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Structure from motion




Structure from motion

* Given many images, how can we

a) figure out where they were all taken from?
b) build a 3D model of the scene?

This is (roughly) the structure from motion problem



Structure from motion
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Reconstruction (side)

* |nput: images with points in correspondence
Pij = (Ui,j;V,',j)

* Qutput

* structure: 3D location x; for each point p,
* motion: camera parameters R;, t; possibly K;

* Objective function: minimize reprojection error



What we’ve seen so far...

e 2D transformations between images
* Translations, affine transformations, homographies...

* 3D coordinates to 2D coordinates
e Camera matrix

* Today: epipolar geometry and fundamental matrices



Depth from disparity

* Goal: recover depth by finding image coordinate x” that corresponds to x

X

O Baseline O’
T



Geometry for a simple stereo system

* Assume parallel optical axes, known camera parameters (i.e.,
calibrated cameras). What is expression for Z?
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Geometry for a simple stereo system

* Assume parallel optical axes, known camera parameters (i.e.,
calibrated cameras). What is expression for Z?

Similar triangles (p,, P, p,) and
(O, P, O):

F'+x,—x; T
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Geometry for a simple stereo system

* Assume parallel optical axes, known camera parameters (i.e.,
calibrated cameras). What is expression for Z?

Similar triangles (p,, P, p,) and
(O, P, O):

F'+x,—x; T

7 —f 7
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Depth from disparity

* Goal: recover depth by finding image coordinate x’
that corresponds to x

e Sub-Problems

1. Calibration: How do we recover the relation of the
cameras (if not already known)?

2. Correspondence: How do we search for the matching
point x'?




Depth from disparity

image 1(x,y) Disparity map D(x,y) image I"(x",y’)

(XY )=(x+D(x,y), y)

James Hays



Depth from disparity

image 1(x,y) Disparity map D(x,y) image I"(x",y’)

(XY )=(x+D(x,y), y)

If we could find the corresponding points in two images, we
could estimate relative depth...

James Hays



What do we need to know?

1. Calibration for the two cameras.
1. Intrinsic matrices for both cameras (e.g., f)
2. Baseline distance T in parallel camera case
3. R, tinnon-parallel case

2. Correspondence for every pixel.



Correspondence for every pixel.
Where do we need to search?
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Correspondence for every pixel.
Where do we need to search?




Wouldn’t it be nice to know
where matches can live?

Epipolar geometry
Constrains 2D search to 1D



Key idea: Epipolar constraint
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Key idea: Epipolar constraint
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lie on the corresponding line /. lie on the corresponding line /"
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= intersections of baseline with image planes
= projections of the other camera center

e Epipolar Plane — plane containing baseline (1D family)



Epipolar geometry: notation

X

e Baseline — line connecting the two camera centers

e Epipoles
= intersections of baseline with image planes
= projections of the other camera center

e Epipolar Plane — plane containing baseline (1D family)

e Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)



® = camera center

nink Pair Share

nere are the epipoles?
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Example: Converging cameras




Example: Motion parallel to image
plane




Example: Forward motion

Epipole has same coordinates in both images.
Points move along lines radiating from e:
“Focus of expansion”




How to find epipolar line of a point?

A little bit more math, but cool math

e Essential matrix and fundamental matrix



Essential matrix

X;: X in terms of Cartesian coordinate of left camera
X,: X in terms of Cartesian coordinate of right camera

There exists E such that X;"EX, = 0
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X;: X in terms of Cartesian coordinate of left camera
X,: X in terms of Cartesian coordinate of right camera

There exists E such that X;"EX, = 0



Review: change of coordinate

* How do we change coordinate from one camera to
another?

e (Center of projection at the origin, x-axis points right, y-axis
points up, z-axis points backwards)

Yy
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* How do we change coordinate from one camera to
another?

e (Center of projection at the origin, x-axis points right, y-axis
points up, z-axis points backwards)

Step 1: Translate by -¢

How do we represent
translation as a matrix
multiplication?
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Review: change of coordinate

* How do we change coordinate from one camera to
another?

e (Center of projection at the origin, x-axis points right, y-axis
points up, z-axis points backwards)

Step 1: Translate by -¢
Step 2: Rotate by R

T
u

Z v’

) u R =

T

W / w
3x3 rotation matrix 1
X i i



Review: change of coordinate

* How do we change coordinate from one camera to
another?

