ECE 49/3: Lecture 4
Camera models and
calibration

Samuel Cheng

Slide credit: James Tompkin, Naoh Snavely



What is a camera?
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Translate Tumn off instant translation o
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Synonyms of camera Translations of camera
noun

vano, camera da letto noun _ _

4 more synonyms e rOOm camera, stanza, sala, ambiente, spazio, locale

== chamber camera, cavita, aula
See also = house casa, abitazione, edificio, dimora, camera, albergo
) . o = apartment appartamento, alloggio, camera, stanza

camera da letto, camera doppia, camera singola, servizio in camera, . . .
camera d'aria, camera oscura, camera libera, camera mortuaria, = lodging alloggio, alloggiamento, appartamento, camera

camera del bambini, camera con colazione

Google Translate for Business:  Translator Toolkit Website Translator Global Market Finder



Camera obscura: dark room

* Known during classical period in China and Greece

[llustration of Camera Obscura

(e.g., Mo-Ti, China, 470BC to 9OBC) o

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth llys



Camera obscura / lucida used for
tracing

Clbiwn Ly O Fardbog for G.Doland, sonih Hho- (o imerin Lharie

Fig, 434>

Lens Based Camera Obscura, 1568 Camera lucida



First Photograph

Oldest surviving photograph

Photograph of the first photograph
* Took 8 hours on pewter plate

Joseph Niepce, 1826 Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes


https://libguides.spsd.org/photohistory/main
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Holbein’s The Ambassadors - 1533



https://www.khanacademy.org/humanities/renaissance-reformation/northern/holbein/v/hans-holbein-the-younger-the-ambassadors-1533

Holbeln’'s |he Ambassadors — Memento
Morl




Dimensionality Reduction Machine (3D to 2D)

3D world

Point of observation

=)

2D image

O

===

Figures © Stephen E. Palmer, 2002



Pinhole camera model
d

—

image
plane

1

N pinhole 7 virw al Real

1age object

d = “Focal length” (or f)
c = Optical center of the camera

Figure from Forsyth



Modeling projection

PP: projection plane

A PR COP: center of projection

(x\y. d)

/I (Xs .Vf Z)
7 copr| 4 I]

* Both (xy’,d) and (x,y,z) project to the same point atjs
* (x,y,2) > (X,y’) where x’ =d (x/z) and y’ =d (y/z)
* Magnification = d/z




Modeling projection

* Is the projection a linear transformation?

e no—division by z is nonlinear

Homogeneous coordinates to the rescue!

Recall that:

(z,y) =

homogeneous image
coordinates

x
Y
1

(z,y,2) =

e R g

homogeneous scene
coordinates



Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

o
1 0 0 O X

X
lO 1 0 O]i: y]:(d_,dz)
0 0 1/d ol|]| lz/d £z

divide by third coordinate
This is known as perspective projection
e The matrix is the projection matrix



Perspective Projection

* Note that scaling the projection matrix does not change the transform

o
1 0 0 O X

[o 1 0 0]3Z’= y]:(d:dz)
0 0 1/d olf7| lz/d £z

X
d 0 0 0 dx
[o d 0 o] Y =ldy]=>(d—,dz)
Z Z Z
o o 1 ol|]| Lz




Perspective projection




Orthographic Projection

 Special case of perspective projection
* Distance from the COP to the image plane is infinite

o wv =0 1 0 O
* Also called “parallel projection”

 What’s the projection matrix? -1 L i

Slide by Steve Seitz




Orthographic projection




Perspective projection

What is preserved?

* Straight lines are still straight.,
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Vanishing points and lines

Parallel lines in the world

intersect in the projected
image at a “vanishing point”.

Parallel lines on the same
plane in the world converge
to vanishing points on a
“vanishing line”.

E.G., the horizon.

