ECE 4973: Lecture 3 Color and representation

Samuel Cheng

Slide credits: James Thompkin, Juan Carlos Niebles and Ranjay Krishna

WHAT IS AN IMAGE?

Example 2D Images

What is each part of a greyscale image?

What is each part of a greyscale image?

Another example: Lena

Slide credit: Ulas Bagci Computer vision as making sense of an extremely highdimensional space

Color image representation

Why red, green, and blue?

Slide credit: Ulas Bagci

Color in human vision

The Eye

- The human eye is a camera
 - Iris colored annulus with radial muscles
 - **Pupil** the hole (aperture) whose size is controlled by the iris
 - What's the sensor?
 - photoreceptor cells (rods and cones) in the retina

Two types of light-sensitive receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

Distribution of Rods and Cones

Night Sky: why are there more stars off-center? Averted vision: http://en.wikipedia.org/wiki/Averted_vision

James Hays

Rod / Cone sensitivity

Physiology of Color Vision

Some examples of the spectra of light sources

[©] Stephen E. Palmer, 2002

Metamers

What color will you see?

- What is red + green?
 Yellow
- What is blue + green?
 Cyan
- How about blue + red?

Magenta is a ``fake" color

• You won't see Magenta in a rainbow

<u>Color Mixing: The Mystery of Magenta</u>

The Physics of Light

Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>

[©] Stephen E. Palmer, 2002

Colorful shadow

- Have you seen such thing before?
- Can you reconstruct something similar?
- Hint: 3 color light sources. Can you guess how the light sources oriented?

Colorful shadows

Can you guess the order of the light (from left to right)?

Colorful shadows

Interaction of light and surfaces

From Foundation of Vision by Brian Wandell, Sinauer Associates, 1995

Under monochromatic light

Olafur Eliasson, Room for one color

Physiology of Color Vision

© Stephen E. Palmer, 2002

S are more different from the M and L

- S cones (peak at 420 nm, bluish-violet)
- M cones (peak at 534 nm, bluish-green)
- L cones (peak at 564 nm, yellowish-green)
- S cones and rods are totally absent in the foveal area
- Note that both M and L are sensitive to green

S are more different from the M and L

The genes of the photoreceptors lie on different chromosomes

- -rod lies on chromosome 8,
- -S cone lies on chromosome 7
- –Both L and M cones lie on the X chromosome

Tetrachromatism

- Most birds, and many other animals, have cones for ultraviolet light.
- Some humans seem to have four cones (12% of females).
- True tetrachromatism is *rare*; requires learning.

Bee vision

COLOR SENSING IN CAMERA

Color Sensing in Camera (RGB)

• 3-chip vs. 1-chip: quality vs. cost

CCD(B)

• Why more green?

Prism

CCD(R)

Why 3 colors?

Lens

http://www.cooldictionary.com/words/Bayer-filter.wikipedia

Slide by Steve Seitz

COLOR SPACES

Color spaces

• How can we represent color?

Color spaces: RGB

Default color space

Any color = r*R + g*G + b*B • Strongly correlated channels

Non-perceptually uniform

Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png

RGB is not perceptually uniform

Color spaces: HSV

- More intuitive color space
- More perceptually uniform

If you had to choose, would you rather go without luminance or chrominance?

Most information in intensity

Only color shown – constant intensity

Most information in intensity

Only intensity shown – constant color

Most information in intensity

Original image

HSV

Η (S=1,V=1)

S (H=1,V=1)

Y (Cb=0.5,Cr=0.5)

Cb (Y=0.5,Cr=0.5)

Cr (Y=0.5,Cb=05)

Most JPEG images & videos subsample chroma

PSP Comp 3 2x2 Chroma subsampling 285K Original 1,261K lossless 968K PNG

"Perceptually uniform"* color space

a

(L=65,b=0)

James Hays

EVOLUTION OF MY UNDERSTANDING OF COLOR OVER TIME:

White balance

- When looking at a picture on screen or print, we adapt to the illuminant of the room, not to that of the scene in the picture
- When the white balance is not correct, the picture will have an unnatural color "cast"

http://www.cambridgeincolour.com/tutorials/white-balance.htm

White balance

- Film cameras:
 - Different types of film or different filters for different illumination conditions
- Digital cameras:
 - Automatic white balance
 - White balance settings corresponding to several common illuminants
 - Custom white balance using a reference object

Image histograms

Histogram

Slide credit: Dr. Mubarak Shah

Histogram

 Histogram of an image provides the frequency of the brightness (intensity) value in the image.

```
function h=histogram(im)
    h=zeros(1,255);
    for row=1:size(im,1)
        for col=1:size(im,2)
            val = im(row,col)+1;
            h(val)=h(val)+1;
        end
        end
    end
end
```

```
def histogram(im):
    h = np.zeros(255)
    for row in im.shape[0]:
        for col in im.shape[1]:
        val = im[row, col]
        h[val] += 1
```

A use case: histogram equalization

Summary

- Pixels (picture elements)
- Color ≈ light frequency, but is also a result of HVS
 - Different species (even individual) see the world differently!
 - Some colors are "fake". Pure "magenta" does not exist
 - Metamer: same color to us can be different spectrum
- Color spaces (RGB/HSV...)
- Color depth (8-bit typically per channel)
- Human Vision System can "measure" more green – More green sensors in camera (Bayer filter)
- White balancing/histogram/histogram equalization