e (Center of projection at the origin, x-axis points right, y-axis
points up, z-axis points backwards)

y Step 1: Translate by -¢
Step 2: Rotate by R
_uT _
Z v’
) 0 R =
WT
X L




Essential matrix (Longuet-Higgins, 1981)

Let R be rotation from left to right camera, then X; = R(X, — t)



Cross product in matrix representation

e let u= [u1,u2;u3]T;V = [vl»v2rv3]T

A
U; Uz, u; uszy, u; Uy
=lus U, ULl = —
uxv 1 2 3 |U2 U3| |V1 U3| |V1 U2|k
V1 Uy Vs



Cross product in matrix representation

e let u= [u1,u2;u3]T;V = [vl»v2rv3]T

i j k

U; Uz, u; uszy, u; Uy
XV=I|u u, U= —
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Cross product in matrix representation

e let u= [u1,u2;u3]T;V = [vl»v2rv3]T
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Cross product in matrix representation

e let u= [u1,u2;u3]T;V = [vl»v2rv3]T

i j k

U Uus|, Uy, usy, Uy Uy
X = |Uu u u = —
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Cross product in matrix representation

e let u= [u1,u2;u3]T;V = [vl»v2rv3]T

uxyv=

N.B.
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U, 0
u, |=| 0 |. Therefore, rank(u] ) <2
U, 0




Essential matrix (Longuet-Higgins, 1981)

Let R be rotation from right to left camera, then X; = R(X, — t)

Let E be R[t],, X/ EX,



Essential matrix (Longuet-Higgins, 1981)

Let R be rotation from right to left camera, then X; = R(X, — t)

Let E be R[t]y, X/ EX, = X,"(R[t]xX,)



Essential matrix (Longuet-Higgins, 1981)

Let R be rotation from right to left camera, then X; = R(X, — t)

Let E be R[t]y, X/ EX, =X, (R[t]X,) = (X, —t)TRTR[t]« X,



Essential matrix (Longuet-Higgins, 1981)

Let R be rotation from right to left camera, then X; = R(X, — t)

Let E be R[t]y, X/ EX, =X, (R[t]X,) = (X, —t)TRTR[t]« X,
=X, —t) - (t X X;)



Essential matrix (Longuet-Higgins, 1981)

Let R be rotation from right to left camera, then X; = R(X, — t)
Let E be R[t]y, X/ EX, =X, (R[t]X,) = (X, —t)TRTR[t]« X,
=X =) -t xX;)
=X -(txX)—t-(txX,)



Essential matrix (Longuet-Higgins, 1981)

Let R be rotation from right to left camera, then X; = R(X, — t)
Let E be R[t]y, X/ EX, =X, (R[t]X,) = (X, —t)TRTR[t]« X,
=X =) -t xX;)
=X, (tXX)—t-(tXX) =0



Essential matrix (Longuet-Higgins, 1981)

Let R be rotation from right to left camera, then X; = R(X, — t)

Let E be R[t]y, X/ EX, =X, (R[t]X,) = (X, —t)TRTR[t]« X,
=X, —t) - (t X X;)

=X, -(txX)—t-(txX,) =0
Note that rank(E) < rank([7],) <2
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Essential matrix (Longuet-Higgins, 1981)

Xy

Xy

Consider any X, lies between the two centers of projection

EX; = R[t]:)X; = R(txX)



Essential matrix (Longuet-Higgins, 1981)

Xy

Xy

Consider any X, lies between the two centers of projection

EX? = (R[t]:)X? =R(tx X?)=0



Essential matrix (Longuet-Higgins, 1981)

t X,
X0 X2

Consider any X, lies between the two centers of projection
EX? = (R[t]:)X? =R(ExX)=0

E'X) = R[t1)TRX? — 1)



Essential matrix (Longuet-Higgins, 1981)

t X,
X0 X2

Consider any X, lies between the two centers of projection
EX? = (R[t]:)X? =R(ExX)=0

ETX) = R[t1)TREXF — 1) = ([t1:)"RTR(X? — t)



Essential matrix (Longuet-Higgins, 1981)

t X,
X0 X2

Consider any X, lies between the two centers of projection

ty 0 —t;
—t, t; O

-

EX; = R[t]:)X; =R(txXx)=0 0 ~—t; ¢t
ETX) = (R[tL) RO —t) = ([t1)"RTR(X? — 1) l ]

