Image Alignment
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Homogeneous coordinates
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Converting from homogeneous coordinates

y | = (z/w,y/w)




Basic affine transformations
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2D in-plane rotation Shear



Projective Transformations aka
Homographies aka Planar Perspective Maps
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Called a homography
(or planar perspective map)




Computing transformations

* Given a set of matches between images A and B
— How can we compute the transform T from A to B?
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— Find transform T that best “agrees” with the matches



Computing transformations




Simple case: translations
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How do we solve for
(Xta yt) ?




Simple case: translations




Affine transformations
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How many unknowns?
How many equations per match?

How many matches do we need?



Affine transformations

e Matrix form
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Least squares

* Find t that minimizes HAt — b| |2
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Least squares

+ Find t that minimizes || At — b||?
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Least squares

+ Find t that minimizes || At — b||?
f(t)d At—bl 2= (At—b)" (At—b)
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Homographies
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To unwarp (rectify) an image
e solve for homography H given p and p’

e solve equations of the form: wp’ = Hp
— linear in unknowns: w and coefficients of H
— His defined up to an arbitrary scale factor

— how many points are necessary to solve for H?



Solving for homographies
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Solving for homographies
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Solving for homographies
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Defines a least squares problem:  minimize ||Ah — 0|2
h =0 is a trivial solution. Consider instead

minll Ahll * subjecttoll hil =1



Solving for homographies
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Let X,,X,, -+, X, be normalized eigenvectors of A" A
with corresponding eigenvalues 4, < A4, <--- < 4,

Since A" A is real symmetric, x,,---,X,, form a complete
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Questions?



Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B
2. Match features between A and B

3. Compute homography between A and B
using least squares on set of matches

What could go wrong?



Outliers
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Robustness

e Let’s consider a simpler example... linear

regression
Problem: Fit a line to these datapoints Least squares fit

e How can we fix this?



ldea

* Given a hypothesized line

* Count the number of points that “agree” with
the line

— “Agree” = within a small distance of the line
— |.e., the inliers to that line

* For all possible lines, select the one with the
largest number of inliers



Counting inliers




Counting inliers

Inliers: 3



Counting inliers

Inliers: 20



How do we find the best line?

* Unlike least-squares, no simple closed-form
solution

* Hypothesize-and-test

— Try out many lines, keep the best one
— Which lines?



Translations
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RAndom SAmple Consensus

Select one match at random, count inliers




RAndom SAmple Consensus

Select another match at random, count inliers




RANSAC

e |dea:

— All the inliers will agree with each other on the
translation vector; the (hopefully small) number of
outliers will (hopefully) disagree with each other

— “All good matches are alike; every bad match is
bad in its own way.”

— Tolstoy via Alyosha Efros



RANSAC: How many samples?

* For alignment, depends on the motion model

— Here, each sample is a correspondence (pair of
matching points)
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RANSAC: How many samples?

e How many samples are needed?
— Suppose w is fraction of inliers (points from line).
— n points needed to define hypothesis (2 for lines)
— k samples chosen.

* Prob. that a single sample of n points is correct: W"

* Prob. that all k samples fail is: (L—w")*

—> Choose k high enough to keep this below desired failure
rate.

Slide credit: David Lowe



RANSAC: Computed k (p=0.99)
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Slide credit: David Lowe



Final step: least squares fit
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Find average translation vector over all inliers




RANSAC pros and cons

* Pros
— Simple and general
— Applicable to many different problems
— Often works well in practice

e Cons
— Parameters to tune

— Sometimes too many iterations are required
— Can fail for extremely low inlier ratios



Summary

* Global geometric transforms
— Homogenous coordinates
— Linear -> affine -> homography
e Alignment (registration)
— Least square problem
— RANSAC



