \mathbf{p}$, therefore we can also consider ("inverse compositional alignment")

$$
\begin{aligned}
& \frac{\partial}{\partial \Delta \mathbf{p}} \sum_{x}\left[I\left(W\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right) ;-\Delta \mathbf{p}\right)\right)-T(\mathbf{x})\right]^{2} \\
\approx & \frac{\partial}{\partial \Delta \mathbf{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)-T(W(\mathbf{x} ; \Delta \mathbf{p}))\right]^{2}=0
\end{aligned}
$$

$\left.\frac{\partial}{\partial \Delta \mathrm{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)\right)-T(W(\mathbf{x} ; \Delta \mathbf{p}))\right]^{2}=0$

$$
\begin{aligned}
& \frac{\partial}{\partial \Delta \mathbf{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)-T(W(\mathbf{x} ; \Delta \mathbf{p}))\right]^{2} \\
\approx & \frac{\partial}{\partial \Delta \mathbf{p}} \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)-T(W(\mathbf{x} ; \mathbf{0}))-(\nabla T)^{T} \frac{\partial W(\mathbf{x} ; \mathbf{0})}{\partial \mathbf{p}} \Delta \mathbf{p}\right]^{2}
\end{aligned}
$$

$\left.\frac{\partial}{\partial \Delta \mathrm{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)\right)-T(W(\mathbf{x} ; \Delta \mathbf{p}))\right]^{2}=0$

$$
\begin{aligned}
& \frac{\partial}{\partial \Delta \mathbf{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)-T(W(\mathbf{x} ; \Delta \mathbf{p}))\right]^{2} \\
\approx & \frac{\partial}{\partial \Delta \mathbf{p}} \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)-T(W(\mathbf{x} ; \mathbf{0}))-(\nabla T)^{T} \frac{\partial W(\mathbf{x} ; \mathbf{0})}{\partial \mathbf{p}} \Delta \mathbf{p}\right]^{2} \\
= & -2 \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W(\mathbf{x} ; \mathbf{0})}{\partial \mathbf{p}}\right]^{T}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)-T(\mathbf{x})-(\nabla T)^{T} \frac{\partial W(\mathbf{x} ; \mathbf{0})}{\partial \mathbf{p}} \Delta \mathbf{p}\right]=0
\end{aligned}
$$

$\left.\frac{\partial}{\partial \Delta \mathbf{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)\right)-T(W(\mathbf{x} ; \Delta \mathbf{p}))\right]^{2}=0$

$$
\begin{aligned}
& \frac{\partial}{\partial \Delta \mathbf{p}} \sum_{x}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)-T(W(\mathbf{x} ; \Delta \mathbf{p}))\right]^{2} \\
& \approx \frac{\partial}{\partial \Delta \mathbf{p}} \sum_{\mathbf{x}}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)-T(W(\mathbf{x} ; \mathbf{0}))-(\nabla T)^{T} \frac{\partial W(\mathbf{x} ; \mathbf{0})}{\partial \mathbf{p}} \Delta \mathbf{p}\right]^{2} \\
&=-2 \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W(\mathbf{x} ; \mathbf{0})}{\partial \mathbf{p}}\right]^{T}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)-T(\mathbf{x})-(\nabla T)^{T} \frac{\partial W(\mathbf{x} ; \mathbf{0})}{\partial \mathbf{p}} \Delta \mathbf{p}\right]=0 \\
& \therefore \Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W(\mathbf{x} ; \mathbf{0})}{\partial \mathbf{p}}\right]^{T}\left[I\left(W\left(\mathbf{x} ; \mathbf{p}_{0}\right)\right)-T(\mathbf{x})\right]
\end{aligned}
$$

where $H=\sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W(\mathbf{x} ; \mathbf{0})}{\partial \mathbf{p}}\right]^{T}\left[(\nabla T)^{T} \frac{\partial W(\mathbf{x} ; \mathbf{0})}{\partial \mathbf{p}}\right]$

