ECE 4973: Lecture 8 Image Filters

Samuel Cheng

Slide credits: Juan Carlos Niebles, Ranjay Krishna, James Hays, Noah Snavely

System and Filters

$$f[n,m] \rightarrow \Big| \text{ System } \mathcal{S} \Big| \rightarrow g[n,m]$$

Super-resolution

In-painting

Bertamio et al

- Image filtering:
 - Compute function of local neighborhood at each position

- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

$$f[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

$$f[\cdot,\cdot]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)
- Why does it sum to one?

Smoothing with box filter

Think-Pair-Share time

1.

0	0	0
0	1	0
0	0	0

2.

0	0	0
0	0	1
0	0	0

3.

1	0	-1
2	0	-2
1	0	-1

4.

0	0	0
0	2	0
0	0	0

 $-\frac{1}{9}$

	1	1	1
-	1	1	1
'	1	1	1

Original

0	0	0
0	1	0
0	0	0

?

Original

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

?

Original

Shifted left By 1 pixel

Sobel

1	0	-1
2	0	-2
1	0	-1

П

Vertical Edge (absolute value)

David Lowe

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

David Lowe

Original

0	0	0	$-\frac{1}{9}$	1	1	1
0	2	0		1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

Source: D. Lowe

	0	0	0
	0	2	0
	0	0	0
I	<u> </u>		

Original

Sharpening filter

- Accentuates differences with local average

Aka unsharp masking

Source: D. Lowe

after

Two important properties of systems

• Shift invariance (same operation for every pixel location)

$$f[n-n_0,m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0,m-m_0]$$

Equivalently: S(shift(I),f) = shift(S(I,f))

Linearity

$$S[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[n,m]]$$

Is the moving average system is shift invariant?

$$f[n,m] \xrightarrow{S} g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

$$f[n-n_0, m-m_0]$$

$$\xrightarrow{\mathcal{S}} \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[(n-n_0) - k, (m-m_0) - l]$$

$$= g[n - n_0, m - m_0]$$

Yes!

Linear Systems (filters)

$$f[n,m] \rightarrow \boxed{\text{System } \mathcal{S} } \rightarrow g[n,m]$$

Is the moving average a linear system?

Yes!

Filter example #2: Image Segmentation

• Image segmentation based on a simple threshold:

$$g[n, m] = \begin{cases} 255, & f[n, m] > 100 \\ 0, & \text{otherwise.} \end{cases}$$

Simple thresholding

$$f[n,m] \rightarrow \boxed{\text{System } \mathcal{S} } \rightarrow g[n,m]$$

Is thresholding shift-invariant?

Yes!

- Is thresholding a linear system?
 - f1[n,m] + f2[n,m] > T
 - f1[n,m] < T
 - f2[n,m]<T

$$S[f1[n,m] + f2[n,m]] = 1$$

 $S[f1[n,m]] + S[f2[n,m]] = 0$

No!

Correlation (we are doing so far)

Let F be the image, H be the kernel (filter), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a (cross-)correlation operation:

$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]$$

$$= \sum_{u=-k}^{k} \sum_{v=-k}^{k} H^{flip} [-u, -v] F[i - u, j - v]$$

$$= \sum_{u=-k}^{k} \sum_{v=-k}^{k} H^{flip} [u, v] F[i + u, j + v] = H^{flip} \otimes F$$

This is called a **convolution** operation:

$$G = H * F$$

Where is convolution coming from?

1-D:
$$y[t] = \sum_{\tau} a[\tau] h[t - \tau]$$

Why do mathematicians and signal processing researchers like convolution?

Any linear and shift-invariant operator can be represented as a convolution (and specified by its impulse response)

What is $(a * b)_{flip}$? A result we need in the next slide ...

```
• (a * b)_{flip} = (\sum_{i} a[i]b[n - i])_{flip}

= \sum_{i} a[i]b[-n - i]

= \sum_{i} a_{flip}[-i]b_{flip}[n + i]

= \sum_{j} a_{flip}[j]b_{flip}[n - j] \quad (j = -i)

= a_{flip} * b_{flip}
```

Convolution properties

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
 - Correlation is NOT associative

$$a \otimes (b \otimes c) = a \otimes (b_{flip} * c) = a_{flip} * (b_{flip} * c)$$
$$(a \otimes b) \otimes c = (a_{flip} * b) \otimes c = (a_{flip} * b)_{flip} * c = (a * b_{flip}) * c$$

- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a

Image support and edge effect

- •A computer will only convolve **finite support signals.**
- What happens at the edge?

- zero "padding"
- edge value replication
- mirror extension
- MOre (beyond the scope of this class)
- -> Matlab conv2 uses zero-padding

Convolution vs. (Cross) Correlation

- A **convolution** is a filtering operation
- Correlation compares the similarity of two sets of data

Convolution vs. (Cross) Correlation

	Convolution	Correlation
Associative: (ab)c=a(bc)	Yes	No
Commutative: ab=ba	Yes	No
Distributive: a(b+c)=ab+ac	Yes	Yes
Linear	Yes	Yes
Application	Filtering	Matching

- They are equivalent when the filter "kernel" is symmetric
- N.B. cv2.filter2D implements correlation rather than conv