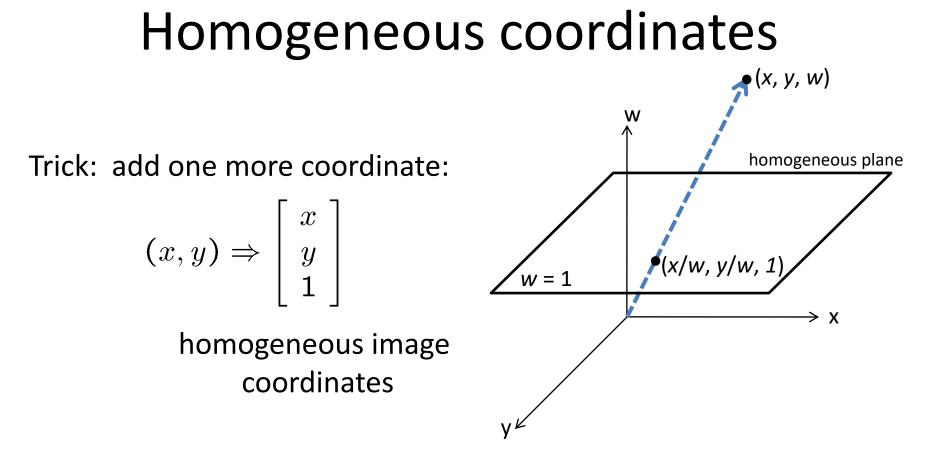
# Image Alignment

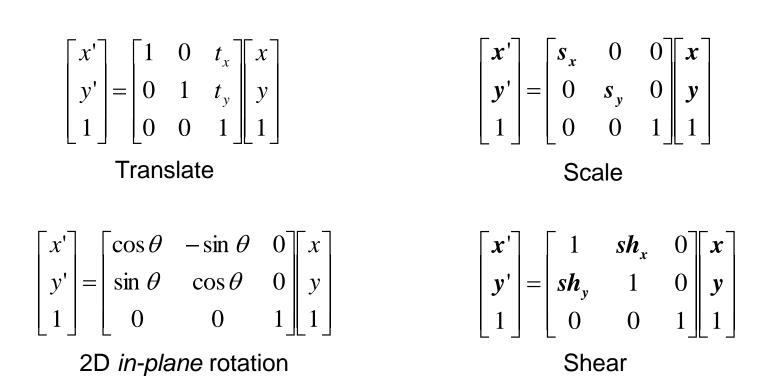
Samuel Cheng Slide credit: Noah Snavely, James Thompkin



Converting *from* homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

#### **Basic affine transformations**

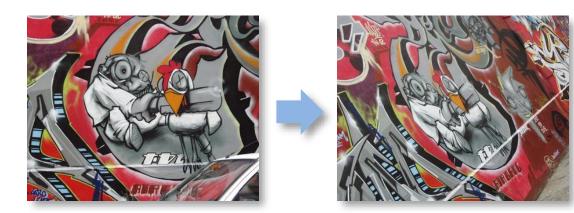


Projective Transformations aka Homographies aka Planar Perspective Maps

$$\mathbf{H} = \left[ \begin{array}{rrrr} a & b & c \\ d & e & f \\ g & h & 1 \end{array} \right]$$

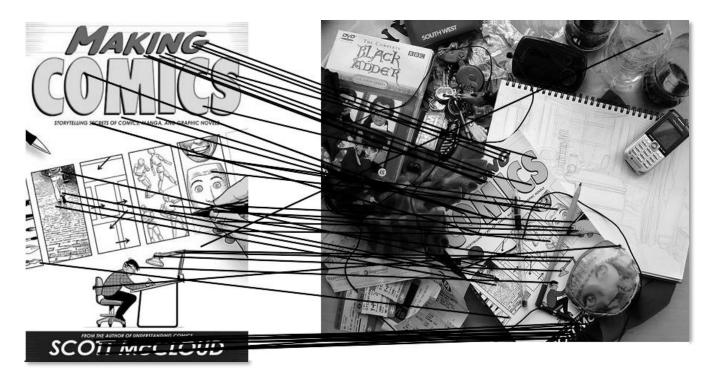
Called a *homography* (or *planar perspective map*)





# **Computing transformations**

- Given a set of matches between images A and B
  - How can we compute the transform T from A to B?



