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Structure from motion



Structure from motion
• Given many images, how can we 

a) figure out where they were all taken from?
b) build a 3D model of the scene?

This is (roughly) the structure from motion problem



Structure from motion

• Input: images with points in correspondence      
pi,j = (ui,j,vi,j)

• Output
• structure: 3D location xi for each point pi
• motion: camera parameters Rj , tj possibly Kj

• Objective function: minimize reprojection error

Reconstruction (side) (top)



What we’ve seen so far…

• 2D transformations between images
• Translations, affine transformations, homographies…

• 3D coordinates to 2D coordinates
• Camera matrix

• Today: epipolar geometry and fundamental matrices



Depth from disparity

• Goal: recover depth by finding image coordinate x’ that corresponds to x

f

x x’

Baseline
T

z

O’

X

f

X

x

x'

O



• Assume parallel optical axes, known camera parameters (i.e., 
calibrated cameras).  What is expression for Z?

Geometry for a simple stereo system
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• Assume parallel optical axes, known camera parameters (i.e., 
calibrated cameras).  What is expression for Z?

Similar triangles (pl, P, pr) and 
(Ol, P, Or):
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• Assume parallel optical axes, known camera parameters (i.e., 
calibrated cameras).  What is expression for Z?

Similar triangles (pl, P, pr) and 
(Ol, P, Or):

Geometry for a simple stereo system

𝑇𝑇 + 𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑙𝑙
𝑍𝑍 − 𝑓𝑓

=
𝑇𝑇
𝑍𝑍

𝑍𝑍 = 𝑓𝑓
𝑇𝑇

𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑟𝑟disparity



Depth from disparity
• Goal: recover depth by finding image coordinate x’ 

that corresponds to x
• Sub-Problems

1. Calibration: How do we recover the relation of the 
cameras (if not already known)?

2. Correspondence: How do we search for the matching 
point x’?
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Depth from disparity

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y), y)

James Hays



Depth from disparity

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y), y)

If we could find the corresponding points in two images, we 
could estimate relative depth…

James Hays



What do we need to know?

1. Calibration for the two cameras.
1. Intrinsic matrices for both cameras (e.g., f)
2. Baseline distance T in parallel camera case
3. R, t in non-parallel case

2. Correspondence for every pixel.



Correspondence for every pixel.
Where do we need to search?
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Correspondence for every pixel.
Where do we need to search?



Wouldn’t it be nice to know 
where matches can live? 

Epipolar geometry
Constrains 2D search to 1D



Key idea: Epipolar constraint

x x’
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Potential matches for x have to 
lie on the corresponding line l’.

Key idea: Epipolar constraint

x x’

X

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Potential matches for x have to 
lie on the corresponding line l’.

Key idea: Epipolar constraint

x x’

X

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Potential matches for x have to 
lie on the corresponding line l’.

Key idea: Epipolar constraint

x

X

x’

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Potential matches for x have to 
lie on the corresponding line l’.

Key idea: Epipolar constraint

x

X

x’

X

x’

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Potential matches for x have to 
lie on the corresponding line l’.

Potential matches for x’ have to 
lie on the corresponding line l.

Key idea: Epipolar constraint
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Epipolar geometry: notation
X

x x’
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• Baseline – line connecting the two camera centers

Epipolar geometry: notation
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• Epipoles
= intersections of baseline with image planes 
= projections of the other camera center

• Baseline – line connecting the two camera centers

Epipolar geometry: notation
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• Epipolar Plane – plane containing baseline (1D family)

• Epipoles
= intersections of baseline with image planes 
= projections of the other camera center

• Baseline – line connecting the two camera centers
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• Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)

Epipolar geometry: notation
X

x x’

• Epipolar Plane – plane containing baseline (1D family)

• Epipoles
= intersections of baseline with image planes 
= projections of the other camera center

• Baseline – line connecting the two camera centers

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Think Pair Share
Where are the epipoles?
What do the epipolar lines look like?

X
a)

X
b)

X
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X
d)

= camera center



Example: Converging cameras



Example: Motion parallel to image 
plane



e

e’

Example: Forward motion

Epipole has same coordinates in both images.
Points move along lines radiating from e: 
“Focus of expansion”



How to find epipolar line of a point?

