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1 Some math background
1.1 Linear algebra
1.1.1 Vector

• A vector is an array of numbers. An n-dimensional vector contains n elements. n is also sometimes
known as the size of the vector

• A vector is usually denoted by a bold lower case letter

• Only two vectors of same size can be added or subtracted from one another. The sum of two vectors

is simply equal to the vector of the sum of their elements. For example, u =

u1

u2

u3

 and v =

v1
v2
v3

,

then u+ v =

u1 + v1
u2 + v2
u3 + v3



• If a is scalar, then a

u1

u2

u3

 =

au1

au2

au3


• It is easy to verify that scalar product and vector addition satisfy distributive law. That is,

a(u+ v) = au+ av

• u =

(
u1

u2

)
is a column vector and v =

(
v1, v2

)
is a row vector. By convention, it is common to

assume all vectors are column vectors unless it is specified

Definition 1.1 (Vector space). An n-dimensional vector space consists of all length-n vectors.

Definition 1.2 (Linear independence). A set of vectors v1, · · · ,vn are (linearly) independent if for any
scalar a1, · · · , an, a1v1 + a2v2 + · · ·+ anvn = 0 if and only if a1 = a2 = · · · = an.

• If v1, · · · ,vn are not linearly independent, they are linearly independent.

Definition 1.3 (Basis). A set of vector forms a basis of the length-n vector space if any vector in the
vector space can be represented as a linear combination of the vectors.

Definition 1.4 (Inner product). The inner product or dot product of u and v, denoted by 〈u,v〉, is the
sum of product of their elements. That is,

∑
i uivi

Definition 1.5 (Orthogonal). u and v are orthogonal, denoted by u⊥v, if 〈u,v〉 = 0

• A matrix is a table of numbers. An m × n matrix has m rows and n columns. We often denote a
matrix with a upper case letter. For example, A =

(
1 2 3
4 5 6

)
is a matrix of 2 rows and 3 columns

• The dimensions of a matrix are the number of rows and the number of columns. For example, A is
a 2× 3 matrix

• We can also view a matrix as a column “vector” of row vectors. For example, A =

((
1 2 3

)(
4 5 6

)).

We can also view the matrix as a row “vector of column vectors. That is, A =

((
1
4

)(
2
5

)(
3
6

))
.

• A square matrix is a matrix with the same number of rows and columns (m = n)



• A transpose of an n×m matrix C, denoted as C>, is an m× n matrix with the (i, j) element as

the (j, i) element of C. For example, A> =

1 4
2 5
3 6


– Note that (A>)> = A

Definition 1.6 (Rank). The column rank of a matrix is the maximum number of arbitrary columns
that are independent. And the row rank of a matrix is the maximum number of arbitrary rows that are
independent. One can show that the row rank and the column rank of a matrix are the same.

Definition 1.7 (Full rank). When the rank of the matrix equals to the minimum of the number of
columns and the number of rows, we said the matrix is full rank.

Example 1.1. A =

1 1 0
1 2 0
1 3 0

 has rank 2. The column rank is obviously 2 as

1
1
1

 and

1
2
3

 are

linearly independent. Note that an all-zero vector (column 3) linearly depends on any set of vectors since
a1v1 + a2v2 + · · · + anvn + a00 = 0 for a0 = 1 and a1 = a2 = · · · = an = 0. So not all coefficients are
zeros.

The row rank is also 2 as (1, 1) and (1, 2) are obviously linearly independent. But (1, 1), (1, 2), and
(1, 3) are not linearly independent. We have (1, 2)− (1, 1) = (1, 3)− (1, 2) ⇒ (1, 1)− 2(1, 2) + (1, 3) = 0
for non-zero coefficients 1,-2, and 1.