- Find transform T that best "agrees" with the matches

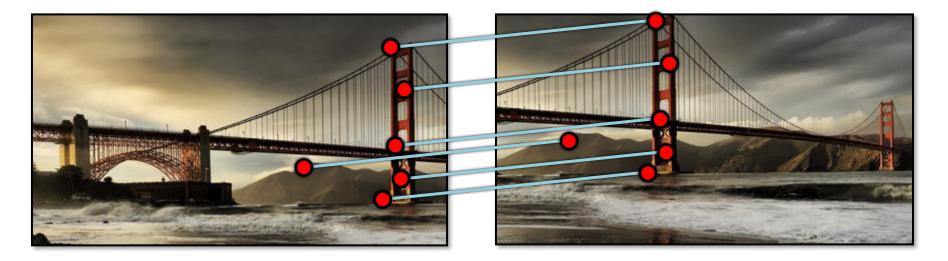
# **Computing transformations**







#### Simple case: translations

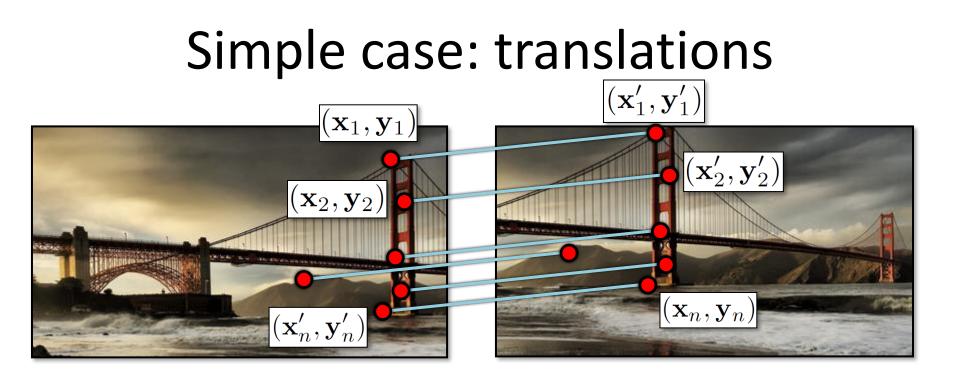




$$T = \begin{bmatrix} 1 & 0 & \mathbf{x}_t \\ 0 & 1 & \mathbf{y}_t \\ 0 & 0 & 1 \end{bmatrix}$$

How do we solve for  $(\mathbf{x}_t, \mathbf{y}_t)$ ?

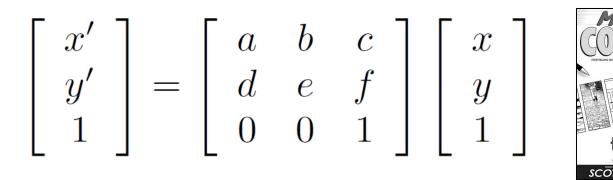
 $\mathbf{x}_t, \mathbf{y}_t$ 



Displacement of match i = 
$$(\mathbf{x}'_i - \mathbf{x}_i, \mathbf{y}'_i - \mathbf{y}_i)$$

$$(\mathbf{x}_t, \mathbf{y}_t) = \left(\frac{1}{n}\sum_{i=1}^n \mathbf{x}'_i - \mathbf{x}_i, \frac{1}{n}\sum_{i=1}^n \mathbf{y}'_i - \mathbf{y}_i\right)$$

# Affine transformations

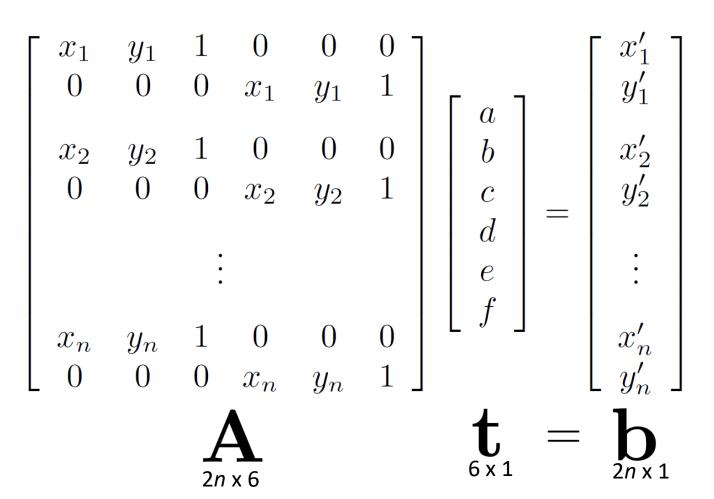




- How many unknowns?
- How many equations per match?
- How many matches do we need?