• A little bit more math, but cool math
• Essential matrix and fundamental matrix



Essential matrix

𝑋𝑋𝑙𝑙: 𝑋𝑋 in terms of Cartesian coordinate of left camera
𝑋𝑋𝑟𝑟: 𝑋𝑋 in terms of Cartesian coordinate of right camera

There exists 𝐸𝐸 such that 𝑋𝑋𝑙𝑙𝑇𝑇𝐸𝐸𝑋𝑋𝑟𝑟 = 0

X𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟
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Review: change of coordinate
• How do we change coordinate from one camera to 

another?
• (Center of projection at the origin, x-axis points right, y-axis 

points up, z-axis points backwards)
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Review: change of coordinate
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Review: change of coordinate
• How do we change coordinate from one camera to 

another?
• (Center of projection at the origin, x-axis points right, y-axis 

points up, z-axis points backwards)



Essential matrix (Longuet-Higgins, 1981)

Let 𝑅𝑅 be rotation from left to right camera, then 𝑋𝑋𝑙𝑙 = 𝑅𝑅(𝑋𝑋𝑟𝑟 − 𝑡𝑡)

x x’

X

t

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Cross product in matrix representation

• Let 

𝐮𝐮 × 𝐯𝐯 =
𝑖𝑖 𝑗𝑗 𝑘𝑘
𝑢𝑢1 𝑢𝑢2 𝑢𝑢3
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

=
𝑢𝑢2 𝑢𝑢3
𝑣𝑣2 𝑣𝑣3 𝑖𝑖 −

𝑢𝑢1 𝑢𝑢3
𝑣𝑣1 𝑣𝑣3 𝑗𝑗 +

𝑢𝑢1 𝑢𝑢2
𝑣𝑣1 𝑣𝑣2 𝑘𝑘

𝐮𝐮 = [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3]𝑇𝑇 , 𝐯𝐯 = [𝑣𝑣1,𝑣𝑣2,𝑣𝑣3]𝑇𝑇



Cross product in matrix representation

• Let 

𝐮𝐮 × 𝐯𝐯 =
𝑖𝑖 𝑗𝑗 𝑘𝑘
𝑢𝑢1 𝑢𝑢2 𝑢𝑢3
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

=
𝑢𝑢2 𝑢𝑢3
𝑣𝑣2 𝑣𝑣3 𝑖𝑖 −

𝑢𝑢1 𝑢𝑢3
𝑣𝑣1 𝑣𝑣3 𝑗𝑗 +

𝑢𝑢1 𝑢𝑢2
𝑣𝑣1 𝑣𝑣2 𝑘𝑘

𝐮𝐮 = [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3]𝑇𝑇 , 𝐯𝐯 = [𝑣𝑣1,𝑣𝑣2,𝑣𝑣3]𝑇𝑇

=
𝑢𝑢2 𝑢𝑢3
𝑣𝑣2 𝑣𝑣3 ,−

𝑢𝑢1 𝑢𝑢3
𝑣𝑣1 𝑣𝑣3 ,

𝑢𝑢1 𝑢𝑢2
𝑣𝑣1 𝑣𝑣2

⊤



Cross product in matrix representation

• Let 

𝐮𝐮 × 𝐯𝐯 =
𝑖𝑖 𝑗𝑗 𝑘𝑘
𝑢𝑢1 𝑢𝑢2 𝑢𝑢3
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

=
𝑢𝑢2 𝑢𝑢3
𝑣𝑣2 𝑣𝑣3 𝑖𝑖 −

𝑢𝑢1 𝑢𝑢3
𝑣𝑣1 𝑣𝑣3 𝑗𝑗 +

𝑢𝑢1 𝑢𝑢2
𝑣𝑣1 𝑣𝑣2 𝑘𝑘

𝐮𝐮 = [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3]𝑇𝑇 , 𝐯𝐯 = [𝑣𝑣1,𝑣𝑣2,𝑣𝑣3]𝑇𝑇

=
𝑢𝑢2 𝑢𝑢3
𝑣𝑣2 𝑣𝑣3 ,−

𝑢𝑢1 𝑢𝑢3
𝑣𝑣1 𝑣𝑣3 ,

𝑢𝑢1 𝑢𝑢2
𝑣𝑣1 𝑣𝑣2

⊤

=
𝑢𝑢2𝑣𝑣3 − 𝑢𝑢3𝑣𝑣2
−𝑢𝑢1𝑣𝑣3 + 𝑢𝑢3𝑣𝑣1
𝑢𝑢1𝑣𝑣2 − 𝑢𝑢2𝑣𝑣1



Cross product in matrix representation

• Let 

𝐮𝐮 × 𝐯𝐯 =
𝑖𝑖 𝑗𝑗 𝑘𝑘
𝑢𝑢1 𝑢𝑢2 𝑢𝑢3
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

=
𝑢𝑢2 𝑢𝑢3
𝑣𝑣2 𝑣𝑣3 𝑖𝑖 −

𝑢𝑢1 𝑢𝑢3
𝑣𝑣1 𝑣𝑣3 𝑗𝑗 +

𝑢𝑢1 𝑢𝑢2
𝑣𝑣1 𝑣𝑣2 𝑘𝑘

𝐮𝐮 = [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3]𝑇𝑇 , 𝐯𝐯 = [𝑣𝑣1,𝑣𝑣2,𝑣𝑣3]𝑇𝑇

