Epipolar Geometry

Samuel Cheng Slide credit: James Tompkin, Naoh Snavely

Frederick Kingdom

Structure from motion

Structure from motion

Given many images, how can we
a) figure out where they were all taken from?
b) build a 3D model of the scene?

This is (roughly) the structure from motion problem

Structure from motion

Reconstruction (side)

- Input: images with points in correspondence
 p_{i,j} = (u_{i,j}, v_{i,j})
- Output
 - structure: 3D location **x**_i for each point *p*_i
 - motion: camera parameters **R**_i, **t**_i possibly **K**_i
- Objective function: minimize reprojection error

What we've seen so far...

- 2D transformations between images
 - Translations, affine transformations, homographies...
- 3D coordinates to 2D coordinates
 - Camera matrix
- Today: epipolar geometry and fundamental matrices

• Goal: recover depth by finding image coordinate x' that corresponds to x

• Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). What is expression for Z?

Similar triangles (p_l, P, p_r) and (O_l, P, O_r) :

$$\frac{T + x_r - x_l}{Z - f} = \frac{T}{Z}$$

$$Z = f \frac{T}{x_l - x_r}$$

• Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). What is expression for Z?

Similar triangles (p_l, P, p_r) and (O_l, P, O_r) :

$$\frac{T + x_r - x_l}{Z - f} = \frac{T}{Z}$$

- Goal: recover depth by finding image coordinate x' that corresponds to x
- Sub-Problems
 - 1. Calibration: How do we recover the relation of the cameras (if not already known)?
 - 2. Correspondence: How do we search for the matching point x'?

image I(x,y)

Disparity map D(x,y)

image l'(x',y')

(x',y')=(x+D(x,y), y)

image I(x,y)

Disparity map D(x,y)

image l'(x',y')

(x´,y`)=(x+D(x,y), y)

If we could find the **corresponding points** in two images, we could **estimate relative depth**...

What do we need to know?

- 1. Calibration for the two cameras.
 - 1. Intrinsic matrices for both cameras (e.g., f)
 - 2. Baseline distance T in parallel camera case
 - 3. R, t in non-parallel case
- 2. Correspondence for every pixel.

Wouldn't it be nice to know where matches can live?

Epipolar geometry Constrains 2D search to 1D

Key idea: Epipolar constraint

Potential matches for x' have to lie on the corresponding line *l*.

Potential matches for *x* have to lie on the corresponding line *l*'.

- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center

- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- Epipolar Plane plane containing baseline (1D family)

- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- Epipolar Plane plane containing baseline (1D family)
- **Epipolar Lines** intersections of epipolar plane with image planes (always come in corresponding pairs)

• = camera center

Think Pair Share

Where are the epipoles?

What do the epipolar lines look like?

Example: Converging cameras

Example: Motion parallel to image plane

Example: Forward motion

Epipole has same coordinates in both images. Points move along lines radiating from e: "Focus of expansion"

How to find epipolar line of a point?

- A little bit more math, but cool math
- Essential matrix and fundamental matrix

 X_l : X in terms of Cartesian coordinate of left camera X_r : X in terms of Cartesian coordinate of right camera

There exists *E* such that $X_l^T E X_r = 0$

Essential matrix X X_1 X_r 1 e^r e' 0 O'

 X_l : X in terms of Cartesian coordinate of left camera X_r : X in terms of Cartesian coordinate of right camera

There exists *E* such that $X_l^T E X_r = 0$

- How do we change coordinate from one camera to another?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we change coordinate from one camera to another?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we change coordinate from one camera to another?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we change coordinate from one camera to another?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we change coordinate from one camera to another?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we change coordinate from one camera to another?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we change coordinate from one camera to another?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we change coordinate from one camera to another?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Let *R* be rotation from left to right camera, then $X_l = R(X_r - t)$

• Let
$$\mathbf{u} = [u_1, u_2, u_3]^T$$
, $\mathbf{v} = [v_1, v_2, v_3]^T$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} i - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} j + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} k$$

• Let
$$\mathbf{u} = [u_1, u_2, u_3]^T$$
, $\mathbf{v} = [v_1, v_2, v_3]^T$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} i - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} j + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} k$$
$$= \begin{bmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{bmatrix}^{\mathsf{T}}$$