# Affine transformations

Matrix form



#### Least squares

- Find **t** that minimizes  $||\mathbf{At} \mathbf{b}||^2$  $f(\mathbf{t}) = ||\mathbf{A}\mathbf{t} - \mathbf{b}||^2 = (\mathbf{A}\mathbf{t} - \mathbf{b})^T (\mathbf{A}\mathbf{t} - \mathbf{b})$  $= \mathbf{t}^T \mathbf{A}^T \mathbf{A} \mathbf{t} - \mathbf{t}^T \mathbf{A}^T \mathbf{b} - \mathbf{b}^T \mathbf{A} \mathbf{t} + \mathbf{b}^T \mathbf{b}$  $(\nabla_{\mathbf{t}}(\mathbf{t}^{T}\mathbf{C}\mathbf{t}))_{i} = \frac{\partial \mathbf{t}^{T}\mathbf{C}\mathbf{t}}{\partial t_{i}} = \frac{\partial \sum_{j \in k} \sum_{k} t_{j} C_{j,k} t_{k}}{\partial t_{i}} \qquad \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$  $=\sum_{j}\sum_{k}\delta_{i,j}C_{j,k}t_{k}+t_{j}C_{j,k}\delta_{i,k}=\sum_{k}C_{i,k}t_{k}+\sum_{i}t_{j}C_{j,i}$ 
  - $=\sum_{k} C_{i,k} t_{k} + \sum_{j} C_{i,j}^{T} t_{j} = \sum_{k} (C_{i,k} + C_{i,k}^{T}) t_{k} = ((\mathbf{C} + \mathbf{C}^{T})\mathbf{t})_{i}$
  - $\therefore \nabla_{\mathbf{t}}(\mathbf{t}^{T}\mathbf{C}\mathbf{t}) = (\mathbf{C} + \mathbf{C}^{T})\mathbf{t}$

#### Least squares

• Find **t** that minimizes  $||\mathbf{A}\mathbf{t} - \mathbf{b}||^2$   $f(\mathbf{t}) = |\mathbf{A}\mathbf{t} - \mathbf{b}||^2 = (\mathbf{A}\mathbf{t} - \mathbf{b})^T (\mathbf{A}\mathbf{t} - \mathbf{b})$   $= \mathbf{t}^T \mathbf{A}^T \mathbf{A}\mathbf{t} - \mathbf{t}^T \mathbf{A}^T \mathbf{b} - \mathbf{b}^T \mathbf{A}\mathbf{t} + \mathbf{b}^T \mathbf{b}$   $\nabla_{\mathbf{t}} (\mathbf{t}^T \mathbf{C}\mathbf{t}) = (\mathbf{C} + \mathbf{C}^T) \mathbf{t}$ Similarly  $(\nabla_{\mathbf{t}} (\mathbf{c}^T \mathbf{t}))$ 

Similarly,  $(\nabla_{\mathbf{t}}(\mathbf{c}^T\mathbf{t}))_i = \frac{\partial \mathbf{c}^T\mathbf{t}}{\partial t_i} = \frac{\partial \sum_j c_j t_j}{\partial t_i} = \sum_j c_j \delta_{i,j} = c_i$ 

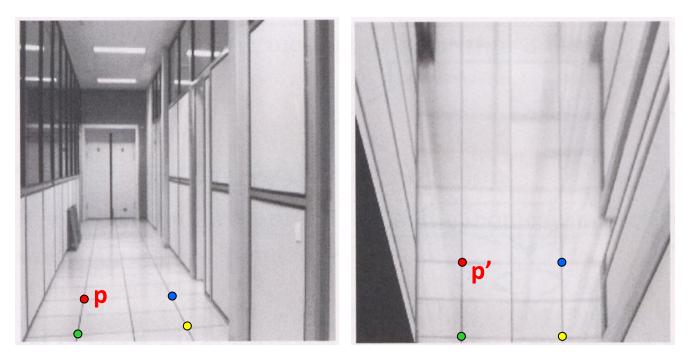
$$\therefore \nabla_{\mathbf{t}}(\mathbf{c}^T\mathbf{t}) = \mathbf{c}$$