=
𝑢𝑢2 𝑢𝑢3
𝑣𝑣2 𝑣𝑣3 ,−

𝑢𝑢1 𝑢𝑢3
𝑣𝑣1 𝑣𝑣3 ,

𝑢𝑢1 𝑢𝑢2
𝑣𝑣1 𝑣𝑣2

⊤

=
0 −𝑢𝑢3 𝑢𝑢2
𝑢𝑢3 0 −𝑢𝑢1
−𝑢𝑢2 𝑢𝑢1 0

[𝐮𝐮]×

𝑣𝑣1
𝑣𝑣2
𝑣𝑣3

=
𝑢𝑢2𝑣𝑣3 − 𝑢𝑢3𝑣𝑣2
−𝑢𝑢1𝑣𝑣3 + 𝑢𝑢3𝑣𝑣1
𝑢𝑢1𝑣𝑣2 − 𝑢𝑢2𝑣𝑣1



Cross product in matrix representation

• Let 

𝐮𝐮 × 𝐯𝐯 =
𝑖𝑖 𝑗𝑗 𝑘𝑘
𝑢𝑢1 𝑢𝑢2 𝑢𝑢3
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

=
𝑢𝑢2 𝑢𝑢3
𝑣𝑣2 𝑣𝑣3 𝑖𝑖 −

𝑢𝑢1 𝑢𝑢3
𝑣𝑣1 𝑣𝑣3 𝑗𝑗 +

𝑢𝑢1 𝑢𝑢2
𝑣𝑣1 𝑣𝑣2 𝑘𝑘

𝐮𝐮 = [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3]𝑇𝑇 , 𝐯𝐯 = [𝑣𝑣1,𝑣𝑣2,𝑣𝑣3]𝑇𝑇

=
𝑢𝑢2 𝑢𝑢3
𝑣𝑣2 𝑣𝑣3 ,−

𝑢𝑢1 𝑢𝑢3
𝑣𝑣1 𝑣𝑣3 ,

𝑢𝑢1 𝑢𝑢2
𝑣𝑣1 𝑣𝑣2

⊤

=
0 −𝑢𝑢3 𝑢𝑢2
𝑢𝑢3 0 −𝑢𝑢1
−𝑢𝑢2 𝑢𝑢1 0

[𝐮𝐮]×

𝑣𝑣1
𝑣𝑣2
𝑣𝑣3

[ ]×= u v

=
𝑢𝑢2𝑣𝑣3 − 𝑢𝑢3𝑣𝑣2
−𝑢𝑢1𝑣𝑣3 + 𝑢𝑢3𝑣𝑣1
𝑢𝑢1𝑣𝑣2 − 𝑢𝑢2𝑣𝑣1



Cross product in matrix representation

• Let 

𝐮𝐮 × 𝐯𝐯 =
𝑖𝑖 𝑗𝑗 𝑘𝑘
𝑢𝑢1 𝑢𝑢2 𝑢𝑢3
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

=
𝑢𝑢2 𝑢𝑢3
𝑣𝑣2 𝑣𝑣3 𝑖𝑖 −

𝑢𝑢1 𝑢𝑢3
𝑣𝑣1 𝑣𝑣3 𝑗𝑗 +

𝑢𝑢1 𝑢𝑢2
𝑣𝑣1 𝑣𝑣2 𝑘𝑘

𝐮𝐮 = [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3]𝑇𝑇 , 𝐯𝐯 = [𝑣𝑣1,𝑣𝑣2,𝑣𝑣3]𝑇𝑇

=
𝑢𝑢2 𝑢𝑢3
𝑣𝑣2 𝑣𝑣3 ,−

𝑢𝑢1 𝑢𝑢3
𝑣𝑣1 𝑣𝑣3 ,

𝑢𝑢1 𝑢𝑢2
𝑣𝑣1 𝑣𝑣2

⊤

=
0 −𝑢𝑢3 𝑢𝑢2
𝑢𝑢3 0 −𝑢𝑢1
−𝑢𝑢2 𝑢𝑢1 0

[𝐮𝐮]×

𝑣𝑣1
𝑣𝑣2
𝑣𝑣3

[ ]×= u v

3 2 1

3 1 2

2 1 3

0 0
N.B. 0 0 . Therefore, rank(

0 0
)[ ] 2

u u u
u u u
u u u

×

−     
     − = ≤     
     −     

u

=
𝑢𝑢2𝑣𝑣3 − 𝑢𝑢3𝑣𝑣2
−𝑢𝑢1𝑣𝑣3 + 𝑢𝑢3𝑣𝑣1
𝑢𝑢1𝑣𝑣2 − 𝑢𝑢2𝑣𝑣1



Essential matrix (Longuet-Higgins, 1981)

Let 𝑅𝑅 be rotation from right to left camera, then 𝑋𝑋𝑙𝑙 = 𝑅𝑅(𝑋𝑋𝑟𝑟 − 𝑡𝑡)