• Let
$$\mathbf{u} = [u_1, u_2, u_3]^T$$
, $\mathbf{v} = [v_1, v_2, v_3]^T$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} i - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} j + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} k$$
$$= \begin{bmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{bmatrix}^{\mathsf{T}}$$
$$= \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ -u_1 v_3 + u_3 v_1 \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

• Let
$$\mathbf{u} = [u_1, u_2, u_3]^T$$
, $\mathbf{v} = [v_1, v_2, v_3]^T$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} i - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} j + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} k$$
$$= \begin{bmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{bmatrix}^{\mathsf{T}}$$
$$= \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ -u_1 v_3 + u_3 v_1 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

• Let
$$\mathbf{u} = [u_1, u_2, u_3]^T$$
, $\mathbf{v} = [v_1, v_2, v_3]^T$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} i - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_2 \end{vmatrix} i + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} k$$
$$= \begin{bmatrix} \begin{vmatrix} u_2 v_3 - u_3 v_2 \\ -u_1 v_3 + u_3 v_1 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathbf{x}} \mathbf{v}$$

• Let
$$\mathbf{u} = [u_1, u_2, u_3]^T$$
, $\mathbf{v} = [v_1, v_2, v_3]^T$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} i - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_2 \end{vmatrix} \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \Big|^{\mathsf{T}}$$
$$= \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ -u_1 v_3 + u_3 v_1 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathsf{X}} \mathbf{v}$$

N.B.
$$\begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
. Therefore, rank($[\mathbf{u}]_{\times}$) ≤ 2

Let *R* be rotation from right to left camera, then $X_l = R(X_r - t)$

Let *E* be $R[t]_{\times}$, $X_l^T E X_r$

Let *R* be rotation from right to left camera, then $X_l = R(X_r - t)$

Let *E* be $R[t]_{\times}$, $X_l^T E X_r = X_l^T (R[t]_{\times} X_r)$

Let *R* be rotation from right to left camera, then $X_l = R(X_r - t)$ Let *E* be $R[t]_{\times}$, $X_l^T E X_r = X_l^T (R[t]_{\times} X_r) = (X_r - t)^T R^T R[t]_{\times} X_r$

Let *R* be rotation from right to left camera, then $X_l = R(X_r - t)$ Let *E* be $R[t]_{\times}$, $X_l^T E X_r = X_l^T (R[t]_{\times} X_r) = (X_r - t)^T R^T R[t]_{\times} X_r$ $= (X_r - t) \cdot (t \times X_r)$

Let *R* be rotation from right to left camera, then $X_l = R(X_r - t)$ Let *E* be $R[t]_{\times}$, $X_l^T E X_r = X_l^T (R[t]_{\times} X_r) = (X_r - t)^T R^T R[t]_{\times} X_r$ $= (X_r - t) \cdot (t \times X_r)$ $= X_r \cdot (t \times X_r) - t \cdot (t \times X_r)$

Let *R* be rotation from right to left camera, then $X_l = R(X_r - t)$ Let *E* be $R[t]_{\times}$, $X_l^T E X_r = X_l^T (R[t]_{\times} X_r) = (X_r - t)^T R^T R[t]_{\times} X_r$ $= (X_r - t) \cdot (t \times X_r)$ $= X_r \cdot (t \times X_r) - t \cdot (t \times X_r) = 0$

Let *R* be rotation from right to left camera, then $X_l = R(X_r - t)$ Let *E* be $R[t]_{\times}$, $X_l^T E X_r = X_l^T (R[t]_{\times} X_r) = (X_r - t)^T R^T R[t]_{\times} X_r$ $= (X_r - t) \cdot (t \times X_r)$ Note that rank $(E) \leq \operatorname{rank}([t]_{\times}) \leq 2$ $= X_r \cdot (t \times X_r) - t \cdot (t \times X_r) = 0$