#### Least squares

• Find t that minimizes  $||\mathbf{At} - \mathbf{b}||^2$   $f(\mathbf{t}) # ||\mathbf{At} - \mathbf{b}||^2 = (\mathbf{At} - \mathbf{b})^T (\mathbf{At} - \mathbf{b})$   $= \mathbf{t}^T \mathbf{A}^T \mathbf{At} - \mathbf{t}^T \mathbf{A}^T \mathbf{b} - \mathbf{b}^T \mathbf{At} + \mathbf{b}^T \mathbf{b}$  $\nabla_{\mathbf{t}} (\mathbf{t}^T \mathbf{Ct}) = (\mathbf{C} + \mathbf{C}^T) \mathbf{t}$   $\nabla_{\mathbf{t}} (\mathbf{c}^T \mathbf{t}) = \mathbf{c}$ 

$$\nabla_{\mathbf{t}} f(\mathbf{t}) = \nabla_{\mathbf{t}} \left( \mathbf{t}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{t} - \mathbf{t}^{T} \mathbf{A}^{T} \mathbf{b} - \mathbf{b}^{T} \mathbf{A} \mathbf{t} + \mathbf{b}^{T} \mathbf{b} \right)$$
  
=  $\nabla_{\mathbf{t}} \left( \mathbf{t}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{t} - (\mathbf{A}^{T} \mathbf{b})^{T} \mathbf{t} - \mathbf{b}^{T} \mathbf{A} \mathbf{t} + \mathbf{b}^{T} \mathbf{b} \right)$   
=  $(\mathbf{A}^{T} \mathbf{A} + (\mathbf{A}^{T} \mathbf{A})^{T}) \mathbf{t} - \mathbf{A}^{T} \mathbf{b} - (\mathbf{b}^{T} \mathbf{A})^{T})$   
=  $2((\mathbf{A}^{T} \mathbf{A}) \mathbf{t} - \mathbf{A}^{T} \mathbf{b})$   
 $\nabla_{\mathbf{t}} f(\mathbf{t}) = \mathbf{0} \Rightarrow (\mathbf{A}^{T} \mathbf{A}) \mathbf{t} - \mathbf{A}^{T} \mathbf{b} = \mathbf{0}$   $\therefore \mathbf{t} = (\mathbf{A}^{T} \mathbf{A})^{-1} \mathbf{A}^{T} \mathbf{t}$ 

#### Homographies



To unwarp (rectify) an image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
  - linear in unknowns: w and coefficients of H
  - H is defined up to an arbitrary scale factor
  - how many points are necessary to solve for H?

# Solving for homographies

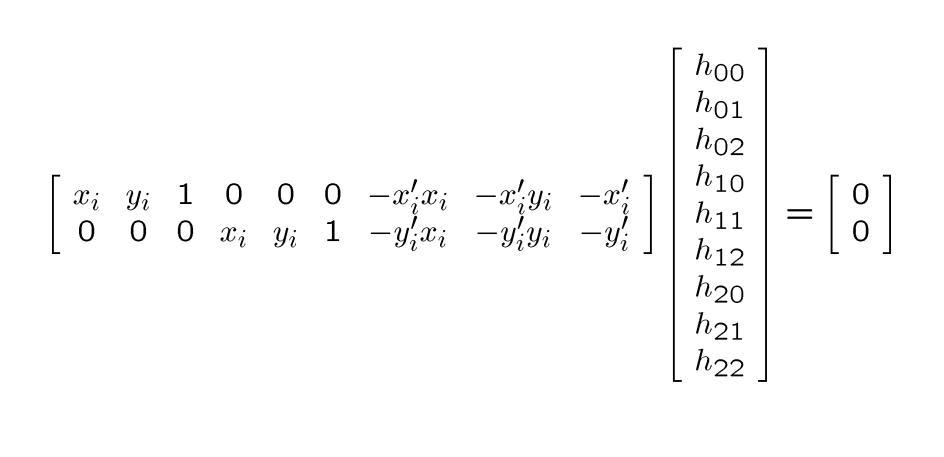
$$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