(Inverse compositional) Modified Kanade-Lucas-Tomasi

 Baker et al., IJCV 2004$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
© Subtract T from I
© Compute gradient ∇T (only do once)
(1) Evaluate the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$ at $(\mathrm{x} ; 0)$ (only do once)
© Compute the steepest descent $(\nabla T)^{T} \frac{\partial W}{\partial \mathrm{p}}$ (only do once)
(0) Compute Hessian $H=\sum_{\mathbf{x}}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$ (only do once)
(0) Multiply steepest descend with error
$\sum_{\mathrm{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathrm{p}}\right]$
(우 Compute $\Delta \mathrm{p}$

- Update parameters

(Inverse compositional) Modified Kanade-Lucas-Tomasi

 Baker et al., IJCV 2004$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract T from I
© Compute gradient ∇T (only do once)
© Evaluate the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$ at $(\mathrm{x} ; 0)$ (only do once)
(0) Compute the steepest descent $(\nabla T)^{T} \frac{\partial W}{\partial \mathrm{p}}$ (only do once)
(Compute Hessian $H=\sum_{\mathrm{x}}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathrm{p}}\right)^{T}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathrm{p}}\right)$ (only do once)
(0) Multiply steepest descend with error
$\sum_{\mathrm{X}}\left\lceil(\nabla T)^{T} \frac{\partial W}{\partial \mathrm{P}}\right\rceil$
© Compute $\Delta \mathrm{p}$
© Update parameters

(Inverse compositional) Modified Kanade-Lucas-Tomasi

 Baker et al., IJCV 2004$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract T from I
(3) Compute gradient ∇T (only do once)
© Evaluate the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$ at ($\mathrm{x} ; 0$) (only do once)
(0) Compute the steepest descent $(\nabla T)^{T} \frac{\partial W}{\partial \mathrm{p}}$ (only do once)

- Compute Hessian $I I=\sum_{\times}\left((\nabla T)^{T} \frac{\partial W}{\partial_{\mathrm{P}}}\right)^{T}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathrm{p}}\right)$ (only do once)
(0) Multiply steepest descend with error

© Compute $\Delta \mathrm{p}$
© Update parameters

(Inverse compositional) Modified Kanade-Lucas-Tomasi

 Baker et al., IJCV 2004$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract T from I
(3) Compute gradient ∇T (only do once)
(1) Evaluate the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$ at $(\mathbf{x} ; \mathbf{0})$ (only do once)
© Compute the steepest descent $(\nabla T)^{T} \frac{\partial W}{\partial \mathrm{p}}$ (only do once)
(6) Compute Hessian $H=\sum_{\mathbf{x}}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$ (only do once)
© Multiply steepest descend with error

(3) Compute $\Delta \mathrm{p}$
(0) Update parameters $\mathrm{p} \rightarrow \mathrm{p}+\Delta \mathrm{p}$

(Inverse compositional) Modified Kanade-Lucas-Tomasi

 Baker et al., IJCV 2004$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract T from I
(3) Compute gradient ∇T (only do once)
(1) Evaluate the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$ at $(\mathbf{x} ; \mathbf{0})$ (only do once)
(6) Compute the steepest descent $(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}$ (only do once)
(c) Compute Hessian $H=\sum_{\mathrm{x}}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathrm{p}}\right)^{1}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathrm{p}}\right)$ (only do once)
(0) Multiply steepest descend with error

© Compute $\Delta \mathrm{p}$
(1) Update parameters $\mathrm{p} \rightarrow \mathrm{p}+\Delta \mathrm{p}$

(Inverse compositional) Modified Kanade-Lucas-Tomasi

 Baker et al., IJCV 2004$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract T from I
(3) Compute gradient ∇T (only do once)
(1) Evaluate the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$ at $(\mathbf{x} ; \mathbf{0})$ (only do once)
(6) Compute the steepest descent $(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}$ (only do once)
(0) Compute Hessian $H=\sum_{\mathbf{x}}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$ (only do once)
© Multiply steepest descend with error