• The conjugate transpose of a matrix is known as the Hermitian of a matrix. Usually denoted as
A†

• A matrix that satisfies A> = A is symmetric

• A matrix that satisfies A† = A is Hermitian

– Note that real symmetric matrix is Hermitian

• A matrix is unitary if A†A = I

• A real matrix is orthogonal if A>A = I

1.1.2 Matrix multiplication

Definition 1.8 (Matrix multiplication). Consider an n×r matrix A and an r×m matrix B, the product
AB is a n×m matrix such that the (i, j) element of AB is

(AB)i,j =

r∑
k=1

Ai,kBk,j

• Note that the number of columns of A and the number of rows of B have to be the same, otherwise,
the product AB is invalid. And apparently, AB 6= BA!

• Associative law:(AB)C = A(BC)

• Distributive law: (A+B)C = AC +BC

• Vectors a matrices too. Consider two length-n column vectors u and v. u>v =
∑n

k=1 ukvk is
known as the dot product or inner product of u and v

• (AB)> = B>A>

• Let 0 be a matrix with all elements equal to 0. For any matrix A that A0 = 0

– Note that AB = 0 and A 6= 0 does not imply B = 0

• A square matrix with all diagonal elements equal to 1 and all other elements equal to 0 is call an
identity matrix. Usually denoted by I (or In). For any matrix A with the number of columns equal
to n, AI = A. And for any matrix B with the number of rows equal to n, IB = B.



• A square matrix B is the inverse matrix of a square A if BA = I. We denote the inverse as A−1

– (AB)−1 = B−1A−1

– If AB = I and DA = I, D = D(AB) = (DA)B = B

Definition 1.9 (Invertible matrix). A matrix is invertible if its inverse exists.

Lemma 1.1 (Invertible). Note that a matrix is invertible if and only if it is full rank.

Proof. Consider the problem Ax = 0. If A is invertible, then A−1(Ax) = A−10 ⇒ x = 0. So all columns
have to be linearly independent, so A is full-rank.

Consider the matrix A and apply the following row operations on the matrix.

• scaling

• exchange one row with another row

• adding a weighed row to another row

The above operations are the equivalent of multiplying A with elementary matrices of forms. If A is
full-rank, it is always possible to convert the matrix to I with the row operations. Thus an inverse exists,
and that is just equal to the product the elementary matrices.

1.1.3 Trace and determinant

Definition 1.10 (Trace). The trace of a square matrix is the sum of its diagonal. That is, tr(A) =∑n
i=1 Ai,i for an n× n matrix A.

• tr(AB) = tr(BA)

Definition 1.11 (Determinant). The determinant of an n× n matrix A, denoted by det(A), is defined
as ∑

σ∈Pn

εσA1,σ(1)A2,σ(2) · · ·An,σ(n),

where Pn is the set of all permutations σ and εσ = −1N(σ) (with N(σ) being the number of inversions)
is the parity of the permutation

Example 1.2 (Determinant of 3× 3 matrix). For a matrix A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

det(A) =
∑
σ∈P3

εσa1,σ(1)a2,σ(2)a3,σ(3)

= a1,1a2,2a3,3 − a1,1a2,3a3,2 − a1,2a2,1a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2 − a1,3a2,2a3,1

• det(A>) = det(A)

• det([λa1,a2, · · · ,an]) = λ det([a1,a2, · · · ,an])

• det([b+ c,a2, · · · ,an]) = det([b,a2, · · · ,an]) + det([c,a2, · · · ,an])

• det([a2,a1, · · · ,an]) = −det([a1,a2, · · · ,an])

• det([a,a, · · · ,an]) = 0

• det(AB) = det(A) det(B)



Proof.

det(AB) = det([b11a1 + · · ·+ bn1an, b12a1 + · · ·+ bn2an, · · · , b1na1 + · · ·+ bnnan])

=
∑
σ∈Pn

det([bσ(1),1aσ(1), bσ(2),2aσ(2), · · · , bσ(n),naσ(n)])

=
∑
σ∈Pn

bσ(1),1bσ(2),2 · · · bσ(n),n det([aσ(1),aσ(2), · · · ,aσ(n)])

=
∑
σ∈Pn

bσ(1),1bσ(2),2 · · · bσ(n),nεσ det([a1,a2, · · · ,an])

= det(B) det(A)

• det(A−1) = det(A)−1

• Sylvester’s determinant theorem: det(I +AB) = det(I +BA)

1.1.4 Eigenvalues and eigenvectors

Definition 1.12 (Eigenvector and eigenvalue). For a square matrix A, λ and v are an eigenvalue and
an eigenvector of A, respectively, if Av = λv.