Consider any X_0 lies between the two centers of projection

Consider any X_0 lies between the two centers of projection

Consider any X_0 lies between the two centers of projection

 $EX_r^0 = (R[t]_{\times})X_r^0$

Consider any X_0 lies between the two centers of projection

 $EX_r^0 = (R[t]_{\times})X_r^0 = R(t \times X_r^0)$

Consider any X_0 lies between the two centers of projection

 $EX_{r}^{0} = (R[t]_{\times})X_{r}^{0} = R(t \times X_{r}^{0}) = 0$

Consider any X_0 lies between the two centers of projection

 $EX_r^0 = (R[t]_{\times})X_r^0 = R(t \times X_r^0) = 0$

 $E^T X_l^0 = (R[t]_{\times})^T R(X_r^0 - t)$

Consider any X_0 lies between the two centers of projection

 $EX_r^0 = (R[t]_{\times})X_r^0 = R(t \times X_r^0) = 0$

 $E^{T}X_{l}^{0} = (R[t]_{\times})^{T}R(X_{r}^{0} - t) = ([t]_{\times})^{T}R^{T}R(X_{r}^{0} - t)$

$$EX_{r}^{0} = (R[t]_{\times})X_{r}^{0} = R(t \times X_{r}^{0}) = 0$$

$$E^{T}X_{l}^{0} = (R[t]_{\times})^{T}R(X_{r}^{0} - t) = ([t]_{\times})^{T}R^{T}R(X_{r}^{0} - t)$$

$$\underbrace{\begin{bmatrix} 0 & -t_{3} & t_{2} \\ t_{3} & 0 & -t_{1} \\ -t_{2} & t_{1} & 0 \end{bmatrix}}_{[t]_{\times}}$$

$$EX_{r}^{0} = (R[t]_{\times})X_{r}^{0} = R(t \times X_{r}^{0}) = 0$$

$$E^{T}X_{l}^{0} = (R[t]_{\times})^{T}R(X_{r}^{0} - t) = ([t]_{\times})^{T}R^{T}R(X_{r}^{0} - t)$$

$$= [-t]_{\times}(X_{r}^{0} - t)$$

$$\begin{bmatrix} 0 & -t_{3} & t_{2} \\ t_{3} & 0 & -t_{1} \\ -t_{2} & t_{1} & 0 \end{bmatrix}$$

$$[t]_{\times}$$

$$[t]_{\times}$$

$$EX_{r}^{0} = (R[t]_{\times})X_{r}^{0} = R(t \times X_{r}^{0}) = 0$$

$$E^{T}X_{l}^{0} = (R[t]_{\times})^{T}R(X_{r}^{0} - t) = ([t]_{\times})^{T}R^{T}R(X_{r}^{0} - t)$$

$$= [-t]_{\times}(X_{r}^{0} - t) = -t \times (X_{r}^{0} - t)$$

$$\begin{bmatrix} 0 & -t_{3} & t_{2} \\ t_{3} & 0 & -t_{1} \\ -t_{2} & t_{1} & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -t_{3} & t_{2} \\ t_{3} & 0 & -t_{1} \\ -t_{2} & t_{1} & 0 \end{bmatrix}$$

$$EX_{r}^{0} = (R[t]_{\times})X_{r}^{0} = R(t \times X_{r}^{0}) = 0$$

$$E^{T}X_{l}^{0} = (R[t]_{\times})^{T}R(X_{r}^{0} - t) = ([t]_{\times})^{T}R^{T}R(X_{r}^{0} - t)$$

$$= [-t]_{\times}(X_{r}^{0} - t) = -t \times (X_{r}^{0} - t) = 0$$

$$\begin{bmatrix} 0 & -t_{3} & t_{2} \\ t_{3} & 0 & -t_{1} \\ -t_{2} & t_{1} & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -t_{3} & t_{2} \\ t_{3} & 0 & -t_{1} \\ -t_{2} & t_{1} & 0 \end{bmatrix}$$

 X_r : X in terms of Cartesian coordinate of right camera

 X_r : X in terms of Cartesian coordinate of right camera X_l : X in terms of Cartesian coordinate of left camera

 X_r : X in terms of Cartesian coordinate of right camera X_l : X in terms of Cartesian coordinate of left camera \hat{x}_r : X 's homogeneous coordinate of right view

 X_r : X in terms of Cartesian coordinate of right camera X_l : X in terms of Cartesian coordinate of left camera \hat{x}_r : X 's homogeneous coordinate of right view \hat{x}_l : X 's homogeneous coordinate of left view

 X_r : X in terms of Cartesian coordinate of right camera X_l : X in terms of Cartesian coordinate of left camera \hat{x}_r : X 's homogeneous coordinate of right view \hat{x}_l : X 's homogeneous coordinate of left view

