ECE 4973: Lecture 15 Hough Transform

Samuel Cheng Slide credits: S. Narasimhan

Hough transform

- What?
 - Find parametrizable outlined shapes from scene
 - Such as lines, circles
- How?
 - Outline detection preprocessing (e.g., Canny)
 - Transform to parameter space (more later)
 - Find maximum response

Motivation: Finding Lines from Edges/Points

Given: Many (x_i, y_i) pairs

Find: Parameters (m,c)

Minimize: Average square distance:

$$E = \sum_{i} \frac{(y_i - mx_i - c)^2}{N}$$

Using:

$$\frac{\partial E}{\partial m} = 0 \quad \& \quad \frac{\partial E}{\partial c} = 0$$

Note: $\overline{y} = \frac{\sum_{i} y_{i}}{N}$ $\overline{x} = \frac{\sum_{i} x_{i}}{N}$

$$c = \overline{y} - m \overline{x}$$

$$m = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

Problem with least square method

Solution: Use a different parameterization

(same as the one we used in computing Minimum Moment of Inertia)

$$E = \frac{1}{N} \sum_{i} (\rho - x_{i} \cos \theta + y_{i} \sin \theta)^{2}$$

Note: Error E must be formulated carefully!

Computer Vision - A Modern Approach Set: Fitting Slides by D.A. Forsyth

Line Grouping Problem

This is difficult because of:

- Extraneous data: clutter or multiple models
 - We do not know what is part of the model?
 - Can we pull out models with a few parts from much larger amounts of background clutter?
- Missing data: only some parts of model are present
- Noise

Hough Transform

Edges need not be connected

Complete object need not be visible

Key Idea: Edges VOTE for the possible model

Image and Parameter Spaces

Equation of Line: y = mx + c

Find: (m,c)

Consider point: (x_i, y_i)

$$y_i = mx_i + c$$
 or $c = -x_i m + y_i$

Parameter space also called Hough Space

Line Detection by Hough Transform

Algorithm:

- Quantize Parameter Space (m,c)
- Create Accumulator Array A(m,c)
- Set $A(m,c) = 0 \quad \forall m,c$
- For each image edge (x_i, y_i) increment:

$$A(m,c) = A(m,c) + 1$$

• If (m,c) lies on the line:

$$c = -x_i m + y_i$$

• Find local maxima in A(m,c)

Parameter Space

A(m,c)									
1						1			
	1				1				
		1		1					
			2						
		1		1					
	1				1				
1						1			

Better Parameterization

NOTE: $-\infty \le m \le \infty$

Large Accumulator

More memory and computations

Improvement: (Finite Accumulator Array Size)

Line equation: $\rho = x\cos\theta + y\sin\theta$

Here $0 \le \theta \le 2\pi$

$$0 \le \rho \le \rho_{\text{max}}$$

Given points (x_i, y_i) find (ρ, θ)

Hough Space Sinusoid

Image space

Votes

Horizontal axis is θ , vertical is rho.

Image space

votes

Real World Example

Parameter Space

Finding Circles by Hough Transform

Equation of Circle:

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

If radius is known: (2D Hough Space)

Accumulator Array A(a,b)

Finding Circles by Hough Transform

Equation of Circle:

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

If radius is not known: 3D Hough Space! Use Accumulator array A(a,b,r)

What is the surface in the hough space?

Real World Circle Examples

Crosshair indicates results of Hough transform, bounding box found via motion differencing.

Finding Coins

Original

Edges (note noise)

Finding Coins (Continued)

Penn Quarters

Finding Coins (Continued)

Note that because the quarters and penny are different sizes, a different Hough transform (with separate accumulators) was used for each circle size.

Coin finding sample images from: Vivek Kwatra

Generalized Hough Transform

Model Shape NOT described by equation

Generalized Hough Transform

Model Shape NOT described by equation

Edge Direction	元 = (れ,べ)
ϕ_{i}	元,元,元,元
Φ2	元,元。元。
ø:	カル・トン
ϕ_n	元",元"

Generalized Hough Transform

Find Object Center (x_c, y_c) given edges (x_i, y_i, ϕ_i)

Create Accumulator Array $A(x_c, y_c)$

Initialize: $A(x_c, y_c) = 0 \quad \forall (x_c, y_c)$

For each edge point (x_i, y_i, ϕ_i)

For each entry \overline{r}_k^i in table, compute:

$$x_c = x_i + r_k^i \cos \alpha_k^i$$

$$y_c = y_i + r_k^i \sin \alpha_k^i$$

Increment Accumulator: $A(x_c, y_c) = A(x_c, y_c) + 1$

Find Local Maxima in $A(x_c, y_c)$

Scale & Rotation:

Use Accumulator Array:

Use:

Hough Transform: Comments

- Works on Disconnected Edges
- Relatively insensitive to occlusion
- Effective for simple shapes (lines, circles, etc)
- Trade-off between work in Image Space and Parameter Space
- Handling inaccurate edge locations:
 - Increment Patch in Accumulator rather than a single point