Let 𝐸𝐸 be 𝑅𝑅[𝑡𝑡]×, 𝑋𝑋𝑙𝑙𝑇𝑇𝐸𝐸𝑋𝑋𝑟𝑟
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X

t

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

= 𝑋𝑋𝑙𝑙𝑇𝑇(𝑅𝑅[𝑡𝑡]×𝑋𝑋𝑟𝑟)

x’

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

Let 𝑅𝑅 be rotation from right to left camera, then 𝑋𝑋𝑙𝑙 = 𝑅𝑅(𝑋𝑋𝑟𝑟 − 𝑡𝑡)

Let 𝐸𝐸 be 𝑅𝑅[𝑡𝑡]×, 𝑋𝑋𝑙𝑙𝑇𝑇𝐸𝐸𝑋𝑋𝑟𝑟

x’

X

t

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

= (𝑋𝑋𝑟𝑟 − 𝑡𝑡)𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅[𝑡𝑡]×𝑋𝑋𝑟𝑟= 𝑋𝑋𝑙𝑙𝑇𝑇(𝑅𝑅[𝑡𝑡]×𝑋𝑋𝑟𝑟)

x’

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

Let 𝑅𝑅 be rotation from right to left camera, then 𝑋𝑋𝑙𝑙 = 𝑅𝑅(𝑋𝑋𝑟𝑟 − 𝑡𝑡)

Let 𝐸𝐸 be 𝑅𝑅[𝑡𝑡]×, 𝑋𝑋𝑙𝑙𝑇𝑇𝐸𝐸𝑋𝑋𝑟𝑟
= (𝑋𝑋𝑟𝑟 − 𝑡𝑡) · (𝑡𝑡 × 𝑋𝑋𝑟𝑟)

x’

X

t

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

= (𝑋𝑋𝑟𝑟 − 𝑡𝑡)𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅[𝑡𝑡]×𝑋𝑋𝑟𝑟= 𝑋𝑋𝑙𝑙𝑇𝑇(𝑅𝑅[𝑡𝑡]×𝑋𝑋𝑟𝑟)

x’

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

Let 𝑅𝑅 be rotation from right to left camera, then 𝑋𝑋𝑙𝑙 = 𝑅𝑅(𝑋𝑋𝑟𝑟 − 𝑡𝑡)

Let 𝐸𝐸 be 𝑅𝑅[𝑡𝑡]×, 𝑋𝑋𝑙𝑙𝑇𝑇𝐸𝐸𝑋𝑋𝑟𝑟
= (𝑋𝑋𝑟𝑟 − 𝑡𝑡) · (𝑡𝑡 × 𝑋𝑋𝑟𝑟)

x’

X

t

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

= (𝑋𝑋𝑟𝑟 − 𝑡𝑡)𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅[𝑡𝑡]×𝑋𝑋𝑟𝑟= 𝑋𝑋𝑙𝑙𝑇𝑇(𝑅𝑅[𝑡𝑡]×𝑋𝑋𝑟𝑟)

x’

= 𝑋𝑋𝑟𝑟 · 𝑡𝑡 × 𝑋𝑋𝑟𝑟 − 𝑡𝑡 · 𝑡𝑡 × 𝑋𝑋𝑟𝑟

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

Let 𝑅𝑅 be rotation from right to left camera, then 𝑋𝑋𝑙𝑙 = 𝑅𝑅(𝑋𝑋𝑟𝑟 − 𝑡𝑡)

Let 𝐸𝐸 be 𝑅𝑅[𝑡𝑡]×, 𝑋𝑋𝑙𝑙𝑇𝑇𝐸𝐸𝑋𝑋𝑟𝑟
= (𝑋𝑋𝑟𝑟 − 𝑡𝑡) · (𝑡𝑡 × 𝑋𝑋𝑟𝑟)

x’

X

t

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

= (𝑋𝑋𝑟𝑟 − 𝑡𝑡)𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅[𝑡𝑡]×𝑋𝑋𝑟𝑟= 𝑋𝑋𝑙𝑙𝑇𝑇(𝑅𝑅[𝑡𝑡]×𝑋𝑋𝑟𝑟)

0=

x’

= 𝑋𝑋𝑟𝑟 · 𝑡𝑡 × 𝑋𝑋𝑟𝑟 − 𝑡𝑡 · 𝑡𝑡 × 𝑋𝑋𝑟𝑟

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

Let 𝑅𝑅 be rotation from right to left camera, then 𝑋𝑋𝑙𝑙 = 𝑅𝑅(𝑋𝑋𝑟𝑟 − 𝑡𝑡)

Let 𝐸𝐸 be 𝑅𝑅[𝑡𝑡]×, 𝑋𝑋𝑙𝑙𝑇𝑇𝐸𝐸𝑋𝑋𝑟𝑟
= (𝑋𝑋𝑟𝑟 − 𝑡𝑡) · (𝑡𝑡 × 𝑋𝑋𝑟𝑟)

