ECE 4973: Lecture 4 Camera models and calibration

Samuel Cheng

Slide credit: James Tompkin, Naoh Snavely

What is a camera?

Translate

Turn off instant translation

Synonyms of camera

noun

vano, camera da letto

4 more synonyms

See also

camera da letto, camera doppia, camera singola, servizio in camera, camera d'aria, camera oscura, camera libera, camera mortuaria, camera dei bambini, camera con colazione

Google Translate for Business: Translator Toolkit

Translations of camera

noun

room camera, stanza, sala, ambiente, spazio, locale

chamber camera, cavità, aula

■ house casa, abitazione, edificio, dimora, camera, albergo

apartment appartamento, alloggio, camera, stanza

lodging alloggio, alloggiamento, appartamento, camera

Website Translator Global

Global Market Finder

Camera obscura: dark room

 Known during classical period in China and Greece (e.g., Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera obscura / lucida used for tracing

Lens Based Camera Obscura, 1568

Camera lucida

First Photograph

Oldest surviving photograph

• Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Holbein's The Ambassadors - 1533

Holbein's The Ambassadors – Memento Mori

Dimensionality Reduction Machine (3D to 2D)

Pinhole camera model

d = "Focal length" (or f)

c = Optical center of the camera

Modeling projection

PP: projection plane COP: center of projection

- Both (x',y',d) and (x,y,z) project to the same point at
- $(x,y,z) \rightarrow (x',y')$ where x' = d(x/z) and y' = d(y/z)
- Magnification = d/z

Modeling projection

- Is the projection a linear transformation?
 - no—division by z is nonlinear

Homogeneous coordinates to the rescue!

Recall that:

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous image coordinates

homogeneous scene coordinates

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ z/d \end{bmatrix} \Rightarrow \left(d\frac{x}{z}, d\frac{y}{z} \right)$$

divide by third coordinate

This is known as **perspective projection**

The matrix is the projection matrix

Perspective Projection

Note that scaling the projection matrix does not change the transform

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ z/d \end{bmatrix} \Rightarrow \left(d\frac{x}{z}, d\frac{y}{z} \right)$$

$$\begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} dx \\ dy \\ z \end{bmatrix} \Rightarrow \left(d\frac{x}{z}, d\frac{y}{z} \right)$$

Perspective projection

Orthographic Projection

- Special case of perspective projection
 - Distance from the COP to the image plane is infinite

- Also called "parallel projection"
- What's the projection matrix?

$$w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Orthographic projection

Perspective projection

What is preserved?

Straight lines are still straight...

Vanishing points and lines

Parallel lines in the world intersect in the projected image at a "vanishing point".

Parallel lines on the same plane in the world converge to vanishing points on a "vanishing line".

E.G., the horizon.

Vanishing points and lines

Why parallel lines vanishing to a point

- Consider parallel lines $\begin{pmatrix} x \\ y \\ z \end{pmatrix} + t \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix} + \begin{pmatrix} s_x \\ s_y \\ s_z \end{pmatrix}$ with different shift $\begin{pmatrix} s_x \\ s_y \\ s_z \end{pmatrix}$
- They project to $\left(\frac{x+t\Delta x+s_x}{z+t\Delta z+s_z}d, \frac{y+t\Delta y+s_y}{z+t\Delta z+s_z}d\right)$ and converge to a single point $\left(\frac{\Delta x}{\Delta z}d, \frac{\Delta y}{\Delta z}d\right)$ as $t\to\infty$ (except $\Delta z=0$)

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points → points
- Lines → lines
- But line through focal point projects to a point
- Planes → planes (or half-planes)
 - But plane through focal point projects to line

- Pinhole cannot be too small or too big
 - Too big: getting blur from overlapping of multiple light source
 - Too small: getting blur from diffraction
- Ideal pinhole size with diameter $\sim 2\sqrt{f\lambda}$
- Size is usually small for visible light and a reasonable size $f \Rightarrow$ need long exposure time
- Use lenses!

Lens camera

Gaussian lens (thin lens) law

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$

What is the magnification?

