
Image Alignment

Samuel Cheng

Slide credit: Noah Snavely, James 
Thompkin



Homogeneous coordinates

Trick:  add one more coordinate:

homogeneous image 
coordinates

Converting from homogeneous coordinates

x

y

w

(x, y, w)

w = 1
(x/w, y/w, 1)

homogeneous plane



Basic affine transformations
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Projective Transformations aka 
Homographies aka Planar Perspective Maps

Called a homography
(or planar perspective map)



Computing transformations

• Given a set of matches between images A and B

– How can we compute the transform T from A to B?

– Find transform T that best “agrees” with the matches



Computing transformations

?



Simple case: translations

How do we solve for
? 

𝑇 =
1 0 𝐱𝑡
0 1 𝐲𝑡
0 0 1



Mean displacement = 

Simple case: translations

Displacement of match i =



Affine transformations

• How many unknowns?

• How many equations per match?

• How many matches do we need?



Affine transformations

• Matrix form

2n x 6 6 x 1 2n x 1



Least squares                     

• Find t that minimizes 
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Least squares                     

• Find t that minimizes 
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Least squares                     

• Find t that minimizes 
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Homographies

To unwarp (rectify) an image
• solve for homography H given p and p’

• solve equations of the form:  wp’ = Hp

– linear in unknowns:  w and coefficients of H

– H is defined up to an arbitrary scale factor

– how many points are necessary to solve for H?

p
p’



Solving for homographies

Not linear!



Solving for homographies



Solving for homographies

Defines a least squares problem:

2n × 9 9 2n

2

 is a trivial solution. Consider instead
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Solving for homographies
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Questions?



Image Alignment Algorithm

Given images A and B

1. Compute image features for A and B

2. Match features between A and B

3. Compute homography between A and B 
using least squares on set of matches

What could go wrong?



Outliers
outliers

inliers



Robustness

• Let’s consider a simpler example… linear 
regression

• How can we fix this?
Problem: Fit a line to these datapoints Least squares fit



Idea

• Given a hypothesized line

• Count the number of points that “agree” with 
the line

– “Agree” = within a small distance of the line

– I.e., the inliers to that line

• For all possible lines, select the one with the 
largest number of inliers



Counting inliers



Counting inliers

Inliers: 3



Counting inliers

Inliers: 20



How do we find the best line?

• Unlike least-squares, no simple closed-form 
solution 

• Hypothesize-and-test

– Try out many lines, keep the best one

– Which lines?



Translations



RAndom SAmple Consensus

Select one match at random, count inliers



RAndom SAmple Consensus

Select another match at random, count inliers



RANSAC

• Idea:

– All the inliers will agree with each other on the 
translation vector; the (hopefully small) number of 
outliers will (hopefully) disagree with each other

– “All good matches are alike; every bad match is 
bad in its own way.”

– Tolstoy via Alyosha Efros



• For alignment, depends on the motion model
– Here, each sample is a correspondence (pair of 

matching points)

RANSAC: How many samples?



RANSAC: How many samples?
• How many samples are needed?

– Suppose w is fraction of inliers (points from line).

– n points needed to define hypothesis (2 for lines)

– k samples chosen.

• Prob. that a single sample of n points is correct:

• Prob. that all k samples fail is: 

 Choose k high enough to keep this below desired failure 
rate.

nw

knw )1( −

Slide credit: David Lowe

12-Oct-17 51



RANSAC: Computed k (p=0.99)
Sample 

size

n

Proportion of outliers 

5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

Slide credit: David Lowe

12-Oct-17 52



Final step: least squares fit

Find average translation vector over all inliers



RANSAC pros and cons

• Pros

– Simple and general

– Applicable to many different problems

– Often works well in practice

• Cons

– Parameters to tune

– Sometimes too many iterations are required

– Can fail for extremely low inlier ratios



Summary

• Global geometric transforms

– Homogenous coordinates

– Linear -> affine -> homography

• Alignment (registration)

– Least square problem

– RANSAC