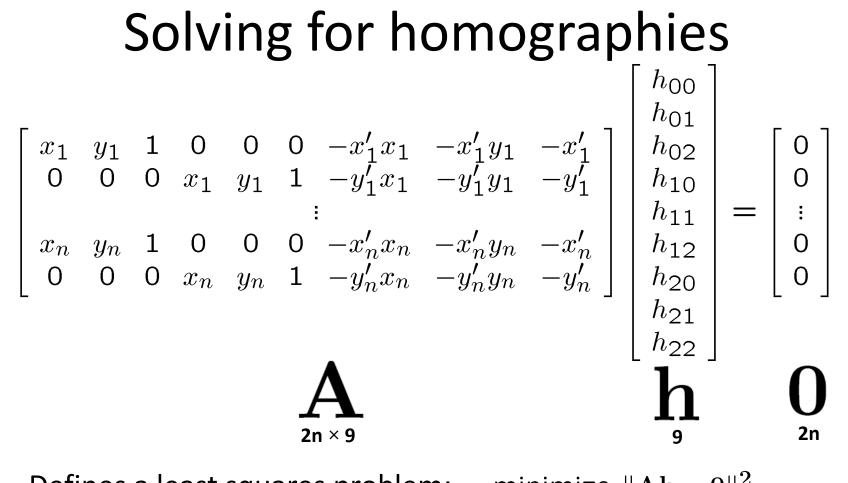
$$\begin{aligned} x'_i &= \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}} \\ y'_i &= \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}} \end{aligned} \text{ Not linear!}$$

 $\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$ 

#### Solving for homographies

 $\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$ 





Defines a least squares problem: minimize  $||Ah - 0||^2$  h = 0 is a trivial solution. Consider instead min|| Ah||<sup>2</sup> subject to || h|| = 1

#### Solving for homographies

 $\min_{\mathbf{h}} \| \mathbf{A} \mathbf{h} \|^{2} = \min_{\mathbf{h}} \mathbf{h}^{T} (\mathbf{A}^{T} \mathbf{A}) \mathbf{h}$ subject to  $\| \mathbf{h} \| = 1$  subject to  $\| \mathbf{h} \| = 1$ 

Let  $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$  be normalized eigenvectors of  $\mathbf{A}^T \mathbf{A}$ with corresponding eigenvalues  $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$ Since  $\mathbf{A}^T \mathbf{A}$  is real symmetric,  $\mathbf{x}_1, \dots, \mathbf{x}_N$  form a complete orthonormal basis. Thus, we can write  $\mathbf{h} = \sum_{i} a_{i} \mathbf{x}_{i}$ , and  $\| \mathbf{h} \| = \mathbf{h}^T \mathbf{h} = \left(\sum_i a_i \mathbf{x}_i\right)^T \left(\sum_j a_j \mathbf{x}_j\right) = \sum_{i,j} a_i a_j \delta_{i,j} = \sum_i a_i^2$  $\mathbf{h}^{T}(\mathbf{A}^{T}\mathbf{A})\mathbf{h} = \left(\sum_{i} a_{i}\mathbf{x}_{i}\right)^{T} \left(\sum_{j} a_{j}\lambda_{j}\mathbf{x}_{j}\right) = \sum_{i,j} a_{i}a_{j}\lambda_{j}\delta_{i,j} = \sum_{i} \lambda_{i}a_{i}^{2}$  $\min_{\mathbf{h}} \mathbf{h}^T (\mathbf{A}^T \mathbf{A}) \mathbf{h}$  $\Rightarrow \mathbf{h}^* = \mathbf{X}_1$ subject to  $\| \mathbf{h} \| = 1$ 

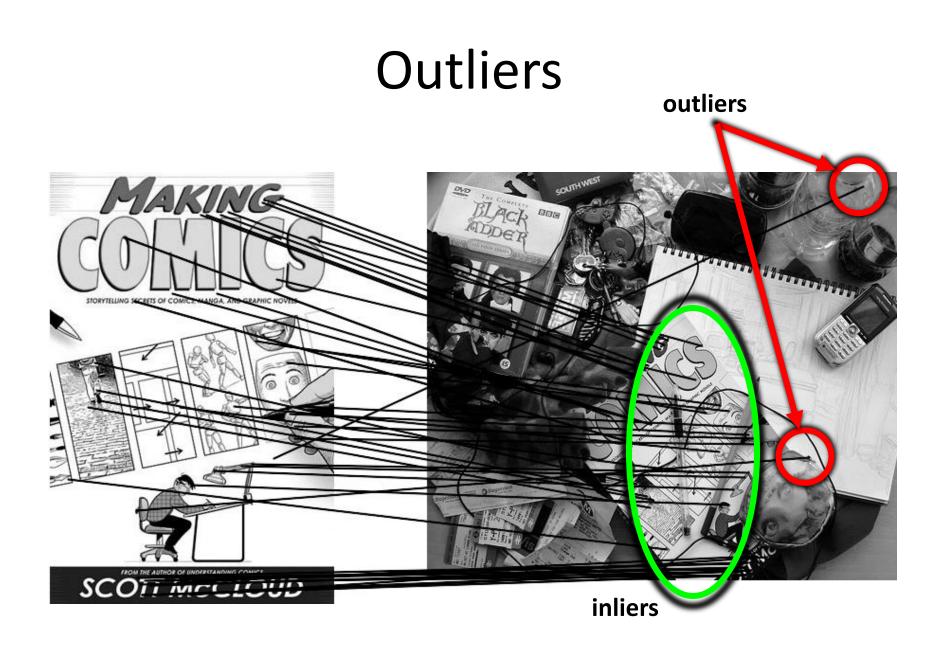
#### Questions?