Two lens system

Compound lens system

- Can have 7-15 lenses in the system
- Can adjust "effective focal length" by varying lenses' separations

Aperature diameter and f-number (f-stop, f-ratio)

- Effective focal length f
- Aperture diameter D
- f-number: $N = \frac{f}{D}$
- E.g. 50 mm focal length, N=1.8, D =27.8 mm (fully open)

Blurred circle

- Unlike pinhole cameras, cameras with lenses cannot focus everywhere on the scene
- When a point lies outside the plane of focus in the scene, it maps to a blurred circle rather than a point

Blurred circle size

$$\bullet \; \frac{b}{D} = \left| \frac{i' - i}{i'} \right|$$

• $b \propto D \propto \frac{1}{N}$

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{i'} + \frac{1}{o'} = \frac{1}{f} \Rightarrow i = \frac{of}{o - f}, i' = \frac{o'f}{o' - f}$$

$$\Rightarrow b = D \left| \frac{(o - o') f}{o'(o - f)} \right| = \frac{1}{N} \left| \frac{(o - o') f^2}{o'(o - f)} \right|$$

Depth of field

- Depth of field is the range of object distances over which the image is "sufficiently well" focused
 - i.e., the blurred circle is smaller than a pixel
- Note that the depth of field for pinhole camera is infinite

Computing depth of field

• Let pixel size be c. For convex lens, f, o_1 , o_2 , o are positive, so

$$c = \frac{|(o - o_1)|f^2}{o_1(o - f)N} = \frac{|(o - o_2)|f^2}{o_2(o - f)N} = \frac{(o - o_1)f^2}{o_1(o - f)N} = \frac{(o_2 - o_1)f^2}{o_2(o - f)N}$$

• Depth of field =
$$o_2 - o_1 = \frac{2of^2cN(o-f)}{f^4 - c^2N^2(o-f)^2}$$

Hyperfocal distance

- It is convenient to set o_2 to infinity so that everything beyond certain range is in focus
- In this case, we call the respective o the hyperfocal distance

• Set
$$o_2 = \infty$$
, we have $c = \frac{f^2}{(o-f)N} \Rightarrow o = \frac{f(f+cN)}{cN}$

Camera distortion

Vignetting

Vignetting

Optical Vignetting

Chromatic aberration

Chromatic aberration

Chromatic aberration

Radial distortion

Radial distortion is due to the imperfection of lens

Radial distortion

Radial distortion can be reduced by the following correction

$$x_{corrected} = x(1 + k_1 r^2 + k_2 r^4 + k_3 r^6)$$
$$y_{corrected} = y(1 + k_1 r^2 + k_2 r^4 + k_3 r^6)$$

- r is the radial distance from the center of the scene
- The parameters can be estimated by shooting straight lines since a straight line is supposed to be preserved under perspective projection

Camera matrix of pinhole camera

Camera parameters

How many numbers do we need to describe a camera?

- We need to describe its *pose* in the world
- We need to describe its internal parameters

A Tale of Two Coordinate Systems

Two important coordinate systems:

- 1. World coordinate system
- 2. Camera coordinate system

Camera parameters

To project a point (x,y,z) in world coordinates into a camera

- First transform (x,y,z) into camera coordinates
- Need to know extrinsics
 - Camera position (in world coordinates)
 - Camera orientation (in world coordinates)
- Then project into the image plane
 - Need to know camera intrinsics
 - Coming soon
- These can all be described with matrices

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c

Step 2: Rotate by R

$$\mathbf{R} = \begin{bmatrix} \mathbf{u}^T \\ \mathbf{v}^T \\ \mathbf{w}^T \\ 1 \end{bmatrix}$$

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$\boldsymbol{\Pi} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R}_{3x3} & \boldsymbol{0}_{3x1} \\ \boldsymbol{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{I}_{3x3} & \boldsymbol{T}_{3x1} \\ \boldsymbol{0}_{1x3} & 1 \end{bmatrix}$$
intrinsics
projection
rotation
translation

- The definitions of these parameters are not completely standardized
 - especially intrinsics—varies from one book to another

Camera (projection) matrix

x: Image Coordinates: (U,V,1)K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Projection matrix (ignore extrinsics)

Intrinsic Assumptions

- Unit aspect ratio
- Optical center at (0,0)
- No skew

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} U \\ V \\ 1 \end{bmatrix} = \begin{bmatrix} -d_i & 0 & 0 & 0 \\ 0 & -d_i & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Remove assumption: aligned optical center

Intrinsic Assumptions

- Unit aspect ratio
- Optical center at $-(U_0, V_0)$
- No skew

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} U \\ V \\ 1 \end{bmatrix} = \begin{bmatrix} -d_i & 0 & U_0 & 0 \\ 0 & -d_i & V_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Slide Credit: Savarese