• If v is an eigenvector, so thus av.

• Consider all linearly independent eigenvector v1, · · · , vn and their corresponding eigenvalues λ1, · · · , λn.
Note that

A[v1, v2, · · · , vn]︸ ︷︷ ︸
V

= [λ1v1, λ2v2, · · · , λnvn] = [v1, v2, · · · , vn]︸ ︷︷ ︸
V


λ1 0 0 · · · 0
0 λ2 0 · · · 0

0 0
. . .

...
...

... λn


︸ ︷︷ ︸

Λ

If V is full-rank, then we can diagonalize A as Λ = V −1AV .

• Note that det(A) = det(V ) det(Λ) det(V −1) = det(V ) det(Λ) det(V )−1 = det(Λ) =
∏n

i=1 λi

• Similarly, tr(A) = tr(V ΛV −1) = tr(V (ΛV −1)) = tr(ΛV −1V ) = tr(Λ) =
∑n

i=1 λi

Lemma 1.2 (Hermitian matrix). Hermitian matrix H has real eigenvalues

Proof. If Hv = λv, λv†v = v†Hv = v†H†v = (Hv)†v = (λv)†v = λ∗v†v ⇒ (λ− λ∗)v†v = 0, where λ∗

is the complex conjugate of λ. Since v†v > 0 unless v is all zero, λ = λ∗ and so λ is real.

Lemma 1.3 (Hermitian matrix). Eigenvectors of different eigenvalues are orthogonal for Hermitian
matrices.

Proof. If for λ1 6= λ2, Hv1 = λ1v1 and Hv2 = λ2v2, λ2v
†
1v2 = v†

1Hv2 = v†
1H

†v2 = (Hv1)
†v2 =

(λ1v1)
†v2 = λ†

1v
†
1v2 = λ1v

†
1v2. So if λ1 6= λ2, then v†

1v2 = 0. That is, v1⊥v2.

Lemma 1.4 (Hermitian matrix). Any n × n Hermitian matrix has a complete set of orthogonal eigen-
vectors that form a basis of n-dimensional vector space.

Corollary 1.1 (Hermitian matrix). From Lemma 1.4, any Hermitian matrix can be diagonalized by a
unitary matrix (its eigenvector matrix). That H = UΛU†, where UU† = I. As a degenerated case, any
real symmetric matrix is Hermitian and its eigenvector matrix is orthogonal (both unitary and real). Thus
H can be decomposed as H = OΛO>, where O is real and OO> = I



1.1.5 Positive definite matrices

• A Hermitian matrix S is positive definite if for any vector u, u†Su > 0

• A Hermitian matrix S is positive semi-definite if for any vector u, u†Su ≥ 0

• A real symmetric matrix S is positive definite if for any real vector u, u>Su > 0

• A real symmetric matrix S is positive semi-definite if for any real vector u, u>Su ≥ 0

Example 1.3 (Complex positive semi-definite). For any complex matrix A, S = A†A is positive semi-
definite since S† = (A†A)† = A†A = S and for any complex vector u, u†Su = u†A†Au = (Au)†(Au) ≥ 0

Example 1.4 (Real positive semi-definite). For any real matrix A, S = A†A = A>A is positive semi-
definite since S> = (A>A)> = A>A = S and for any real vector u, u>Su = u>A>Au = (Au)>(Au) ≥ 0

1.1.6 SVD

• Any matrix A has a singular value decomposition of a form of UDV †, where U and V are unitary
and D is diagonal

• If A is real, the unitary matrices are real orthogonal instead. And thus A = UDV >

• For both complex and real case, the diagonal elements of D are called the singular values of A and
the columns of U and V are called the left and right singular vectors of A. And U and V themselves
are the left and right singular vector matrices.

