ECE 4973: Lecture 4 Image Filters

Samuel Cheng

Slide credits: Juan Carlos Niebles, Ranjay Krishna, James Hays, Noah Snavely

System and Filters

$$f[n,m] \to \text{System } \mathcal{S} \to g[n,m]$$

De-noising

Salt and pepper noise

Super-resolution

In-painting

Bertamio et al

Image filtering

- Image filtering:
 - Compute function of local neighborhood at each position
- Really fundamental and everyone should know
- Handy if you don't need state-of-the-art results
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

Image filtering

f	Γ.	_	٦	1	1	1	1	
	Ľ	,		<u>1</u>	1	1	1	
-				9	1	1	1	

_	-	-			-		-		
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

 $h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)
- Why does it sum to one?

Smoothing with box filter

Think-Pair-Share time

1 1 1 1 1 1

4.

1.

2.

3.

Original

9

Original

Filtered (no change)

Source: D. Lowe

Original

9

Original

Shifted left By 1 pixel

Source: D. Lowe

2

0

-2

Sobel

0

-1

0

-1

Horizontal Edge (absolute value)

Original

(Note that filter sums to 1)

Source: D. Lowe

?

0	0	0
0	2	0
0	0	0

Original

Sharpening filter

- Accentuates differences with local average

Aka unsharp masking

Source: D. Lowe

before

after

Two important properties of systems

• Shift invariance (same filter/rule throughout the image)

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

Equivalently: S(shift(I),f) = shift(S(I,f))

• Linearity

$$S[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[n,m]]$$

Is the moving average system is shift invariant?

$$f[n,m] \xrightarrow{\mathcal{S}} g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

$$f[n - n_0, m - m_0]$$

$$\xrightarrow{S} \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[(n - n_0) - k, (m - m_0) - l]$$

$$= g[n - n_0, m - m_0]$$
Yes!

Linear Systems (filters)

$$f[n,m] \to [\text{System } \mathcal{S}] \to g[n,m]$$

• Is the moving average a linear system?

Yes!

Filter example #2: Image Segmentation

• Image segmentation based on a simple threshold:

$$g[n,m] = \begin{cases} 255, \ f[n,m] > 100\\ 0, \ \text{otherwise.} \end{cases}$$

Simple thresholding

$$f[n,m] \to \operatorname{System} \mathcal{S} \to g[n,m]$$

• Is thresholding shift-invariant?

Yes!

- Is thresholding a linear system?
 - f1[n,m] + f2[n,m] > T S[f1[n,m] + f2[n,m]] = 1
 - f1[n,m] < T

• f2[n,m]<T

$$S[f1[n,m]] + S[f2[n,m]] = 0$$

No!

Correlation (we are doing so far) Let F be the image, H be the kernel (filter), and G be the output image

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]$$

This is called a (cross-)correlation operation:

$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

Convolution

• Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]$$

= $\sum_{u=-k}^{k} \sum_{v=-k}^{k} H^{flip}[-u, -v] F[i - u, j - v]$
= $\sum_{u=-k}^{k} \sum_{v=-k}^{k} H^{flip}[u, v] F[i + u, j + v] = H^{flip} \otimes F$

This is called a **convolution** operation:

$$G = H * F$$

Where is convolution coming from?

Why do mathematicians and signal processing researchers like convolution?

Any **linear and shift-invariant** operator can be represented as a convolution (and specified by its impulse response)

Convolution properties

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
- Associative: *a* * (*b* * *c*) = (*a* * *b*) * *c*
 - Often apply several filters one after another: $((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$
 - Correlation is NOT associative

 $a \otimes (b \otimes c) = a \otimes (b_{flip} * c) = a_{flip} * (b_{flip} * c)$ $(a \otimes b) \otimes c = (a_{flip} * b) \otimes c = (a_{flip} * b)_{flip} * c$

What is $(a * b)_{flip}$?

$$(a * b)_{flip} = (\sum_{i} a[i]b[n - i])_{flip}$$

= $\sum_{i} a[i]b[-n - i]$
= $\sum_{i} a_{flip}[-i]b_{flip}[n + i]$
= $\sum_{j} a_{flip}[j]b_{flip}[n - j]$ $(j = -i)$
= $a_{flip} * b_{flip}$

Convolution properties

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
- Associative: *a* * (*b* * *c*) = (*a* * *b*) * *c*
 - Often apply several filters one after another: $((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$
 - Correlation is NOT associative

$$a \otimes (b \otimes c) = a \otimes (b_{flip} * c) = a_{flip} * (b_{flip} * c)$$
$$(a \otimes b) \otimes c = (a_{flip} * b) \otimes c = (a_{flip} * b)_{flip} * c = (a * b_{flip}) * c$$

- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse *e* = [0, 0, 1, 0, 0], *a* * *e* = *a*

Image support and edge effect

- •A computer will only convolve **finite support signals.**
- What happens at the edge?