Note that ran rank( ) [ ]k( 2)E t ×≤ ≤

x’

X

t

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

= (𝑋𝑋𝑟𝑟 − 𝑡𝑡)𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅[𝑡𝑡]×𝑋𝑋𝑟𝑟= 𝑋𝑋𝑙𝑙𝑇𝑇(𝑅𝑅[𝑡𝑡]×𝑋𝑋𝑟𝑟)

0=

x’

= 𝑋𝑋𝑟𝑟 · 𝑡𝑡 × 𝑋𝑋𝑟𝑟 − 𝑡𝑡 · 𝑡𝑡 × 𝑋𝑋𝑟𝑟

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

x’

X

t

0Consider any  lies between the two centers of projectionX

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

X0

×

x’

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

x’

X

t

0Consider any  lies between the two centers of projectionX

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

X0

×

𝑋𝑋𝑟𝑟0

x’

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

x’

X

t

0Consider any  lies between the two centers of projectionX

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝐸𝐸𝑋𝑋𝑟𝑟0 = (𝑅𝑅[𝑡𝑡]×)𝑋𝑋𝑟𝑟0

X0

×

𝑋𝑋𝑟𝑟0

x’

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

x’

X

t

0Consider any  lies between the two centers of projectionX

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝐸𝐸𝑋𝑋𝑟𝑟0 = (𝑅𝑅[𝑡𝑡]×)𝑋𝑋𝑟𝑟0

X0

×

𝑋𝑋𝑟𝑟0

= 𝑅𝑅(𝑡𝑡 × 𝑋𝑋𝑟𝑟0)

x’

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

x’

X

t

0Consider any  lies between the two centers of projectionX

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝐸𝐸𝑋𝑋𝑟𝑟0 = (𝑅𝑅[𝑡𝑡]×)𝑋𝑋𝑟𝑟0

X0

×

𝑋𝑋𝑟𝑟0

= 𝑅𝑅(𝑡𝑡 × 𝑋𝑋𝑟𝑟0) 0=

x’

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

x’

X

t

0Consider any  lies between the two centers of projectionX

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝐸𝐸𝑋𝑋𝑟𝑟0 = (𝑅𝑅[𝑡𝑡]×)𝑋𝑋𝑟𝑟0

X0

×

𝑋𝑋𝑟𝑟0𝑋𝑋𝑙𝑙0

𝐸𝐸𝑇𝑇𝑋𝑋𝑙𝑙0 = (𝑅𝑅[𝑡𝑡]×)𝑇𝑇𝑅𝑅(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

= 𝑅𝑅(𝑡𝑡 × 𝑋𝑋𝑟𝑟0) 0=

x’

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

x’

X

t

0Consider any  lies between the two centers of projectionX

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝐸𝐸𝑋𝑋𝑟𝑟0 = (𝑅𝑅[𝑡𝑡]×)𝑋𝑋𝑟𝑟0

X0

×

𝑋𝑋𝑟𝑟0𝑋𝑋𝑙𝑙0

𝐸𝐸𝑇𝑇𝑋𝑋𝑙𝑙0 = (𝑅𝑅[𝑡𝑡]×)𝑇𝑇𝑅𝑅(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

= 𝑅𝑅(𝑡𝑡 × 𝑋𝑋𝑟𝑟0)

= ([𝑡𝑡]×)𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

0=

x’

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

x’

X

t

0Consider any  lies between the two centers of projectionX

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝐸𝐸𝑋𝑋𝑟𝑟0 = (𝑅𝑅[𝑡𝑡]×)𝑋𝑋𝑟𝑟0

X0

×

𝑋𝑋𝑟𝑟0𝑋𝑋𝑙𝑙0

𝐸𝐸𝑇𝑇𝑋𝑋𝑙𝑙0 = (𝑅𝑅[𝑡𝑡]×)𝑇𝑇𝑅𝑅(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

= 𝑅𝑅(𝑡𝑡 × 𝑋𝑋𝑟𝑟0)

= ([𝑡𝑡]×)𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

0=

x’

0 −𝑡𝑡3 𝑡𝑡2
𝑡𝑡3 0 −𝑡𝑡1
−𝑡𝑡2 𝑡𝑡1 0

[𝒕𝒕]×

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

x’

X

t

0Consider any  lies between the two centers of projectionX

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝐸𝐸𝑋𝑋𝑟𝑟0 = (𝑅𝑅[𝑡𝑡]×)𝑋𝑋𝑟𝑟0

X0

×

𝑋𝑋𝑟𝑟0𝑋𝑋𝑙𝑙0

𝐸𝐸𝑇𝑇𝑋𝑋𝑙𝑙0 = (𝑅𝑅[𝑡𝑡]×)𝑇𝑇𝑅𝑅(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

= [−𝑡𝑡]×(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

= 𝑅𝑅(𝑡𝑡 × 𝑋𝑋𝑟𝑟0)

= ([𝑡𝑡]×)𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

0=

x’