[t]x



Essential matrix (Longuet-Higgins, 1981)

t X,
X0 X2

Consider any X, lies between the two centers of projection

EX? = (R[t];,)X? =Rt x X)) =0 0 —t3 0
t 0 —t
ETX] = R[t],)"R(X? —t) = ([t])"RTR(X? — t) l—iz ts 01]
) P }

= [_t]x(Xr(') —t)



Essential matrix (Longuet-Higgins, 1981)

t X,
X0 X2

Consider any X, lies between the two centers of projection

EX? = (R[t];,)X? =Rt x X)) =0 0 —t3 0
t 0 —t
ETX] = R[t],)"R(X? —t) = ([t])"RTR(X? — t) l—iz ts 01]
) P }

= [—t] (X2 —t) = -t X (X2 —t)



Essential matrix (Longuet-Higgins, 1981)

t X,
X0 X2

Consider any X, lies between the two centers of projection

EX; = (R[t],)X? =R xX))=0 0 —t; ¢t
ty 0 —t;
ETX) = (R[tLO"RX; —t) = ([t])"RTR(X} — t) l—tz t; 0 ]

-

= [P =) = —t X (X2 = £) =0 Gp



Fundamental matrix (Faugeras and Luong, 1992)
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X,: X in terms of Cartesian coordinate of right camera

X;: X in terms of Cartesian coordinate of left camera

x.: X 's homogeneous coordinate of right view

X, : X 's homogeneous coordinate of left view



Fundamental matrix (Faugeras and Luong, 1992)

&
<

X,: X in terms of Cartesian coordinate of right camera

X;: X in terms of Cartesian coordinate of left camera

x.: X 's homogeneous coordinate of right view

X, : X 's homogeneous coordinate of left view

There exists F such that 5" Fx, =0



Recall from last time

x=K[R t|X

U __di S Uo_ o s
w V=l 0 -ad V,||r n
_1_ i 0 0 1 1 7y
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Recall from last time
x=K[R t|X
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Assume that t = 0 (the origin of camera coordinate = COP)

and R = I (camera coordinate is perfectly aligned)



Recall from last time
x=K[R t|X
|

U —d, S Up|hi ha N L %
w V= 0 —ad, V,||rn r B i P
| 1 _ [ O O 1 _ _7/'31 1/‘32 r33 tz | 1

Assume that t = 0 (the origin of camera coordinate = COP)

and R = I (camera coordinate is perfectly aligned)

x =K X

o -
2d projection 3d location in
location in Cartesian

homogenous coordinate
coordinate
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Fundamental matrix

X;: X in terms of Cartesian coordinate of left camera
X,: X in terms of Cartesian coordinate of right camera

X; = K;X;: X 's homogeneous coordinate of left view
X, = K, X,: X 's homogeneous coordinate of right view
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Fundamental matrix

X;: X in terms of Cartesian coordinate of left camera
X,: X in terms of Cartesian coordinate of right camera

X; = K;X;: X 's homogeneous coordinate of left view
X, = K, X,: X 's homogeneous coordinate of right view

~
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5 (KD 'EK, 5 = X K] (KT EK K X,



Fundamental matrix

X;: X in terms of Cartesian coordinate of left camera
X,: X in terms of Cartesian coordinate of right camera

X; = K;X;: X 's homogeneous coordinate of left view
X, = K, X,: X 's homogeneous coordinate of right view

—_—

A

F xl x,,

‘),EZT gKlT )_1 EKr_lj )er — XZTKIT (KIT)_I EKr_l KrXr — XZTEXr



Fundamental matrix

X;: X in terms of Cartesian coordinate of left camera
X,: X in terms of Cartesian coordinate of right camera

X; = K;X;: X 's homogeneous coordinate of left view
X, = K, X,: X 's homogeneous coordinate of right view

—_—

A

F xl x,,

JACIT (KIT )_IEKr_l X, = XZTKIT (KIT)_IEK;»_I KX, = XZTEXr =0
o ~~ / R}:—J



Epipoles and fundamental matrix
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Epipoles and fundamental matrix

X

Consider any X, lie between the two centers of projection

Fe' = (K[)7'EK, e = (K[)EK, " K. X? = (K[)T*EX?