Vanishing Point Vanishing Point

Vanishing Line




Vanishing points and lines

T Vertical vanishing
point
(at infinity)

Vanishing /
point Vanls_hlng
point

Slide from Efros, Photo from Criminisi



Why parallel lines vanishing to a
point

X Ax Sy
* Consider parallel lines (y) +t (Ay) + (Sy> with
Z Az Sz

Sx
different shift <5y>
SZ

: X+tAx+s y+tAy+s
* They project to ( 2 Y d) and
Z+tAz+s,  z+tAz+s,
Ax ; A
converge to a single point (A d, A3Z} d) ast - o

(except Az = 0)



Projection

properties

image
plane

Many-to-one: any points along same ray map to same
point in image

Points - points
Lines = lines
But line through focal point projects to a point

Planes = planes (or half-planes)
e But plane through focal point projects to line

pinhole virtual




Size of the pinhole il

)

* Pinhole cannot be too small or too big
e Too big: getting blur from overlapping of multiple light

source

* Too small: getting blur from diffraction

* |deal pinhole size with diameter ~ 2,/ f 1

* Size is usually small for visible light and a
reasonable size f =need long exposure time

e Use lenses!

)




Lens camera



Gaussian lens (thin lens) law

1 1 1
—+= ==
i o f
onvex Lens: do > 2f f=4
. N
- T \\\
Image Characteristics H‘“‘\-\_} ‘H‘H““x«.ﬁ&
Real Image X‘“
Inverted L/ do=10 di=6.67
[hi| < |ho] ho=3 hi = -2
f<di<2f - M=-0.67

What is the magnification?


https://www.geogebra.org/m/YDMFRFjb

Two lens system

Lens Separation = 24 m

o bl ll

........

'S

5, =8.02m

-

Ima%/f

I|'|._||=-l

sil: 16 m

f;=8m

f2=4 m

Y


https://www.geogebra.org/m/EB97GwWD

Compound lens system

* Can have 7-15 lenses in the system

e Can adjust “effective focal length” by varying
lenses’ separations




Aperature diameter and f-number
(f-stop, f-ratio)

* Effective focal length f

e Aperture diameter D

e f-number: N = !
D

* E.g. 50 mm focal length, N=1.8, D =27.8 mm (fully
open)




Blurred circle

* Unlike pinhole cameras, cameras with lenses
cannot focus everywhere on the scene

* When a point lies outside the plane of focus in the
scene, it maps to a blurred circle rather than a
point

i 0

Plane of focus



Blurred circle siZi4/§\
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Depth of field

* Depth of field is the range of object distances over
which the image is “sufficiently well” focused

* i.e., the blurred circle is smaller than a pixel

* Note that the depth of field for pinhole camera is
infinite



Computing depth of field

* Let pixel size be c. For convex lens, f, 04, 0,,0 are
positive, so

I Cl o)If? _1lo—0)If? _ (0-01)f* _ (02-0)f*
010 =fIN 020 =fIN  01(0=fIN  0z(0=fIN

20f%cN(o—f)

* Depth of field =0, — 04 =

f4=c2N2(0-f)?




Hyperfocal distance

* [t is convenient to set 0, to infinity so that
everything beyond certain range is in focus

* In this case, we call the respective o the hyperfocal
distance

2
* Set 0, = 0, we have ¢ = ! =>0=f(f+CN)
(o—f)N CN




Camera distortion



Vignetting




Vignetting

Optical Vignetting

Legend

—— Optical Axis

—= Peripheral Light Rays
—— Central Light Rays
— Image Plane

Entrance Pupil




Chromatic aberration

CHROMA

e lorStock



Chromatic aberration

o

F
o m / EI

Minimum Blur Spot



Chromatic aberration
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Radial distortion

Radial distortion is due to the imperfection of lens

No Distortion

Image from Martin Habbecke

-
| =%

bl s

L —

Barrel Distortion

Pincushion Distdrtinn

Corrected Barrel Distortion



Radial distortion

e Radial distortion can be reduced by the following
correction

=x(1+kr* +kr* + k)

= y(l+kr’ + k' +kr°)

X

corrected

y corrected

 r is the radial distance from the center of the scene

* The parameters can be estimated by shooting
straight lines since a straight line is supposed to be
preserved under perspective projection



Camera matrix of
pinhole camera



Camera parameters

How many nhumbers do we need to describe a
camera?