0 −𝑡𝑡3 𝑡𝑡2
𝑡𝑡3 0 −𝑡𝑡1
−𝑡𝑡2 𝑡𝑡1 0

[𝒕𝒕]×

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

x’

X

t

0Consider any  lies between the two centers of projectionX

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝐸𝐸𝑋𝑋𝑟𝑟0 = (𝑅𝑅[𝑡𝑡]×)𝑋𝑋𝑟𝑟0

X0

×

𝑋𝑋𝑟𝑟0𝑋𝑋𝑙𝑙0

𝐸𝐸𝑇𝑇𝑋𝑋𝑙𝑙0 = (𝑅𝑅[𝑡𝑡]×)𝑇𝑇𝑅𝑅(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

= [−𝑡𝑡]×(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

= 𝑅𝑅(𝑡𝑡 × 𝑋𝑋𝑟𝑟0)

= −𝑡𝑡 × (𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

= ([𝑡𝑡]×)𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

0=

x’

0 −𝑡𝑡3 𝑡𝑡2
𝑡𝑡3 0 −𝑡𝑡1
−𝑡𝑡2 𝑡𝑡1 0

[𝒕𝒕]×

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Essential matrix (Longuet-Higgins, 1981)

x’

X

t

0Consider any  lies between the two centers of projectionX

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝐸𝐸𝑋𝑋𝑟𝑟0 = (𝑅𝑅[𝑡𝑡]×)𝑋𝑋𝑟𝑟0

X0

×

𝑋𝑋𝑟𝑟0𝑋𝑋𝑙𝑙0

𝐸𝐸𝑇𝑇𝑋𝑋𝑙𝑙0 = (𝑅𝑅[𝑡𝑡]×)𝑇𝑇𝑅𝑅(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

= [−𝑡𝑡]×(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

= 𝑅𝑅(𝑡𝑡 × 𝑋𝑋𝑟𝑟0)

= −𝑡𝑡 × (𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

= ([𝑡𝑡]×)𝑇𝑇𝑅𝑅𝑇𝑇𝑅𝑅(𝑋𝑋𝑟𝑟0 − 𝑡𝑡)

0=

0=

x’

0 −𝑡𝑡3 𝑡𝑡2
𝑡𝑡3 0 −𝑡𝑡1
−𝑡𝑡2 𝑡𝑡1 0

[𝒕𝒕]×

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Fundamental matrix (Faugeras and Luong, 1992)

X

t
𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Fundamental matrix (Faugeras and Luong, 1992)

X

t

𝑋𝑋𝑟𝑟

𝑋𝑋𝑟𝑟: 𝑋𝑋 in terms of Cartesian coordinate of right camera

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Fundamental matrix (Faugeras and Luong, 1992)

𝑋𝑋𝑙𝑙: 𝑋𝑋 in terms of Cartesian coordinate of left camera

X

t

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝑋𝑋𝑟𝑟: 𝑋𝑋 in terms of Cartesian coordinate of right camera

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Fundamental matrix (Faugeras and Luong, 1992)

𝑋𝑋𝑙𝑙: 𝑋𝑋 in terms of Cartesian coordinate of left camera

X

t

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝑋𝑋𝑟𝑟: 𝑋𝑋 in terms of Cartesian coordinate of right camera

ˆ :   's homogeneous coordinate of  right viewrx X

�𝑥𝑥𝑟𝑟

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Fundamental matrix (Faugeras and Luong, 1992)

𝑋𝑋𝑙𝑙: 𝑋𝑋 in terms of Cartesian coordinate of left camera

X

t

�𝑥𝑥𝑙𝑙

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝑋𝑋𝑟𝑟: 𝑋𝑋 in terms of Cartesian coordinate of right camera

ˆ :   's homogeneous coordinate of  left ew vilx X

ˆ :   's homogeneous coordinate of  right viewrx X

�𝑥𝑥𝑟𝑟

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟



Fundamental matrix (Faugeras and Luong, 1992)

𝑋𝑋𝑙𝑙: 𝑋𝑋 in terms of Cartesian coordinate of left camera

There exists F such that ˆ 0ˆr
T

lx xF =

X

t

�𝑥𝑥𝑙𝑙

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝑋𝑋𝑟𝑟: 𝑋𝑋 in terms of Cartesian coordinate of right camera

ˆ :   's homogeneous coordinate of  left ew vilx X

ˆ :   's homogeneous coordinate of  right viewrx X

�𝑥𝑥𝑟𝑟

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟
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James Hays
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Line representation in homogenous coordinate

• Line equation:  ax + by + c = 0

• Can represent a line with vector [a b c]

• Then, a point p is on a line l if and only if
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X0