# Image Alignment Algorithm

Given images A and B

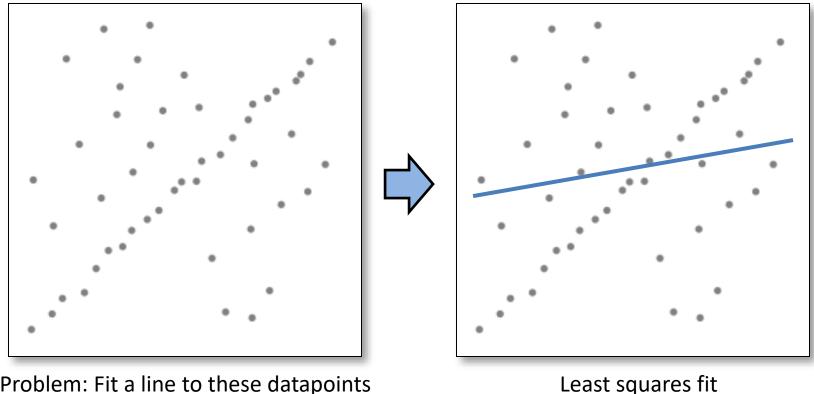
- 1. Compute image features for A and B
- 2. Match features between A and B
- 3. Compute homography between A and B using least squares on set of matches

What could go wrong?



# Robustness

• Let's consider a simpler example... linear regression



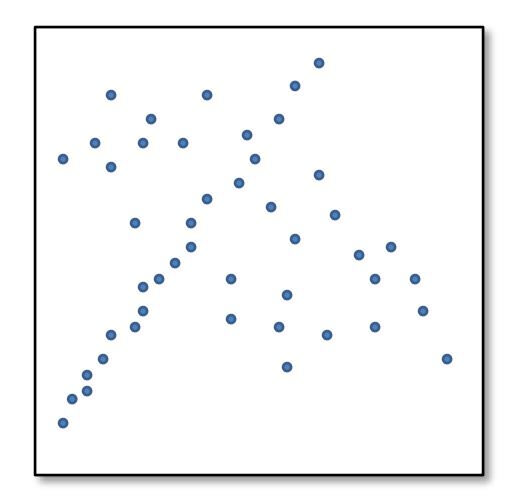
Problem: Fit a line to these datapoints

• How can we fix this?

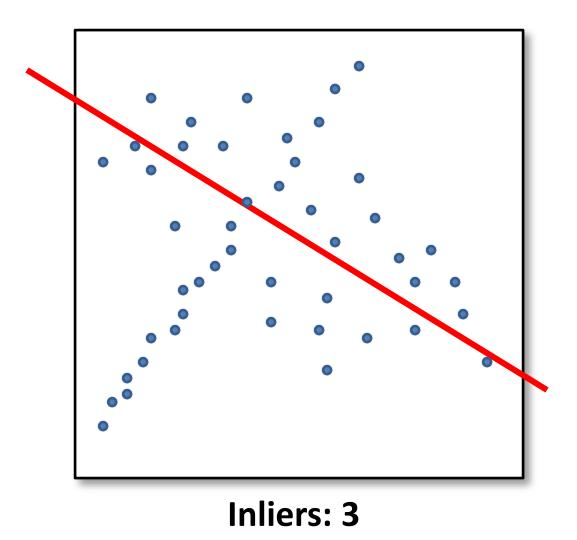
# Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
  - "Agree" = within a small distance of the line
  - I.e., the **inliers** to that line
- For all possible lines, select the one with the largest number of inliers