* We need to describe its pose in the world
* We need to describe its internal parameters



A Tale of Two Coordinate Systems

Camera

Two important coordinate systems: .
1. World coordinate system 7 “The World”
2. Camera coordinate system




Camera parameters

To project a point (x,y,z) in world coordinates into a
camera

* First transform (x,y,z) into camera coordinates

* Need to know extrinsics
* Camera position (in world coordinates)
e Camera orientation (in world coordinates)

* Then project into the image plane
* Need to know camera intrinsics
* Coming soon

* These can all be described with matrices



Extrinsics

* How do we get the camera to “canonical form”?

e (Center of projection at the origin, x-axis points right, y-axis
points up, z-axis points backwards)

Step 1: Translate by -¢
Yy




Extrinsics

* How do we get the camera to “canonical form”?

e (Center of projection at the origin, x-axis points right, y-axis
points up, z-axis points backwards)

Step 1: Translate by -¢

How do we represent
translation as a matrix
multiplication?

- Isx3 —c
000 1




Extrinsics

* How do we get the camera to “canonical form”?

e (Center of projection at the origin, x-axis points right, y-axis
points up, z-axis points backwards)

Step 1: Translate by -¢
Step 2: Rotate by R

T
u

Z v’

< u R —

T

W / w
3x3 rotation matrix 1
X u _



Extrinsics

* How do we get the camera to “canonical form”?

e (Center of projection at the origin, x-axis points right, y-axis
points up, z-axis points backwards)

y Step 1: Translate by -¢
Step 2: Rotate by R
_uT _
Z v’
) 0 R =
WT
X L




Camera parameters

A camera is described by several parameters

e Translation T of the optical center from the origin of world coords
e Rotation R of the image plane

 focal length f, principle point (x’,, y’ ), pixel size (s,, s,
e blue parameters are called “extrinsics,” red are “intrinsics”

Projection equation
g v I/
U k  k k ok
l-mx X
Z
_1_

!
y [ o)

E—

T
e The projection matrix models the cumulative effect of all parameters

e Useful to decompose into a series of operations

« R RT] identity matrix
S A1 0 0 0] .

IH=|* = =|lo0 1 0 o0 |:R3x3 03x1:||:I3x3 T3x1:|
* % *|l0 0 1 0 0, 1 0, 1
intrinsics  projection rotation translation

e The definitions of these parameters are not completely standardized
— especially intrinsics—varies from one book to another



Camera (projection) matrix

—
R RT

Extrinsic Matrix

X

X: Image Coordinates: (U,V,1)
K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Slide Credit: Savarese




Projection matrix (ignore extrinsics)

Intrinsic Assumptions

* Unit aspect ratio
* Optical center at (0,0)
* No skew

x=K[I 0|X =

Slide Credit: Savarese

Extrinsic Assumptions

* No rotation
* Camera at (0,0,0)

\K
U | :‘—‘Ji“‘()‘“é: 0
Vi=[{ 0 —-d. 0,0
1] G0 0 170

—~ N~




Remove assumption: aligned optical center

Intrinsic Assumptions  Extrinsic Assumptions

* Unit aspect ratio * No rotation
* Optical center at -(U,,V,) *Camera at (0,0,0)
* No skew \K
e oo X
ul |=d, 0 U, 0 v
x=K[I 0]X = wV|=[io -4 7of
IR TR R

Slide Credit: Savarese




Remove assumption: unit aspect ratio

x=K[I 0]|X =

Slide Credit: Savarese

Intrinsic Assumptions
* Optical center at -(U,,V,)
* No skew

Extrinsic Assumptions
* No rotation
* Camera at (0,0,0)