×


 A line passing 
through ˆ 

Similarly, 0ˆ ˆ

r

T
r

x

l
TFx x =

 passes through not just but also the epipole  ˆ ˆ 'T
l rxF x e

Thus, it is actually the epipolar line 'l

𝑒𝑒𝑙𝑙

and recall that 𝐹𝐹𝑒𝑒′ = 𝐹𝐹𝑇𝑇𝑒𝑒𝑙𝑙 = 0
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Epipoles and fundamental matrix
X

�𝑥𝑥𝑟𝑟�𝑥𝑥𝑙𝑙

 is the epipolar li eˆ n  rxF l  is the epipolar linˆ 'e l
T xF l

This restrict our search space from 2D to 1D

Given on the right view, we just need to searc  on the lefˆ ˆ th r rx xF
Given on the right view, we just need to search  on the leˆ ˆ ft l

T
lx xF
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Fundamental matrix

• F er = 0   and   FTel = 0   (nullspaces of F = er; nullspace of FT = 
el)

• F is singular (rank two): det(F)=0
• F has seven degrees of freedom: 9 entries but defined up to 

scale, det(F)=0

X
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Remark

• Since

• This is sometimes how essential matrix is introduced

1T
r lF K EK− −′=

'When   ,r lK I EK F= = = , and ˆ 0ˆT
l rExx =



Estimating the Fundamental Matrix

• 8-point algorithm
• Least squares solution using SVD on equations from 8 pairs of 

correspondences
• Enforce det(F)=0 constraint using SVD on F



Estimating the Fundamental Matrix

• 8-point algorithm
• Least squares solution using SVD on equations from 8 pairs of 

correspondences
• Enforce det(F)=0 constraint using SVD on F

Note: estimation of F (or E) is degenerate for a planar scene.



8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations

0=′xx FT

𝑢𝑢𝑢𝑢′𝑓𝑓11 + 𝑢𝑢𝑣𝑣′𝑓𝑓12 + 𝑢𝑢𝑓𝑓13 + 𝑣𝑣𝑢𝑢′𝑓𝑓21 + 𝑣𝑣𝑣𝑣′𝑓𝑓22 + 𝑣𝑣𝑓𝑓23 + 𝑢𝑢′𝑓𝑓31 + 𝑣𝑣′𝑓𝑓32 + 𝑓𝑓33 = 0

A𝒇𝒇 =
𝑢𝑢1𝑢𝑢1′ 𝑢𝑢1𝑣𝑣1′ 𝑢𝑢1 𝑣𝑣1𝑢𝑢1′ 𝑣𝑣1𝑣𝑣1′ 𝑣𝑣1 𝑢𝑢1′ 𝑣𝑣1′ 1
⋮

𝑢𝑢𝑛𝑛𝑢𝑢𝑣𝑣′
⋮

𝑢𝑢𝑛𝑛𝑣𝑣𝑛𝑛′
⋮
𝑢𝑢𝑛𝑛

⋮
𝑣𝑣𝑛𝑛𝑢𝑢𝑛𝑛′

⋮
𝑣𝑣𝑛𝑛𝑣𝑣𝑛𝑛′

⋮
𝑣𝑣𝑛𝑛

⋮
𝑢𝑢𝑛𝑛′

⋮
𝑣𝑣𝑛𝑛′

⋮
1

𝑓𝑓11
𝑓𝑓12
𝑓𝑓13
𝑓𝑓21
⋮
𝑓𝑓33

=0



8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations
b. Solve f from  Af=0 using SVD

Matlab: 
[U, S, V] = svd(A);
f = V(:, end);
F = reshape(f, [3 3])’;



Need to enforce singularity constraint



8-point algorithm
1. Solve a system of homogeneous linear equations

a. Write down the system of equations
b. Solve f from  Af=0 using SVD

2. Resolve det(F) = 0 constraint using SVD

Matlab: 
[U, S, V] = svd(A);
f = V(:, end);
F = reshape(f, [3 3])’;

Matlab: 
[U, S, V] = svd(F);
S(3,3) = 0;
F = U*S*V’;



Problem with eight-point algorithm
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Problem with eight-point algorithm

• Poor numerical conditioning
• Can be fixed by rescaling the data
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Problem with eight-point algorithm

• Poor numerical conditioning
• Can be fixed by rescaling the data



From epipolar geometry to camera calibration



From epipolar geometry to camera calibration

• If we know the calibration matrices of the two cameras, we can 
estimate the essential matrix: E = KTFK’

• The essential matrix gives us the relative rotation and 
translation between the cameras, or their extrinsic parameters.

• Fundamental matrix lets us compute relationship up to scale 
for cameras with unknown intrinsic calibrations.

• Estimating the fundamental matrix is a kind of “weak 
calibration”
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estimate the essential matrix: E = KTFK’

• The essential matrix gives us the relative rotation and 
translation between the cameras, or their extrinsic parameters.

• Fundamental matrix lets us compute relationship up to scale 
for cameras with unknown intrinsic calibrations.