There exists F such that $\hat{x}_l^T F \hat{x}_r = 0$

Assume that $\mathbf{t} = \mathbf{0}$ (the origin of camera coordinate = COP) and $\mathbf{R} = I$ (camera coordinate is perfectly aligned)

Recall from last time

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$\mathbf{w} \begin{bmatrix} U \\ V \\ 1 \end{bmatrix} = \begin{bmatrix} -d_i & s & U_0 \\ 0 & -\alpha d_i & V_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Assume that $\mathbf{t} = \mathbf{0}$ (the origin of camera coordinate = COP) and $\mathbf{R} = I$ (camera coordinate is perfectly aligned)

 X_l : X in terms of Cartesian coordinate of left camera X_r : X in terms of Cartesian coordinate of right camera

 X_l : X in terms of Cartesian coordinate of left camera X_r : X in terms of Cartesian coordinate of right camera

 X_l : X in terms of Cartesian coordinate of left camera X_r : X in terms of Cartesian coordinate of right camera

$$\hat{x}_l^T \underbrace{(K_l^T)^{-1} EK_r^{-1}}_F \hat{x}_r$$

 X_l : X in terms of Cartesian coordinate of left camera X_r : X in terms of Cartesian coordinate of right camera

$$\hat{x}_{l}^{T} \underbrace{(K_{l}^{T})^{-1}EK_{r}^{-1}}_{F} \hat{x}_{r} = \underbrace{X_{l}^{T}K_{l}^{T}}_{\hat{x}_{l}} (K_{l}^{T})^{-1}EK_{r}^{-1} \underbrace{K_{r}X_{r}}_{\hat{x}_{r}}$$

 X_l : X in terms of Cartesian coordinate of left camera X_r : X in terms of Cartesian coordinate of right camera

$$\hat{x}_{l}^{T} \underbrace{(K_{l}^{T})^{-1} EK_{r}^{-1}}_{F} \hat{x}_{r} = \underbrace{X_{l}^{T} K_{l}^{T}}_{\hat{x}_{l}} (K_{l}^{T})^{-1} EK_{r}^{-1} \underbrace{K_{r} X_{r}}_{\hat{x}_{r}} = X_{l}^{T} EX_{r}$$

 X_l : X in terms of Cartesian coordinate of left camera X_r : X in terms of Cartesian coordinate of right camera

$$\hat{x}_{l}^{T} \underbrace{(K_{l}^{T})^{-1} EK_{r}^{-1}}_{F} \hat{x}_{r} = \underbrace{X_{l}^{T} K_{l}^{T}}_{\hat{x}_{l}} (K_{l}^{T})^{-1} EK_{r}^{-1} \underbrace{K_{r} X_{r}}_{\hat{x}_{r}} = X_{l}^{T} EX_{r} = 0$$

Epipoles and fundamental matrix

Consider any X_0 lie between the two centers of projection

Epipoles and fundamental matrix

Consider any X_0 lie between the two centers of projection $Fe^r = \underbrace{(K_l^T)^{-1}EK_r^{-1}}_F e^r = (K_l^T)^{-1}EK_r^{-1}\underbrace{K_r X_r^0}_e = (K_l^T)^{-1}EX_r^0$

Epipoles and fundamental matrix

Consider any X_0 lie between the two centers of projection $Fe^r = \underbrace{(K_l^T)^{-1}EK_r^{-1}}_{F}e^r = (K_l^T)^{-1}EK_r^{-1}\underbrace{K_rX_r^0}_{e^r} = (K_l^T)^{-1}EX_r^0 = 0$

Epipoles and fundamental matrix

$$Fe^{r} = \underbrace{(K_{l}^{T})^{-1}EK_{r}^{-1}e^{r}}_{F} = (K_{l}^{T})^{-1}EK_{r}^{-1}\underbrace{K_{r}X_{r}^{0}}_{e^{r}} = (K_{l}^{T})^{-1}EX_{r}^{0} = 0$$

$$F^{T}e^{l} = \underbrace{(K_{r}^{T})^{-1}E^{T}K_{l}^{-1}}_{F}e^{l} = (K_{r}^{T})^{-1}E^{T}K_{l}^{-1}\underbrace{K_{l}X_{l}^{0}}_{e^{l}} = (K_{r}^{T})^{-1}E^{T}X_{l}^{0} = 0$$