\K
b A | R
0 —ad, TV,
0 0 1

_____________

—~ N~




Remove assumption: non-skewed pixels

Intrinsic Assumptions
* Optical center at -(U,,V,)

x=K[I 0]X =w

Slide Credit: Savarese

Extrinsic Assumptions
* No rotation
* Camera at (0,0,0)

\K
d TS U,
0 —ad, V,i 0
00 1'0

- N~




Summary

X
U] [-d
wl V=] 0
1] |0

K| R

s U,
_adi Vo
0 1

- N~




Camera Matrix DEMO



World vs Camera coordinates

P

James Hays



James Hays

Calibrating the Camera

Use an scene with known geometry
* Correspond image points to 3d points
* Get least squares solution (or non-linear solution)

Known 2d Known 3d
image coords world locations
M _ | _
T | X
SU my, my, m; my, %
SV =My My, Ny Ny, 7
S | |y My My Mgy |

Unknown Camera Parameters



How do we calibrate a camera?

Known 2d Known 3d world
|mage coords locations
880 214 312.747 309.140 30.086
43 203 305.796 311.649 30.356
270 197 307.694 312.358 30.418
886 347 310.149 307.186 29.298
745 302 311.937 310.105 29.216
1. 943 128 311.202 307.572 30.682
476 590 307.106 306.876 28.660
419 214 309.317 312.490 30.230
317 335 307.435 310.151 29.318
783 521 308.253 306.300 28.881
235 427 306.650 309.301 28.905
665 429 308.069 306.831 29.189
655 362 309.671 308.834 29.029
427 333 308.255 309.955 29.267

B 412 415 307.546 308.613 28.963
746 351 - 311.036 309.206 28.913

B 434 415 307.518 308.175 29.069

B 525 234 - 309.950 311.262 29.990
716 308 S 312.160 310.772 29.080 g
602 187 311.988 312.709 30.514

|

James Hays



Known 2d
image coords

First, work out
where X,Y,Z
projects to under
candidate M.

Two equations
per 3D point
correspondence

Unknown Camera Parameters

o X
SuU m m m m
11 12 13 14
Y | Known 3d
sV | =|m m m m :
21 22 23 2\ 7 locations
| S| |y My My Ny i

su=m; X +m,Y +m.Z+m,
sv=m, X +my,Y +my,2Z +m,,

s =my X +my,Y +my,Z +m,,

- my X +my,Y +m 2 +m,
my X +my,Y +my,Z +my,
. my X +m,,Y +m,.Z +m,,
my X +my,Y + my,Z +m,,

James Hays



Unknown Camera Parameters

I |1 X
Su m m m m
11 12 13 14
Known 2d Y | Known 3d
. SV |=m m m m .
image coords 20 T2 T3 T4 5 | Jocations
S My My, Mz Mgy | 1
Next, rearrange into form L,
where all M coefficients are U= mUX t m12Y T m13Z t i,
individually stated in terms of m31X + m32Y + m33Z +m,,
X,Y,Z,u,v.
-> Allows us to form Isq b= m21X + m22Y + m23Z +m,,
matrix. —
my X +my,Y +my,Z +my,

(my, X +my,Y +myZ +my )u=m X +m,Y +m,Z+m,
(my, X +my,Y + my,Z +my )v=m, X + my,Y +m,,Z +m,,

myuX +myuY + muZ +myu=my X +m,Y +m 2 +m,

my, vX +my,vY + my,vZ +my,v=m, X + my,Y + m,,Z +m,,



Unknown Camera Parameters

- S| X
sul| |my m, my m
11 12 13 14
Known 2d Y | Known 3d
: SV |=|my my, my m :
image coords 20 T2 T3 T4 5 | Jocations
| S ] [Ty My My Mgy 1

Next, rearrange into form
where all M coefficients are
individually stated in terms of
X,Y,Z,u,v.