Remove assumption: unit aspect ratio

Intrinsic Assumptions

- Optical center at $-(U_0, V_0)$
- No skew

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \longrightarrow w \begin{bmatrix} U \\ V \\ 1 \end{bmatrix} = \begin{bmatrix} -d_i & 0 & U_0 & 0 \\ 0 & -\alpha d_i & V_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Remove assumption: non-skewed pixels

Intrinsic Assumptions

• Optical center at $-(U_0, V_0)$

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \longrightarrow w \begin{bmatrix} U \\ V \\ 1 \end{bmatrix} = \begin{bmatrix} -d_i & s & U_0 & 0 \\ 0 & -\alpha d_i & V_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Slide Credit: Savarese

Summary

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{R} \mathbf{T} \end{bmatrix} \mathbf{X}$$

$$w\begin{bmatrix} U \\ V \\ 1 \end{bmatrix} = \begin{bmatrix} -d_i & s & U_0 \\ 0 & -\alpha d_i & V_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Camera Matrix DEMO

World vs Camera coordinates

Calibrating the Camera

Use an scene with **known** geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)

Known 2d image coords world locations

Known 3d

Unknown Camera Parameters

How do we calibrate a camera?

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

First, work out where X,Y,Z projects to under candidate M.

$$su = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

$$sv = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

$$s = m_{31}X + m_{32}Y + m_{33}Z + m_{34}$$

Two equations per 3D point correspondence

$$u = \frac{m_{11}X + m_{12}Y + m_{13}Z + m_{14}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$$
$$v = \frac{m_{21}X + m_{22}Y + m_{23}Z + m_{24}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$$

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations ext, rearrange into form

Next, rearrange into form where all M coefficients are individually stated in terms of X,Y,Z,u,v.

-> Allows us to form lsq matrix.

$$u = \frac{m_{11}X + m_{12}Y + m_{13}Z + m_{14}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$$

$$v = \frac{m_{21}X + m_{22}Y + m_{23}Z + m_{24}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$$

$$(m_{31}X + m_{32}Y + m_{33}Z + m_{34})u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

$$(m_{31}X + m_{32}Y + m_{33}Z + m_{34})v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

$$m_{31}uX + m_{32}uY + m_{33}uZ + m_{34}u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

 $m_{31}vX + m_{32}vY + m_{33}vZ + m_{34}v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations ext. rearrange into form

Next, rearrange into form where all **M** coefficients are individually stated in terms of X,Y,Z,u,v.

-> Allows us to form Isq matrix.

$$m_{31}uX + m_{32}uY + m_{33}uZ + m_{34}u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

$$m_{31}vX + m_{32}vY + m_{33}vZ + m_{34}v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

$$0 = m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u$$

$$0 = m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v$$

Solve for m's entries using total linear least-squares.

Ax=0

- Note that x=0 is a trivial solution and has to be avoided
- Consider instead

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x}\| \\
\text{subject to } \|\mathbf{x}\| = 1$$

$$\equiv \min_{\mathbf{x}} \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} \\
\text{subject to } \|\mathbf{x}\| = 1$$

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_N$ be normalized eigenvectors of $\mathbf{A}^T \mathbf{A}$ with increasing eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_N$

Write
$$\mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_N \mathbf{u}_N$$
 with $\sum_{i=1}^{N} c_i^2 = 1$ and $c_i \ge 0$

We have $\|\mathbf{x}\| = 1$ is satisfied

$$\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = \left(\sum_{i=1}^N c_i \mathbf{u}_i^T\right) \mathbf{A}^T \mathbf{A} \left(\sum_{j=1}^N c_j \mathbf{u}_j\right) = \left(\sum_{i=1}^N c_i \mathbf{u}_i^T\right) \left(\sum_{j=1}^N c_j \lambda_j \mathbf{u}_j\right) = \sum_{i=1}^N c_i^2 \lambda_i$$

 $\|\mathbf{A}\mathbf{x}\|$ is minimized if we pick $c_1=1$ and $c_i=0, \forall i>1$ $\therefore \mathbf{x}=\mathbf{u}_1$

SVD and eigen-decomposition

- Need to solve the eigen-decomposition problem of A^TA. But often it is better to solve SVD of A instead
- SVD: Singular value decomposition
- Every real matrix A can be written as USV^T, where U and V are orthogonal and S is diagonal
- Consider A^TA=(VSU^T)USV^T=VS²V^T
 - That is, (A^TA)V=VS², V is eigenvector matrix of A^TA and S² is eigenvalue matrix of A^TA
- Instead of solving eigen-decomposition of A^TA, we can solve SVD of A instead

Solve for m's entries using total linear least-squares.

How do we calibrate a camera?