F e’




Epipoles and fundamental matrix

X

Consider any X, lie between the two centers of projection

Fe' = (K[)'EK, e = (K[)T'EK, " K. X? = (K[)TEX2=0

F e’




Epipoles and fundamental matrix

X

X,
XP X2

Consider any X, lie between the two centers of projection

Fe' = (K[)'EK, e = (K[)T'EK, " K. X? = (K[)TEX2=0

F e’

Flel = (K)TETK, el = (K)T'ETK, T KX = (KP)TETX) =0
F el



Review: Essential matrix
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- X 1n terms of Cartesian coordinate of left camera

X)
X : X in terms of Cartesian coordinate of right camera

There exists E such that X, E X =0

r
R[?].
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X, : X in terms of Cartesian coordinate of left camera
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x, =K ,)A( ;- X 's homogeneous coordinate of left view

X, = KF)A( X 's homogeneous coordinate of right view
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X, : X in terms of Cartesian coordinate of left camera
X .. X 1n terms of Cartesian coordinate of right camera
x, =K ,)A( ;- X 's homogeneous coordinate of left view
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Review: Fundamental matrix

(@)

X, : X in terms of Cartesian coordinate of left camera
X .. X 1n terms of Cartesian coordinate of right camera
x, =K ,)A( ;- X 's homogeneous coordinate of left view

X, = KF)A( X 's homogeneous coordinate of right view
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Review: Fundamental matrix
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X, : X in terms of Cartesian coordinate of left camera
X .. X 1n terms of Cartesian coordinate of right camera
x, =K ,)A( ;- X 's homogeneous coordinate of left view

X, = KF)A( X 's homogeneous coordinate of right view
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Review: Fundamental matrix

(@)

X, : X in terms of Cartesian coordinate of left camera
X .. X 1n terms of Cartesian coordinate of right camera
x, =K ,)A( ;- X 's homogeneous coordinate of left view

X, = KF)A( X 's homogeneous coordinate of right view

JACIT (KIT )_IEKr_l X, = XZTKIT (KIT)_IEK;»_I KX, = XZTEXr =0
N ~ J H[_/ —_—

A

F Xj Xy
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Line representation in homogenous coordinate

* Line equation: ax+by+c=0 line =| b

* Canrepresent a line with vector [a b c] ~

* Then, a point pis on a line /if and only if ¥ i

 Note that

AT A

x, Fx. =0
H,—J
a line




Line representation in homogenous coordinate

az’

* Line equation: ax+by+c=0 line =| b
Ci

* Can represent a line with vector [a b c] -

ui

. . . . . p =1 V.

* Then, a point pis on a line [ if and only if i i
1

 Note that

X' ]:)2 =(0 = Fx, is a line passing through x,

a line




Epipoles and fundamental matrix

x,  Fx. =0
——

A line passing
through X,



Epipoles and fundamental matrix

and recall that Fe” = FTel =0
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Epipoles and fundamental matrix

x Fx =0 and recall that Fe” = FTe! = 0
——

A line passin s r N o —
throughpfc, ¢ = e I X = (F e) X = 0

Fx_ passes through not just x, but also the epipole e



Epipoles and fundamental matrix

x Fx =0 and recall that Fe” = FTe! = 0
A line passing — eTF)’(‘: — (FTe)T)’(‘: — O
through %, ro ro

Fx_ passes through not just x, but also the epipole e

Thus, it 1s actually the epipolar line /



Epipoles and fundamental matrix

Similarly, x© F'%, =0 andrecall that Fe” = FTe! =0
—_—
A line passing
through x,.
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Similarly, x©  F'%, =0 andrecall that Fe' = FTe! =0
—_—
through & = e F'g = (Fe")'%,=0

jf\xA,’ passes through not just X but also the epipole e’

Thus, it is actually the epipolar line /'
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Fx _ is the epipolar line / F'%, is the epipolar line /'

Given x. on the right view, we just need to search Fx_ on the left

Given &, on the right view, we just need to search ' %, on the left



Epipoles and fundamental matrix

X

Fx is the epipolar line / F'%, is the epipolar line /'
N—

Given x, on the right view, we just need to search Fx. on the left

Given %, on the right view, we just need to search F' %, on the left

This restrict our search space from 2D to 1D
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Fundamental matrix

X

. F/ef=0 and F’e!=0 (nullspaces of F =e’; nullspace of F' =
e')
e Fissingular (rank two): det(F)=0

e F has seven degrees of freedom: 9 entries but defined up to
scale, det(F)=0
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Remark

* Since F=K'EK'
WhenK =K' =1, F=E,andx, Ex =0

 This 1s sometimes how essential matrix 1s introduced
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* Enforce det(F)=0 constraint using SVD on F



Estimating the Fundamental Matrix

e 8-point algorithm
* Least squares solution using SVD on equations from 8 pairs of
correspondences

* Enforce det(F)=0 constraint using SVD on F

Note: estimation of F (or E) is degenerate for a planar scene.