-> Allows us to form Isq
matrix.

myuX +my,uY + myuZ +myu=m; X +m,Y +m,2Z+m,

my vX + my,vY + my,vZ +my,v=m, X +my,Y + m,,Z +m,,

O=m X +m,Y +m 2 +m,, —myuX —myuY —myul —m,u

O0=m, X +m,Y +m,,Z +m,, —m, vX —my,vY —my;;vZ — m,,v



Unknown Camera Parameters

SU m, m, m;; mMmy,
Known 2d Y | Known 3d
. svi=\m, m, m,, m
image coords db e e T 71 |ocations
S | [Ty My Maz Mgy | |

* Solve for m’s entries using total linear least-squares.

Ax=0 form m,

James Hays



Ax=0
 Note that x=0 is a trivial solution and has to be
avoided

* Consider instead
mxin |Ax]|| min x’ ATAx

X
subject to [[x]| = 1 subject to [|x|| = 1

Letu,,u,, --,u, be normalized eigenvectors of A" A
with increasing eigenvalues 4, 4,,---, 4,
N
] . 2
Write x = cu, +c,u, +---+c,u, with ch. =landc, 20

i=1
We have ||x|| = 1 is satisfied

N N N N N
x"ATAx = <Z cl-ul-T> ATA <Z cjuj> = Z cu;' z Ay | = z ci'hy
i=1 ' =1

i=1 j=1 J=1 i

|Ax|| is minimized if we pickc; = 1and¢; =0,Vi>1 .. x=u,



SVD and eigen-decomposition

* Need to solve the eigen-decomposition problem of
A'A. But often it is better to solve SVD of A instead

* SVD: Singular value decomposition

 Every real matrix A can be written as USV', where U
and V are orthogonal and S is diagonal

* Consider ATA=(VSUT)USVT=VS2VT

* That is, (ATA)V=VS?, V is eigenvector matrix of ATA and S?
is eigenvalue matrix of ATA

* Instead of solving eigen-decomposition of A'A, we
can solve SVD of A instead



image coords

Known 2d

SU

Unknown Camera Parameters

m,

m,,

ms,

X

Y
z
_1_

Known 3d
locations

* Solve for m’s entries using total linear least-squares.

Ax=0 form

S, V] = svd(Ad);
V(:,end);

reshape (x,4,3)"';

James Hays



How do we calibrate a camera?

Known 2d
image coords

rt

880

270
886
745
943
476
419
317
783
235
665
655
427
412
746

B 525
716
602

214

43 203

197
347
302
128
590

Known 3d world

locations
312.747 309.140 30.086
305.796 311.649 30.356
307.694 312.358 30.418
310.149 307.186 29.298
311.937 310.105 29.216
311.202 307.572 30.682
307.106 306.876 28.660
309.317 312.490 30.230
307.435 310.151 29.318
308.253 306.300 28.881
306.650 309.301 28.905
308.069 306.831 29.189
309.671 308.834 29.029
308.255 309.955 29.267
307.546 308.613 28.963
311.036 309.206 28.913
307.518 308.175 29.069
309.950 311.262 29.990
312.160 310.772 29.080
311.988 312.709 30.514

A

James Hays



Known 2d image coords

15t point

312.747

Known 3d world locations
880 214 | | | 312.747 309.140 30.086

1Y Yl' Zl)

43 203 e SRR —— 305.796 311.649 30.356
270 197 ) T 307.694 312.358 30.418
886 347 b . .y 310.149 307.186 29.298
745 302 L s 311.937 310.105 29.216
943 128 TR g 311.202 307.572 30.682
476 590 ' e B e 307.106 306.876 28.660
419 214 = Sigm : . 309.317 312.490 30.230
317335 g o e Wi ®  307.435310.151 29.318
_mu
Projection error defined by two equations — one for u and one for v "
m;
309.140 30.086 1 0 0 0 0 —880x312.747 —880x309.140 —880x30.086 —8807] ™
0 0 0 312747 309.140 30.086 1 —214x312.747 —214x309.140 —214x30.086 —214]|
. My,
: M3
f zZ, 1 0 0 0 0 -u, X, -u,Y, -u,zZ, —-u,
0 0o 0 X, Y, Z 1 —vX, VY —y2 A e
o My,
M3
My,