• Consider S = AA†. Note that S is positive semi-definite and S = UDV †V D†U† = UD̃U†,
where D̃ = DD† is a real diagonal matrix with non-negative elements. Apparently, U is also
the eigenvector matrix of AA†.

• Similarly, consider S = A†A. Note that S is positive semi-definite and S = V D†U†UDV † = V D̃V †.
Apparently, V is also the eigenvector matrix of A†A.

• Note that eigenvalues of A†A and AA† are magnitudes squared of the singular values of A

1.2 Matrix calculus
• We may take a vector or matrix as input variables of a function. Consequently, we can compute of

“derivative” w.r.t. to the input vector of matrix

– We only consider scalar function here for simplicity. For generalization, one can consider a
function with more outputs simply as concatenation of scalar functions.

• Consider f(u) as a function of vector u. The derivative df
du (essentially the gradient ∇f(u)) is

defined as a vector of same shape of u and with the ith element,
(

df
du

)
i
= ∂f

∂ui

– At the extremum of f w.r.t. u, we should have df
du = 0

• Consider f(A) as a function of matrix A. The derivative df
dA (essentially the gradient ∇f(A)) is

defined as a matrix of same shape of A and with the (i, j)-element,
(

df
dA

)
i,j

= ∂f
∂Ai,j

– At the extremum of f w.r.t. A, we should have df
dA = 0

Example 1.5. f(v) = u>v,
(

df
dv

)
i
= ∂u>v

∂vi
= ∂

∂vi

∑
j ujvj = ui. Therefore, df

dv = u

Example 1.6. f(A) = uTAv,
(

df
dA

)
i,j

= ∂u>Av
∂Ai,j

= ∂
∂Ai,j

∑
l

∑
k ukAk,lvl = uivj . Therefore, df

dA = uv>



1.2.1 Lagrange multiplier

An important trick of optimization with equality or inequality constraints is the Lagrange multiplier.

Equality constraint Consider the problem that

min
x

f(x) s.t. g(x) = c

We can introduce a Lagrange multiplier λ and rewrite the problem as an unconstrained optimization
problem

min
x

max
λ

f(x) + λ(g(x)− c)︸ ︷︷ ︸
L(x,λ)

(1)

Note that

max
λ

L(x, λ) =

{
f(x) if g(x) = c

∞ otherwise

as desired. We may swap the order of the optimization in (1) and consider instead

max
λ

min
x

f(x) + λ(g(x)− c)︸ ︷︷ ︸
L(x,λ)

And minx f(x) + λ(g(x)− c) gives us ∇f(x) + λ∇g(x) = 0

Inequality constraint Similarly, consider instead a problem with inequality constraint that

min
x

f(x) s.t. g(x) ≥ c

Again, we can introduce a Lagrange multiplier λ and rewrite the problem as an unconstrained
optimization problem

min
x

max
λ≥0

f(x)− λ(g(x)− c)︸ ︷︷ ︸
L(x,λ)

Note that we restrict λ be non-negative this time and again

max
λ≥0

L(x, λ) =

{
f(x) if g(x) ≥ c

∞ otherwise

as desired. We may swap the order of the optimization as before to continue solving the problem.

N.B. For each constraint, we have one Lagrange multiplier. For example, for “a” constraint Ax = c, we
can include the regularization term as λ>(Ax− c), where λ has the same shape as c.