Known 2d

image coords

Known 3d world locations

Known 2d image coords

Known 3d world locations

 m_{11} m_{12}

 m_{34}

0

0

1st point

....

Projection error defined by two equations – one for u and one for v

												m_{13}
312.747	309.140	30.086	1	0	0	0	0	-880×312.747	-880×309.140 -214×309.140	-880×30.086	-880]	m_{14}
0	0	0	0	312.747	309.140	30.086	1	-214×312.747	-214×309.140	-214×30.086	-214	m_{21}
						÷						$\begin{vmatrix} m_{22} \\ m_{12} \end{vmatrix}$
X_n	Y_n	Z_{n}	1	0	0	0	0	$-u_nX_n$	$-u_nY_n$	$-u_n Z_n$	$-u_n$	$\begin{vmatrix} m_{23} \\ m_{24} \end{vmatrix}$
0	0	0	0	X_n	Y_n	Z_n	1	$-v_nX_n$	$-u_nY_n$ $-v_nY_n$	$-v_n Z_n$	$-v_n$	$ m_{31} $
												m_{32}
												m_{22}

Known 2d image coords

Known 3d world locations

....

Projection error defined by two equations – one for u and one for v

「312.747	309.140	30.086	1	0	0	0	0	-880×312 747	-880×309.140	-880×30.086	-880]	m_{13}
0	0	0	0	312.747	309.140							m_{14}
305.796	311.649	30.356	1	0	0	0		-43×305.796		-43×30.356	-43	m_{21}
0	0	0	0	305.796	311.649	30.356	1	-203×305.796	-203×311.649	-43×30.356	-203	$\left \begin{array}{c}m_{22}\\m_{23}\end{array}\right $
						÷						$\left \begin{array}{c} m_{23} \\ m_{24} \end{array} \right $
X_n	Y_n	Z_n	1 _n	0 V	0 V	0	0	$-u_nX_n$	$-u_nY_n \\ -v_nY_n$	$-u_n Z_n \\ -v_n Z_n$	$-u_n$	$ m_{31} $
[0	0	0	0	X_n	Y_n	Z_{n}	1	$-v_nX_n$	$-v_n I_n$	$-v_n Z_n$	$-v_n$	m_{32}
												m_{33}

 m_{34}

How many points do I need to fit the model?

$$x = K[R \ t]X$$

Degrees of freedom? 5 6
$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} t_x \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Think 3:

- Rotation around x
- Rotation around y
- Rotation around z

How many points do I need to fit the model?

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

Degrees of freedom? 5 6
$$w\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

M is 3x4, so 12 unknowns, but projective scale ambiguity -11 deg. freedom. One equation per unknown -> 51/2 point correspondences determines a solution (e.g., either u or v).

More than 5 1/2 point correspondences -> overdetermined, many solutions to **M**. Least squares is finding the solution that best satisfies the overdetermined system.

Why use more than 6? Robustness to error in feature points.

Summary

$$\begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\
\mathbf{0}_{1x3} & 1
\end{bmatrix}
\begin{bmatrix}
\mathbf{I}_{3x3} & \mathbf{T}_{3x1} \\
\mathbf{0}_{1x3} & 1
\end{bmatrix}$$

$$\mathbf{X} = \mathbf{K} \left[\mathbf{R} \underbrace{\mathbf{R} \mathbf{T}}_{t} \right] \mathbf{X}$$

$$w\begin{bmatrix} U \\ V \\ 1 \end{bmatrix} = \begin{bmatrix} -d_i & s & U_0 \\ 0 & -\alpha d_i & V_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Can we factorize M back to K [R | t]?

- Yes!
- We can directly solve for the individual entries of K
 [R | t].

Can we factorize M back to K [R | t]?

- Yes!
- We can also use RQ factorization (not QR)
 - R in RQ is not rotation matrix R; crossed names!
- R (right diagonal) is K
- Q (orthogonal basis) is R.
- t, the last column of [R | t], is inv(K) * last column of M.
 - See http://ksimek.github.io/2012/08/14/decompose/
 for more details

Recovering the camera center

Estimate of camera center

Calibration with non-linear methods

- Linear calibration
 - Advantages
 - Easy to formulate and solve
 - Provides initialization for non-linear methods
 - Disadvantages
 - Doesn't directly give you camera parameters
 - Doesn't model radial distortion
 - Can't impose constraints, such as known focal length
- Non-linear calibrations
 - Define error as difference between projected points and measured points
 - Minimize error using Newton's method or other non-linear optimization

OpenCV Calibration Demo