Known 2d image coords Known 3d world locations

- - = — - " ——
33() 4 J.u - > 4 09.140 30.086

nd i = : -
2"¢ point 43 203 (U, v, RS iﬁ 305.796 311.64930.356 WX, Y, Z,)

— s
— k=4

() O 0 o.‘ . 3 .‘ 3

886 347 310.149 307.186 29.298
745 302 311.937 310.105 29.216
' 943 128 311.202 307.572 30.682
476 590 307.106 306.876 28.660
419 214 309.317 312.490 30.230
317 335 307.435 310.151 29.318

Projection error defined by two equations — one for u and one for v "
m,
[312.747 309.140 30.086 1 0 0 0 0 —880x312.747 —880x309.140 —880x30.086 —-880] "
m o
0 0 0 0 312747 309.140 30.086 1 —214x312.747 —214x309.140 —214x30.086 —214| *| [0
m
305.796 311.649 30.356 1 0 0 0 0 -43x305.796 -43x311.649 —43x30356 —43 | | [0
m .
0 0 0 0 30579 311.649 30356 1 -203x305.796 -203x311.649 —43x30.356 —203| |=|:
: Tl
e
X, Y zZ, 1, 0 0 0 0 -u, X, -u,Y, -u,Z, -u, 0
0 0 o 0 X, Y, zZ, 1 —v X, —vY v Z, —v, i
- h m32
ms;
| M4




How many points do | need to fit the model?

x=K[R t|X

Degrees of freedom?

— N R

Think 3:

- Rotation around x
- Rotation around y
- Rotation around z



How many points do | need to fit the model?

x=K[R t|X

Degrees of freedom? 5 6 E—
- - — —_ - X
u a s Uy |\n N Ko L
Y
wv =10 6 vy|n B K , ,
1) [0 0 1]n n n t] )

M is 3x4, so 12 unknowns, but projective scale ambiguity — 11 deg. freedom.
One equation per unknown ->5 1/2 point correspondences determines a solution (e.g.,
either u or v).

More than 5 1/2 point correspondences -> overdetermined, many solutions to M.
Least squares is finding the solution that best satisfies the overdetermined system.

Why use more than 6? Robustness to error in feature points.



Summary

—n
* * *
* * * PR

X =
U | _—dl.
wlV |=| 0
_1_ _O

s U,
_adi Vo
0 1

- N~




Can we factorize M back to K [R | t]?

* Yes!

* We can directly solve for the individual entries of K
[R ] t].

James Hays



Can we factorize M back to K [R | t]?

* Yes!
* We can also use RQ factorization (not QR)

 Rin RQ s not rotation matrix R; crossed names!
* R (right diagonal) is K
e Q (orthogonal basis) is R.
e t, the last column of [R | t], is inv(K) * last column

of M.

e See http://ksimek.github.io/2012/08/14/decompose/
for more details

James Hays


http://ksimek.github.io/2012/08/14/decompose/

Recovering the camera center
x:K: |

t=K'm,
T=R1t=R1K!m,

James Hays



Estimate of camera center

-0.3645

-0.4004
-0.4200
0.0699
-0.0771
-0.6454
0.8635
-0.3645
0.0307
0.6382
0.3312
0.3377
0.1189
0.0242
0.2920
0.0830
0.2920
-0.2992
-0.0575
-0.4527




Calibration with non-linear
methods

e Linear calibration

e Advantages
e Easy to formulate and solve
* Provides initialization for non-linear methods
* Disadvantages
* Doesn’t directly give you camera parameters
* Doesn’t model radial distortion
* Can’timpose constraints, such as known focal length

* Non-linear calibrations

* Define error as difference between projected points and measured

points

* Minimize error using Newton’s method or other non-linear

optimization

James Hays



OpenCV Calibration
Demo
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