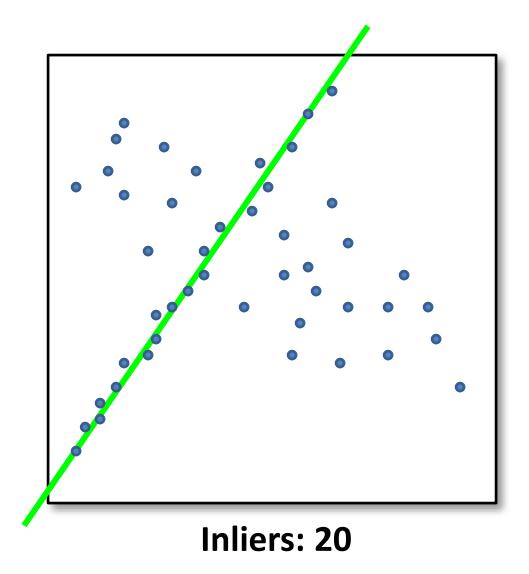
# **Counting inliers**



# **Counting inliers**



# **Counting inliers**

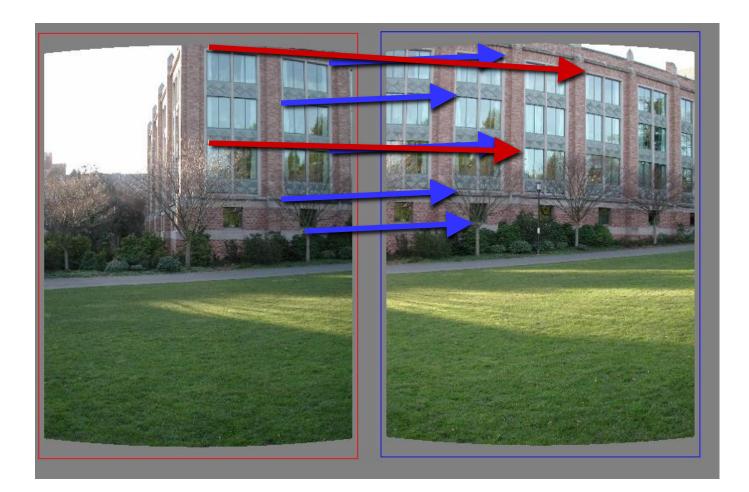


# How do we find the best line?

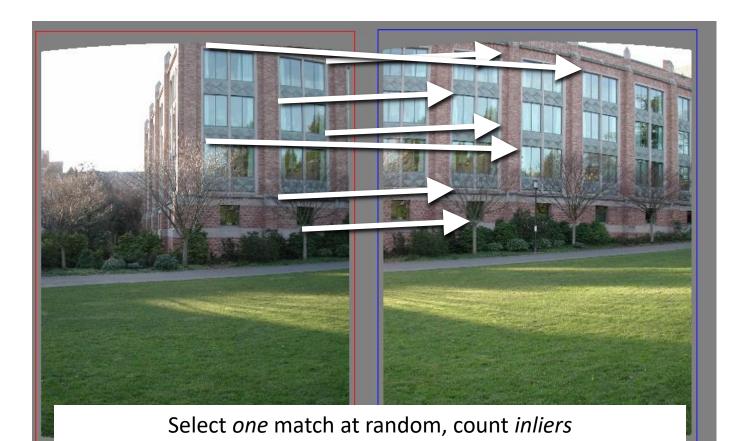
 Unlike least-squares, no simple closed-form solution

- Hypothesize-and-test
  - Try out many lines, keep the best one
  - Which lines?

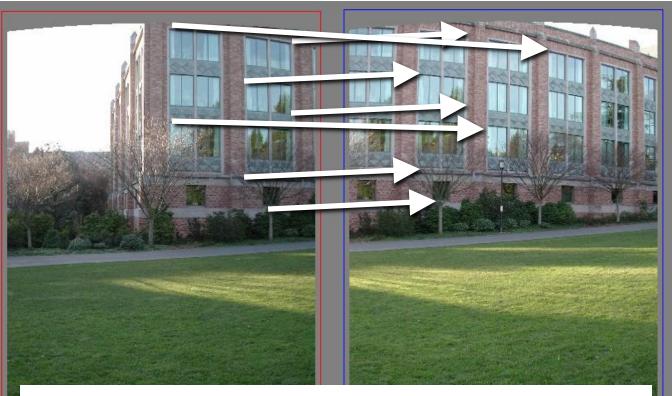
#### Translations



# <u>RAndom SAmple Consensus</u>



# <u>RAndom SAmple Consensus</u>



#### Select another match at random, count inliers

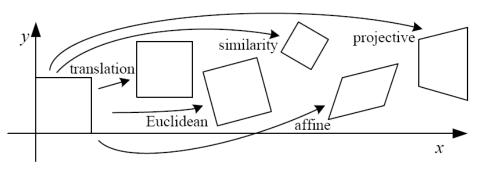
## RANSAC

- Idea:
  - All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
  - "All good matches are alike; every bad match is bad in its own way."