Review: Essential matrix

 \hat{X}_{l} : X in terms of Cartesian coordinate of left camera \hat{X}_{r} : X in terms of Cartesian coordinate of right camera

There exists *E* such that $\hat{X}_l^T \underset{R[t]_{\times}}{\overset{E}{\longrightarrow}} \hat{X}_r = 0$

Review: Essential matrix

 \hat{X}_{l} : X in terms of Cartesian coordinate of left camera \hat{X}_{r} : X in terms of Cartesian coordinate of right camera

There exists *E* such that $\hat{X}_l^T \underset{R[t]_{\times}}{\overset{E}{\to}} \hat{X}_r = 0$

Review: Fundamental matrix

• Line equation: ax + by + c = 0

$$line_i = \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix}$$

- Line equation: ax + by + c = 0
 - Can represent a line with vector [a b c]
- Then, a point p is on a line I if and only if

$$p \cdot l = p^T l = 0$$

$$Vine_{i} = \begin{bmatrix} a_{i} \\ b_{i} \\ c_{i} \end{bmatrix}$$
$$p_{i} = \begin{bmatrix} u_{i} \\ v_{i} \\ 1 \end{bmatrix}$$

- Line equation: ax + by + c = 0
 - Can represent a line with vector [a b c]
- Then, a point p is on a line I if and only if

$$p \cdot l = p^T l = 0$$

• Note that

$$\hat{x}_l^T \underbrace{F \hat{x}_r}_{\text{a line}} = 0$$

$$line_{i} = \begin{bmatrix} a_{i} \\ b_{i} \\ c_{i} \end{bmatrix}$$
$$p_{i} = \begin{bmatrix} u_{i} \\ v_{i} \\ 1 \end{bmatrix}$$

- Line equation: ax + by + c = 0
 - Can represent a line with vector [a b c]
- Then, a point p is on a line I if and only if

$$p \cdot l = p^T l = 0$$

• Note that

$$\hat{x}_l^T \underbrace{F\hat{x}_r}_{\text{a line}} = 0 \Longrightarrow F\hat{x}_r$$
 is a line passing through \hat{x}_l

$$line_{i} = \begin{bmatrix} a_{i} \\ b_{i} \\ c_{i} \end{bmatrix}$$
$$p_{i} = \begin{bmatrix} u_{i} \\ v_{i} \\ 1 \end{bmatrix}$$

Epipoles and fundamental matrix

$$\hat{x}_l^T \underbrace{F\hat{x}_r}_{\text{A line passing through }\hat{x}_l} = 0$$

Epipoles and fundamental matrix

 $\hat{x}_l^T \underbrace{F \hat{x}_r}_{\text{A line passing through } \hat{x}_l} = 0 \quad \text{and recall that } F e^r = F^T e^l = 0$

Epipoles and fundamental matrix

$$\hat{x}_l^T \underbrace{F\hat{x}_r}_{\text{A line passing}} = 0 \quad \text{and recall that } Fe^T = F^T e^l = 0$$
$$\Rightarrow e^T F\hat{x}_r = (F^T e)^T \hat{x}_r = 0$$

Epipoles and fundamental matrix

 $\hat{x}_{l}^{T} \underbrace{F\hat{x}_{r}}_{\text{A line passing}} = 0 \quad \text{and recall that } Fe^{r} = F^{T}e^{l} = 0$ $\Rightarrow e^{T}F\hat{x}_{r} = (F^{T}e)^{T}\hat{x}_{r} = 0$

 $F\hat{x}_r$ passes through not just \hat{x}_l but also the epipole *e*

Epipoles and fundamental matrix

 $\hat{x}_l^T \underbrace{F\hat{x}_r}_{\text{A line passing}} = 0 \quad \text{and recall that } Fe^T = F^T e^l = 0$ $\Rightarrow e^T F\hat{x}_r = (F^T e)^T \hat{x}_r = 0$

 $F\hat{x}_r$ passes through not just \hat{x}_l but also the epipole *e*

Thus, it is actually the epipolar line *l*

Epipoles and fundamental matrix

Similarly, $\hat{x}_r^T \underbrace{F^T \hat{x}_l}_{\text{A line passing through } \hat{x}_r} = 0$ and recall that $Fe^r = F^T e^l = 0$