1.2.2 Solving sets of linear equations

Consider a set of linear equations
a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = c1
a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = c2

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = cm

with m equations and n unknowns x1, x2, · · · , xn. We can rewrite the set of equations in matrix form asa11 a12 a13 · · · a1n
...

am1 am2 am3 · · · amn


︸ ︷︷ ︸

A


x1

x2

...
xn


︸ ︷︷ ︸

x

=

 c1
...
cm


︸ ︷︷ ︸

c

(2)



m = n: If A is square (m = n), and assume that A is full-rank1, we can multiply A−1 on both sides and
so x = A−1c.

m > n: When m > n and assume that A has rank n, there are more equations than unknown. In general,
we won’t be able to find x that satisfies (2) exactly. Instead reformulate the problem2 as

min
x

(Ax− c)>(Ax− c)︸ ︷︷ ︸
f(x)

(3)

So we want df(x)
dx = d

dx (Ax− c)>(Ax− c) = d
dx [x

>A>Ax− c>Ax− x>A>c+ c>c] = 0. This gives
us3

df(x)

dx
= 2A>Ax− 2A>c = 0 (4)

⇒ A>Ax = A>c (5)
⇒ x = (A>A)−1A>c, (6)

where (A>A)−1A> is known as the pseudo-inverse of A

m < n: When the m < n, we have more unknown than equations and so in general there are infinite
number of solutions. In that case, it is often that we want to impose some “regularization” to favor
a less complex x. For example, we may add the l2-norm of x as a model cost. So instead, we may
formulate the problem as

min
x

(Ax− c)>(Ax− c) + λx>x (7)

This gives a solution x = (A>A+ λI)−1A>c

Alternatively4, we may formulate the problem as

min
x

x>x s.t. Ax = c. (8)

Using Lagrange multiplier, rewrite the problem as

min
x

x>x+ λ>(Ax− c) (9)

This gives 2x + A>λ = 0 ⇒ x = A>λ̃. From the constraint, Ax = c, we have AA>λ̃ = c and so
x = A>λ̃ = A>(AA>)−1c.

1.2.3 Finding the minimum of a quadratic form

Another common problem that we may encounter is to find the minimum of ‖Ax‖ for some real matrix A.
Note that the problem is not well-defined if we don’t put any constraint on x. Otherwise, the minimum
is simply the trivial all-zero vector. Instead we need to constrain ‖x‖ to be some constant, and WLOG
we can pick ‖x‖ = 1. Rewrite the problem as an optimization problem

min
x

‖Ax‖ s.t. ‖x‖ = 1 (10)

⇒min
x

x>A>Ax s.t. x>x = 1 (11)

Using Lagrange multiplier, we can rewrite the problem as

min
x

x>A>Ax− λ(x>x− 1) (12)

This gives us

A>Ax = λx (13)

This suggests that λ to be eigenvalue of A>A and x is the eigenvector. However, which eigenvalue and
eigenvector?

Since A>A is positive semi-definite, the eigenvalues of A>A are all real and non-negative5 Let
1Otherwise, it is the same as m < n.
2Assume real matrices and vectors here.
3Note that

(
d
dx

x>Bx
)
i
= ∂

∂xi
x>Bx = ∂

∂xi

∑
j

∑
k xjBj,kxk =

∑
k Bi,kxk +

∑
j Bj,ixj =

∑
k(Bi,k + B>

i,k)xk =

((B +B>)x)i, thus d
dx

x>Bx = (B +B>)x
4We may also use other norm such as l1-norm for the model cost. But generally there is no closed form solution for those

cases.
5. Note that we also have a set of orthogonal eigenvectors that span the entire vector space (c.f. Lemma 1.4).



x1,x2, · · · ,xn be the normalized6 orthogonal7 eigenvectors of A>A with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.
Note that

x>
i A

>Axi = x>
i λixi = λix

>
i xi = λi‖xi‖2 = λi.

Therefore, the optimum x should simply be x1, the eigenvector of A>A with the minimum eigenvalue8.