– Tolstoy via Alyosha Efros

# RANSAC: How many samples?

- For alignment, depends on the motion model
  - Here, each sample is a correspondence (pair of matching points)



| Name              | Matrix                                                                   | # D.O.F. | Preserves:            | Icon       |
|-------------------|--------------------------------------------------------------------------|----------|-----------------------|------------|
| translation       | $igg[ egin{array}{c c c c c c c c c c c c c c c c c c c $                | 2        | orientation $+\cdots$ |            |
| rigid (Euclidean) | $\left[ egin{array}{c c} m{R} & t \end{array}  ight]_{2 	imes 3}$        | 3        | lengths $+\cdots$     | $\bigcirc$ |
| similarity        | $\left[ \left. s oldsymbol{R}  \right  oldsymbol{t}   ight]_{2 	imes 3}$ | 4        | angles $+ \cdots$     | $\bigcirc$ |
| affine            | $\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2	imes 3}$         | 6        | parallelism $+\cdots$ |            |
| projective        | $\left[ egin{array}{c} 	ilde{m{H}} \end{array}  ight]_{3	imes 3}$        | 8        | straight lines        |            |

# RANSAC: How many samples?

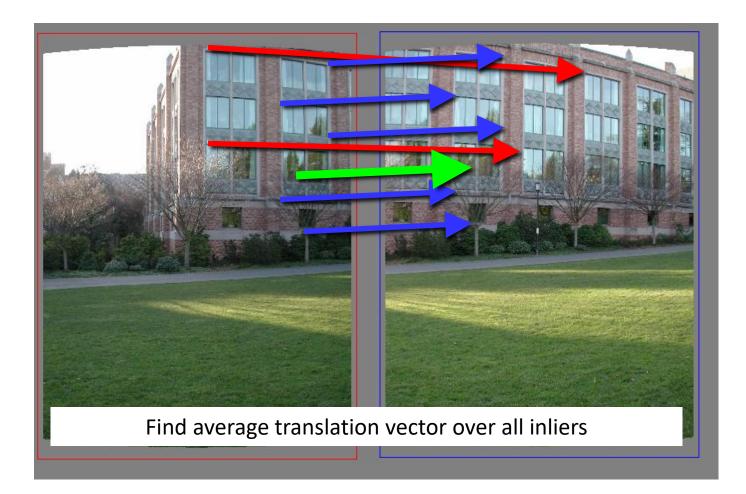
- How many samples are needed?
  - Suppose *w* is fraction of inliers (points from line).
  - *n* points needed to define hypothesis (2 for lines)
  - k samples chosen.
- Prob. that a single sample of *n* points is correct: *w*<sup>*n*</sup>
- Prob. that all k samples fail is:  $(1-w^n)^k$
- ⇒ Choose k high enough to keep this below desired failure rate.

# RANSAC: Computed k (p=0.99)

| Sample<br>size |    | Proportion of outliers |     |     |     |     |      |  |  |  |
|----------------|----|------------------------|-----|-----|-----|-----|------|--|--|--|
| n              | 5% | 10%                    | 20% | 25% | 30% | 40% | 50%  |  |  |  |
| 2              | 2  | 3                      | 5   | 6   | 7   | 11  | 17   |  |  |  |
| 3              | 3  | 4                      | 7   | 9   | 11  | 19  | 35   |  |  |  |
| 4              | 3  | 5                      | 9   | 13  | 17  | 34  | 72   |  |  |  |
| 5              | 4  | 6                      | 12  | 17  | 26  | 57  | 146  |  |  |  |
| 6              | 4  | 7                      | 16  | 24  | 37  | 97  | 293  |  |  |  |
| 7              | 4  | 8                      | 20  | 33  | 54  | 163 | 588  |  |  |  |
| 8              | 5  | 9                      | 26  | 44  | 78  | 272 | 1177 |  |  |  |

Slide credit: David Lowe

#### Final step: least squares fit



# **RANSAC** pros and cons

#### • Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
  - Parameters to tune
  - Sometimes too many iterations are required
  - Can fail for extremely low inlier ratios

# Summary

- Global geometric transforms
  - Homogenous coordinates
  - Linear -> affine -> homography
- Alignment (registration)
  - Least square problem
  - RANSAC