Epipoles and fundamental matrix

Similarly,
$$\hat{x}_r^T \underbrace{F^T \hat{x}_l}_{\text{A line passing}} = 0$$
 and recall that $Fe^r = F^T e^l = 0$
 $\Rightarrow e^r F^T \hat{x}_l = (Fe^r)^T \hat{x}_l = 0$

Epipoles and fundamental matrix

Similarly, $\hat{x}_r^T \underbrace{F^T \hat{x}_l}_{\text{A line passing}} = 0$ and recall that $Fe' = F^T e^l = 0$ $\Rightarrow e^r F^T \hat{x}_l = (Fe^r)^T \hat{x}_l = 0$

 $F^T \hat{x}_l$ passes through not just \hat{x}_r but also the epipole e'

Epipoles and fundamental matrix

Similarly, $\hat{x}_r^T \underbrace{F^T \hat{x}_l}_{\text{A line passing}} = 0$ and recall that $Fe' = F^T e^l = 0$ $\Rightarrow e^r F^T \hat{x}_l = (Fe^r)^T \hat{x}_l = 0$

 $F^T \hat{x}_l$ passes through not just \hat{x}_r but also the epipole e'. Thus, it is actually the epipolar line l'

Epipoles and fundamental matrix

Epipoles and fundamental matrix

Epipoles and fundamental matrix

Epipoles and fundamental matrix

Given \hat{x}_r on the right view, we just need to search $F\hat{x}_r$ on the left

Epipoles and fundamental matrix

Given \hat{x}_r on the right view, we just need to search $F\hat{x}_r$ on the left Given \hat{x}_l on the right view, we just need to search $F^T\hat{x}_l$ on the left

Epipoles and fundamental matrix

Given \hat{x}_r on the right view, we just need to search $F\hat{x}_r$ on the left Given \hat{x}_l on the right view, we just need to search $F^T\hat{x}_l$ on the left

This restrict our search space from 2D to 1D

Fundamental matrix X 0 ľ l e^{l} e^r 0' 0

• $F e^r = 0$ and $F^T e^l = 0$ (nullspaces of $F = e^r$; nullspace of $F^T = e^l$)

Fundamental matrix X e^r 0' 0

- $F e^r = 0$ and $F^T e^l = 0$ (nullspaces of $F = e^r$; nullspace of $F^T = e^l$)
- F is singular (rank two): det(F)=0
- F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0

• Since
$$F = K_r^{-T} E K_l^{\prime - 1}$$

• Since $F = K_r^{-T} E K_l^{\prime - 1}$

When
$$K_r = K'_l = I$$
, $F = E$

• Since $F = K_r^{-T} E K_l^{\prime - 1}$

When
$$K_r = K'_l = I$$
, $F = E$, and $\hat{x}_l^T E \hat{x}_r = 0$

• Since
$$F = K_r^{-T} E K_l'^{-1}$$

When $K_r = K'_l = I$, $F = E$, and $\hat{x}_l^T E \hat{x}_r = 0$

• This is sometimes how essential matrix is introduced

Estimating the Fundamental Matrix

- 8-point algorithm
 - Least squares solution using SVD on equations from 8 pairs of correspondences
 - Enforce det(F)=0 constraint using SVD on F

Estimating the Fundamental Matrix

- 8-point algorithm
 - Least squares solution using SVD on equations from 8 pairs of correspondences
 - Enforce det(F)=0 constraint using SVD on F

Note: estimation of F (or E) is degenerate for a planar scene.

8-point algorithm

- 1. Solve a system of homogeneous linear equations
 - a. Write down the system of equations

 $\mathbf{x}^T F \mathbf{x}' = \mathbf{0}$

 $uu'f_{11} + uv'f_{12} + uf_{13} + vu'f_{21} + vv'f_{22} + vf_{23} + u'f_{31} + v'f_{32} + f_{33} = 0$

8-point algorithm

- 1. Solve a system of homogeneous linear equations
 - a. Write down the system of equations
 - b. Solve **f** from A**f=0** using SVD

```
Matlab:
[U, S, V] = svd(A);
f = V(:, end);
F = reshape(f, [3 3])';
```

Need to enforce singularity constraint

Fundamental matrix has rank 2 : $det(\mathbf{F}) = 0$.