Principal component analysis (PCA)

The above discussion is closely related to PCA. Consider a dataset of N length-M vectors, often
M � N . Let’s pack all data vectors into a matrix A such that each row is a data vector. So that
A ∈ RN×M . The goal of PCA is to reduce the dimension of the features to m � M .
For simplicity, let’s first consider m = 1, we want to find a projection p ∈ RM×1 such that p>p = 1
and the signal power after projection ‖Ap‖2 = p>A>Ap is maximized. That is,

maxp>A>Ap s.t. p>p = 1 (14)

By the same argument as before, the optimum p will be the eigenvector of A>A with the maximum
eigenvector.
For m > 1, we should just pick the projection matrix who columns are the eigenvectors of A>A
of the first m largest eigenvalues. Note that we can reduce amount of computation by using SVD
on A instead.

1.3 Homogeneous coordinate
Homogenous coordinate is an extension of the Cartesian coordinate. A dummy coefficient 1 is appended
to the regular Cartesian coordinate to form the Homogenous coordinate. For example, a 2-D point
(x, y) in the Cartesian coordinate will be represented as (x, y, 1) in the homogenous coordinate. For
a Homogenous coordinate with the last coefficient being non-zero, we can renormalize it by dividing
all coefficients with the last coefficient. Note that the physical location represented by a Homogenous
is unchanged w.r.t. scaling. For example, (u, v, w) = (u/w, v/w, 1) and thus the physical point that
(u, v, w) represents is actually (u/w, v/w). It will become clear why homogeneous coordinate is useful
soon in the next sub-section.

1.4 Coordinate transformation
1.4.1 2D

Note that while rotation can be represented as a matrix operation (multiplication of a matrix) on a point
for the Cartesian coordinate, it is not possible for translation. But everything can be represented as
matrix multiplications using the homogeneous coordinate system

Coordinate Input Operation Output

Translation Cartesian
(
x1

x2

)
shift by

(
p1
p2

) (
x1 + p1
x2 + p2

)
Homogeneous

x1

x2

1

 shift by

p1
p2
1

 x1 + p1
x2 + p2

1

 =

1 0 p1
0 1 p2
0 0 1

x1

x2

1


Rotation Cartesian

(
x1

x2

)
rotate by θ

(
cos θ − sin θ
sin θ cos θ

)(
x1

x2

)
Homogeneous

x1

x2

1

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

x1

x2

1


6‖xi‖ = 1,∀i.
7x>

i xj = 0 for i 6= j.
8We may also use SVD and find the right singular vector with the minimum singular value instead.



1.4.2 3D
Coordinate Input Operation Output

Translation Cartesian

x1

x2

x3

 shift by

p1
p2
p3

 x1 + p1
x2 + p2
x3 + p3


Homogeneous


x1

x2

x3

1

 shift by


p1
p2
p3
1



x1 + p1
x2 + p2
x3 + p3

1

 =


1 0 0 p1
0 1 0 p2
0 0 1 p3
0 0 0 1



x1

x2

x3

1



Rotation

Cartesian

x1

x2

x3


rotate along z-axis by θ

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

x1

x2

x3


Homogeneous


x1

x2

x3

1



cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1



x1

x2

x3

1


Cartesian

x1

x2

x3


rotate along x-axis by θ

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

x1

x2

x3


Homogeneous


x1

x2

x3

1



1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1



x1

x2

x3

1


Cartesian

x1

x2

x3


rotate along y-axis by θ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

x1

x2

x3


Homogeneous


x1

x2

x3

1




cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1



x1

x2

x3

1



Rotating from axes x,y, z to u,v,w

Note that the rotation matrix is simply

u>

v>

w>

. One can easily verify as follows.

• Under the original frame of reference, if we rotate u with the given matrix, we have

u>

v>

w>

u =

1
0
0


as desired since the point is precisely

1
0
0

 under the new frame of reference.

• Similarly, we have

u>

v>

w>

v =

0
1
0

 and

u>

v>

w>

w =

0
0
1

 as desired.
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