- zero "padding"
- edge value replication
- mirror extension
- **MOR** (beyond the scope of this class)

Convolution vs. (Cross) Correlation

- A <u>convolution</u> is a filtering operation
- <u>Correlation</u> compares the *similarity* of *two* sets of *data*

Convolution vs. (Cross) Correlation

	Convolution	Correlation
Associative: (ab)c=a(bc)	Yes	No
Commutative: ab=ba	Yes	No
Distributive: a(b+c)=ab+ac	Yes	Yes
Linear	Yes	Yes
Application	Filtering	Matching

- They are equivalent when the filter "kernel" is symmetric
- N.B. cv2.filter2D implements correlation rather than conv

Important filter: Gaussian

• Weight contributions of neighboring pixels by nearness

			Х		
	0.003	0.013	0.022	0.013	0.003
	0.013	0.059	0.097	0.059	0.013
y	0.022	0.097	0.159	0.097	0.022
	0.013	0.059	0.097	0.059	0.013
	0.003	0.013	0.022	0.013	0.003

Slide credit: Christopher Rasmussen

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
 - Images become more smooth
- Gaussian convolved with Gaussian...

... is another Gaussian

- So can smooth with small-width kernel, repeat, and get same result as largerwidth kernel would have
- Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width σ V2
- Separable kernel
 - Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution (center location only)

1	2	1		2	3	3
2	4	2	*	3	5	5
1	2	1		4	4	6

The filter factors into a product of 1D filters:

Followed by convolution along the remaining column:

along rows:

Separability

Why is separability useful in practice?

Separability

Why is separability useful in practice?

MxN image, PxQ filter

- 2D convolution: ~MNPQ multiply-adds
- Separable 2D: ~MN(P+Q) multiply-adds

```
Speed up = PQ/(P+Q)
9x9 filter = ~4.5x faster
```

Practical matters

How big should the filter be?

- Values at edges should be near zero
- Gaussians have infinite extent...
- Rule of thumb for Gaussian: set filter half-width to about 3 σ

What we have learned today?

•

- Image histograms
- Linear systems (filters)
- Convolution and correlation
- Gaussian filter
- Median filter

Median filters

- Operates over a window by selecting the median intensity in the window.
- 'Rank' filter as based on ordering of gray levels
 - E.G., min, max, range filters

 $h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$

 $h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$

Median filter?

h[.,.]

		_	_			_		_	
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

I[.,.]

		Ś			

Median filters

- Operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?

Noisy Jack – Salt and Pepper

Mean Jack – 3 x 3 filter

Very Mean Jack – 11 x 11 filter

Noisy Jack – Salt and Pepper

Median Jack – 3 x 3

Very Median Jack – 11 x 11

Median filters

- Operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution? Secret: Median filtering is sorting.
- Is median filter linear?

What we have learned today?

•

- Image histograms
- Linear systems (filters)
- Convolution and correlation
- Gaussian filter
- Median filter

Bonus materials

Bilateral filtering

• Bilateral filter tries to smooth image but still preserve edges

increasing texture with Gaussian convolution HALOS

increasing texture with bilateral filter **NO HALOS**

Definition

Gaussian blur

$$I_{\mathbf{p}}^{\mathrm{b}} = \sum_{\mathbf{q} \in S} \frac{G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|)}{\mathrm{space}} I_{\mathbf{q}}$$

• only spatial distance, intensity ignored

Bilateral filter [Aurich 95, Smith 97, Tomasi 98]

$$I_{\mathbf{p}}^{\text{bf}} = \underbrace{\frac{1}{W_{\mathbf{p}}^{\text{bf}}}}_{\mathbf{q}\in\mathcal{S}} \underbrace{\sum_{\mathbf{q}\in\mathcal{S}} G_{\sigma_{s}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{r}}(|I_{\mathbf{p}}-I_{\mathbf{q}}|) I_{\mathbf{q}}}_{\text{space range}}$$
normalization
• spatial and range distances

• weights sum to 1

Example on a Real Image

- Kernels can have complex, spatially varying shapes
- Linear? Shift-invariant?

input

output

Bilateral Filter is Expensive

- Brute-force computation is slow (several minutes)
 - Two nested for loops: for each pixel, look at all pixels
 - Non-linear, depends on image content
 ⇒ no FFT, no pre-computation...
- Fast approximations exist
 - E.g., Durand 02, Weiss 06
 - Significant loss of accuracy
 - No formal understanding of accuracy versus speed
 - Better approximation (see this <u>paper</u>)

Summary

- Filtering is important
 - Even it does not give you state-of-the-art result, very handy for lots of things (denoising in particular)
 - Very basic, everyone expects you to understand that
 - Core component to understand more advance techniques (convolutional neural network, for example)
- Most interesting (manageable) filters are linear, often shift-invariant (same everywhere)
 - All linear shift-invariant filters can be depicted with convolution
 - Most convolutional filters people referred to in CV is actually cross-correlation in signal processing
- Filters that are separable (e.g., Gaussian filters) can be further speed up
- Some common filters:
 - Gaussian filters (linear? shift-invariant? Separable?)
 - Yes, yes, yes
 - Median filters (linear? shift-invariant? Separable?)
 - No, yes, no
 - Bilateral filters (linear? shift-invariant? Separable?)
 - No, yes, no