Left: Uncorrected F – epipolar lines are not coincident.

Right: Epipolar lines from corrected F.

8-point algorithm

1. Solve a system of homogeneous linear equations

- a. Write down the system of equations
- b. Solve **f** from A**f=0** using SVD

```
Matlab:
[U, S, V] = svd(A);
f = V(:, end);
F = reshape(f, [3 3])';
```

2. Resolve det(F) = 0 constraint using SVD

```
Matlab:
[U, S, V] = svd(F);
S(3,3) = 0;
F = U*S*V';
```


Problem with eight-point algorithm

250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48

$$\begin{vmatrix} f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \end{vmatrix} = -1$$

Problem with eight-point algorithm

250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48

- Poor numerical conditioning
- Can be fixed by rescaling the data

$$\begin{bmatrix} J_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \end{bmatrix} = -1$$

 $\begin{bmatrix} f_{11} \\ f_{12} \end{bmatrix}$
Problem with eight-point algorithm

250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48

- Poor numerical conditioning
- Can be fixed by rescaling the data

$$\begin{bmatrix} J_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \end{bmatrix} = -1$$

 $\begin{bmatrix} f_{11} \\ f_{12} \end{bmatrix}$

From epipolar geometry to camera calibration

From epipolar geometry to camera calibration

• If we know the calibration matrices of the two cameras, we can estimate the essential matrix: $E = K^T F K'$

From epipolar geometry to camera calibration

- If we know the calibration matrices of the two cameras, we can estimate the essential matrix: $E = K^T F K'$
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters.

From E to get back R and t

- If we decompose *E* using svd to USV^{\top}
- Let's define $W = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- One can verify that $[t]_{\times} = VWSV^{\top}$ and $R = UW^{\top}V^{\top}$ is a pair of valid estimate of R and t such that $R[t]_{\times} = UW^{\top}V^{\top}VWSV^{\top} = USV^{\top} = E$
 - How do we get t back from $[t]_{\times}$?
- Note that there are more solutions
 - E.g., Replace W by W^{\top}
 - Note that only one solution will satisfy chirality (reconstructed points in front of the camera)

Compute 3D point location

- Given R, t, and observed points in the two views. We can construct two lines that should contain the 3D point. And the point should be just the interception
- Denote two lines as $a_1 + \lambda_1 b_1$ and $a_2 + \lambda_2 b_2$. We can solve the interception by solving

•
$$\min_{\lambda,\mu} \|a_1 + \lambda_1 b_1 - a_2 - \lambda_2 b_2\|^2$$

$$\Rightarrow \begin{cases} \lambda_1 \|b_1\|^2 + (a_1 - a_2)^\top b_1 - \lambda_2 b_1^\top b_2 = 0\\ \lambda_2 \|b_2\|^2 - (a_1 - a_2)^\top b_2 - \lambda_1 b_1^\top b_2 = 0 \end{cases}$$

• The final point will be

$$\frac{a_1 + \lambda_1 b_1 + a_2 + \lambda_2 b_2}{2}$$

Caveat

- Note that many textbooks use the convention of $E = [t]_{\times}R$ rather than $E = R[t]_{\times}$ as derived here
 - Both are correct just they first rotate and then translate the axis rather than first translate and then rotate the axis as shown earlier
 - But consequently, the *t* there is different as below
- Note that for any y, $[R t]_{\times} y = R([t]_{\times} R^{\top} y)$ since crossing R t with y is the same as crossing t with $R^{\top} y$ and then rotate by R
 - \Rightarrow $[R t]_{\times} = R [t]_{\times} R^{\top}$
 - $\Rightarrow E = R[t]_{\times} = (R[t]_{\times}R^{\top})R = [Rt]_{\times}R$
 - Therefore, for the alternative formulation $E = [t]_{\times}R$, we have the translation there actually equal to Rt instead in our notations

Summary

- $X_l^T E X_r = 0$
- $E = R[t]_{\times}$
- $Fe^r = F^T e^l = 0$
- $\hat{x}_l^T F \hat{x}_r = 0$
- $F^T \hat{x}_l = l'$
- $F\hat{x}_r = l$
- Estimating the fundamental matrix is a kind of "weak calibration"