• Estimating the fundamental matrix is a kind of “weak 
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From E to get back R and t

• If we decompose E using svd to 𝑈𝑈𝑈𝑈𝑉𝑉⊤

• Let’s define 𝑊𝑊 =
0 −1 0
1 0 0
0 0 1

• One can verify that 𝑡𝑡 × = 𝑉𝑉𝑊𝑊𝑈𝑈𝑉𝑉⊤ and 𝑅𝑅 = 𝑈𝑈𝑊𝑊⊤𝑉𝑉⊤ is a pair of valid 
estimate of R and t such that 𝑅𝑅 𝑡𝑡 × = 𝑈𝑈𝑊𝑊⊤𝑉𝑉⊤𝑉𝑉𝑊𝑊𝑈𝑈𝑉𝑉⊤ = 𝑈𝑈𝑈𝑈𝑉𝑉⊤ = 𝐸𝐸

• How do we get t back from 𝑡𝑡 ×?
• Note that there are more solutions 

• E.g., Replace 𝑊𝑊 by 𝑊𝑊⊤

• Note that only one solution will satisfy chirality (reconstructed points in front 
of the camera)



Compute 3D point location

• Given R, t, and observed points in the two views. We can construct two 
lines that should contain the 3D point. And the point should be just the 
interception

• Denote two lines as 𝑎𝑎1 + 𝜆𝜆1𝑏𝑏1 and 𝑎𝑎2 + 𝜆𝜆2𝑏𝑏2. We can solve the 
interception by solving

• min
𝜆𝜆,𝜇𝜇

𝑎𝑎1 + 𝜆𝜆1𝑏𝑏1 − 𝑎𝑎2 − 𝜆𝜆2𝑏𝑏2 2

⇒ �𝜆𝜆1 𝑏𝑏1 2 + 𝑎𝑎1 − 𝑎𝑎2 ⊤𝑏𝑏1 − 𝜆𝜆2𝑏𝑏1⊤𝑏𝑏2 = 0
𝜆𝜆2 𝑏𝑏2 2 − 𝑎𝑎1 − 𝑎𝑎2 ⊤𝑏𝑏2 − 𝜆𝜆1𝑏𝑏1⊤𝑏𝑏2 = 0

• The final point will be 
𝑎𝑎1 + 𝜆𝜆1𝑏𝑏1 + 𝑎𝑎2 + 𝜆𝜆2𝑏𝑏2

2



Caveat

• Note that many textbooks use the convention of 𝐸𝐸 = 𝑡𝑡 ×𝑅𝑅 rather 
than 𝐸𝐸 = 𝑅𝑅 𝑡𝑡 × as derived here

• Both are correct just they first rotate and then translate the axis rather than 
first translate and then rotate the axis as shown earlier

• But consequently, the t there is different as below

• Note that for any 𝑦𝑦, 𝑅𝑅 𝑡𝑡 ×𝑦𝑦 = 𝑅𝑅 𝑡𝑡 × 𝑅𝑅⊤𝑦𝑦 since crossing 𝑅𝑅 𝑡𝑡 with 
𝑦𝑦 is the same as crossing 𝑡𝑡 with 𝑅𝑅⊤𝑦𝑦 and then rotate by 𝑅𝑅

• ⇒ 𝑅𝑅 𝑡𝑡 ×= 𝑅𝑅 𝑡𝑡 ×𝑅𝑅⊤
• ⇒ 𝐸𝐸 = 𝑅𝑅 𝑡𝑡 × = 𝑅𝑅 𝑡𝑡 ×𝑅𝑅⊤ 𝑅𝑅 = 𝑅𝑅𝑡𝑡 ×𝑅𝑅
• Therefore, for the alternative formulation 𝐸𝐸 = 𝑡𝑡 ×𝑅𝑅, we have the translation 

there actually equal to 𝑅𝑅𝑡𝑡 instead in our notations



Summary

• 𝑋𝑋𝑙𝑙𝑇𝑇𝐸𝐸𝑋𝑋𝑟𝑟=0
• 𝐸𝐸 = 𝑅𝑅[𝑡𝑡]×

• 𝐹𝐹𝑒𝑒𝑟𝑟 = 𝐹𝐹𝑇𝑇𝑒𝑒𝑙𝑙 = 0
• �𝑥𝑥𝑙𝑙

𝑇𝑇𝐹𝐹 �𝑥𝑥𝑟𝑟 = 0
• 𝐹𝐹𝑇𝑇 �𝑥𝑥𝑙𝑙 = 𝑙𝑙′
• 𝐹𝐹 �𝑥𝑥𝑟𝑟 = 𝑙𝑙
• Estimating the fundamental matrix is a kind of “weak calibration”

t

�𝑥𝑥𝑟𝑟�𝑥𝑥𝑙𝑙

𝑋𝑋𝑙𝑙 𝑋𝑋𝑟𝑟

𝑒𝑒𝑙𝑙 𝑒𝑒𝑟𝑟
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