(응 Compute $\Delta \mathrm{p}$

(Inverse compositional) Modified Kanade-Lucas-Tomasi

 Baker et al., IJCV 2004$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract T from I
(3) Compute gradient ∇T (only do once)
(1) Evaluate the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$ at $(\mathbf{x} ; \mathbf{0})$ (only do once)
(6) Compute the steepest descent $(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}$ (only do once)
(0) Compute Hessian $H=\sum_{\mathbf{x}}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$ (only do once)
(3) Multiply steepest descend with error

$$
\sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

© Compute $\triangle \mathrm{p}$

(Inverse compositional) Modified Kanade-Lucas-Tomasi

 Baker et al., IJCV 2004$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract T from I
(3) Compute gradient ∇T (only do once)
(1) Evaluate the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$ at $(\mathbf{x} ; \mathbf{0})$ (only do once)
(6) Compute the steepest descent $(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}$ (only do once)
(6 Compute Hessian $H=\sum_{\mathbf{x}}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$ (only do once)
(3) Multiply steepest descend with error

$$
\sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(8) Compute $\Delta \mathbf{p}$

(Inverse compositional) Modified Kanade-Lucas-Tomasi

 Baker et al., IJCV 2004$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract T from I
(3) Compute gradient ∇T (only do once)
(1) Evaluate the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$ at $(\mathbf{x} ; \mathbf{0})$ (only do once)
(6) Compute the steepest descent $(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}$ (only do once)
(6) Compute Hessian $H=\sum_{\mathbf{x}}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$ (only do once)
(3) Multiply steepest descend with error

$$
\sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(8) Compute $\Delta \mathbf{p}$
(9) Update parameters $\mathbf{p} \rightarrow \mathbf{p}+\Delta \mathbf{p}$

(Inverse compositional) Modified Kanade-Lucas-Tomasi

 Baker et al., IJCV 2004$$
\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract T from I
(3) Compute gradient ∇T (only do once)
(1) Evaluate the Jacobian $\frac{\partial W}{\partial \mathrm{p}}$ at $(\mathbf{x} ; \mathbf{0})$ (only do once)
(6) Compute the steepest descent $(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}$ (only do once)
(6) Compute Hessian $H=\sum_{\mathbf{x}}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$ (only do once)
(3) Multiply steepest descend with error

$$
\sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(8) Compute $\Delta \mathbf{p}$
(9) Update parameters $\mathbf{p} \rightarrow \mathbf{p}+\Delta \mathbf{p}$

(Inverse compositional) Modified-KLT
 Baker et al., IJCV 2004

Initialize:
(1) Compute gradient ∇T
(2) Evaluate the Jacobian $\frac{\partial W}{\partial \mathbf{p}}$ at $(\mathbf{x} ; \mathbf{0})$
(3) Compute the steepest descent $(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}$
(1) Compute Hessian $H=\sum_{\mathbf{x}}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)^{T}\left((\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right)$

Loop:
(1) Warp I with $W(\mathbf{x} ; \mathbf{p})$
(2) Subtract T from I
(3) Multiply steepest descend with error

$$
\sum_{\mathbf{x}}\left[(\nabla T)^{T} \frac{\partial W}{\partial \mathbf{p}}\right]^{T}(I(W(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x}))
$$

(9) Compute $\Delta \mathbf{p}$
(6) Update parameters $\mathbf{p} \rightarrow \mathbf{p}+\Delta \mathbf{p}$

Modified Kanade-Lucas-Tomasi Baker et al., IJCV 2004

References

- Simon Baker and Iain Matthews, "Lucas-Kanade 20 Years On: A Unifying Framework," IJCV, 2004
- Section 8.2, Richard Szeliski, "Computer Vision: Algorithms and Applications"

Implementations

- OpenCV implementation: http://www.ces.clemson.edu/~stb/klt/
- Some Matlab Implementation: Lucas Kanade with Pyramid
- http://www.mathworks.com/matlabcentral/fileexchange/30822
- Affine tracking: http://www.mathworks.com/matlabcentral/ fileexchange/24677-lucas-kanade-affine-template-tracking
- http:
//vision.eecs.ucf.edu/Code/Optical_Flow/Lucas\ Kanade.zip