8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations

x ' Fx'=0

uu'fi1 +uv'fi; tufiz tvu'for F v o +vfo3 tu'f31 +V f3 + f33 =0

(f11]
i ’ / / / / / ] f12
uUy Uy Uy vuqy ;7 vy u;y v 1
Af _ . . . . . . . . . f13
— L[] , L] , [ . , , L] , L] , ° f2 1
_un Uy UpVn Up VpUp VUVnVp Vn Un Vpn 1_ .
f33.




8-point algorithm

1. Solve a system of homogeneous linear equations

a. Write down the system of equations
b. Solve ffrom Af=0 using SVD

Matlab:

[U, S, V] = svd(A);

f V(:, end);

F reshape (f, [3 3])’;



Need to enforce singularity constraint

Fundamental matrix has rank 2 det(F) = 0.

Left: Uncorrected F — epipolar lines are not coincident.

Right: Epipolar lines from corrected F.



8-point algorithm

1. Solve a system of homogeneous linear equations

a. Write down the system of equations
b. Solve ffrom Af=0 using SVD

Matlab:

(U, S, V] = svd(A);

f = V(:, end);

FF = reshape(f, [3 31)';

2. Resolve det(F) = 0 constraint using SVD

Matlab:

[U, S, V] = svd(F);
S(3,3) = 0;

F = U*S*V’;



Problem with eight-point algorithm
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-
Jiz
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250906, 36| 183269.57 921.81| 200931.10| 146766.13 73821 272.19 135,81 ﬁ3
2692, 28| 131633.03 176,27 6196, 73] 302575, 59 405.71 15,27 746,79

416374, 23| §71654. 30 935.47 408110.83| §54354. 92 916.30 445, 10 93l.81 f

1 191183.60( 171759.40 410,27 4le435.62| 374125.90 B93.65 465,39 415.65 21

45988, 86 30401, 76 57,89 298604, 57 185309, 58 352.87 g46. 22 525.15 f
led786.04) 546559.67 al13. 17 15993, 37 BEZE. 15 9.86 20Z.65 B7Z.14 22
116407.01 272775 138.89) 1a894]1.:27 398,21 202,77 538, 12 19,64
135384, 58) 75411.13 183,72 411350.03| 229127.738 603. 79 651. 28 379,48 f23

Ja

* Poor numerical conditioning S

* Can be fixed by rescaling the data
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From epipolar geometry to camera calibration

e If we know the calibration matrices of the two cameras, we can
estimate the essential matrix: E = KTFK’

e The essential matrix gives us the relative rotation and
translation between the cameras, or their extrinsic parameters.



From E to get back Rand t

* If we decompose E using svd to USV T

0O -1 O
e let'sdefineW =11 0 0

0O 0 1
* One can verify that [t], = VWSV T and R = UW "V is a pair of valid
estimate of R and t such that R[t], = UWTVTVWSVT =USVT = E

* How do we get t back from [t].?

 Note that there are more solutions
* E.g., Replace Wby WT

* Note that only one solution will satisfy chirality (reconstructed points in front
of the camera)



Compute 3D point location

* Given R, t, and observed points in the two views. We can construct two
lines that should contain the 3D point. And the point should be just the

interception

* Denote two lines as a; + 4,b, and a, + A,b,. We can solve the
interception by solving

. n)?inllal + A1b; — ay — A, b, ||
U
Allby 1> + (@ — az) by — Azb{ b, =0
A2 |lby11* = (a; — az) " by — /11b1Tb2 =0

* The final point will be
aq + Albl + a-, + Azbz

2




Caveat

* Note that many textbooks use the convention of E = [t]«R rather
than E = R|t] as derived here

* Both are correct just they first rotate and then translate the axis rather than
first translate and then rotate the axis as shown earlier

* But consequently, the t there is different as below

* Note that forany y, |R t]yy = RT( since crossing R t with
y is the same as crossing t with R and then rotate by R
= [R t]x= R[t]«xR'
« = FE = R[t]x = (R[t]xRT)R = [Rt]«R

* Therefore, for the alternative formulation E = [t]R, we have the translation
there actually equal to Rt instead in our notations



Summary

- X/ EX,=0

* E = R[t]

e Fe" =FTel =0
« %, F%,. =0

« FT2, =1

« FR, =1

e Estimating the fundamental matrix is a kind of “weak calibration”
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