ECE 4973/5973: Lecture 5 Spatial Frequencies in Images

•

Samuel Cheng Slide credits: James Thompkin

Fourier series

A bold idea (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

Jean Baptiste Joseph Fourier (1768-1830)

Fourier series

A bold idea (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

Our building block:

 $A\sin(\omega t) + B\cos(\omega t)$

Add enough of them to get any signal *g(t)* you want!

Fourier analysis in images

Spatial domain images

Fourier decomposition frequency amplitude images

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering More: http://www.cs.unm.edu/~brayer/vision/fourier.html

Signals can be composed

Spatial domain images

Fourier decomposition frequency amplitude images

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering More: http://www.cs.unm.edu/~brayer/vision/fourier.html

Fourier Bases

Teases away 'fast vs. slow' changes in the image.

This change of basis is the Fourier Transform

Hays

Basis reconstruction

First 9 basis fns

First 400 basis fns

Danny Alexander

Natural image

Natural image

Fourier decomposition Frequency coefficients (amplitude)

What does it mean to be at pixel x,y? What does it mean to be more or less bright in the Fourier decomposition image?

Think-Pair-Share

Match the spatial domain image to the Fourier magnitude image

Hoiem

Fourier Transform

- Stores the amplitude and phase at each frequency:
 - For mathematical convenience, this is often notated in terms of real and complex numbers
 - Related by Euler's formula

Fourier Transform

- Stores the amplitude and phase at each frequency:
 - For mathematical convenience, this is often notated in terms of real and complex numbers
 - Related by Euler's formula

Fourier Transform

- Stores the amplitude and phase at each frequency:
 - For mathematical convenience, this is often notated in terms of real and complex numbers
 - Related by Euler's formula

Amplitude encodes how much signal there is at a particular frequency:

$$A = \pm \sqrt{\operatorname{Re}(\varphi)^2 + \operatorname{Im}(\varphi)^2}$$

Phase encodes spatial information (indirectly):

$$\phi = \tan^{-1} \frac{\mathrm{Im}(\varphi)}{\mathrm{Re}(\varphi)}$$

Amplitude / Phase

- Amplitude tells you "how much"
- Phase tells you "where"
- Translate the image?
 - Amplitude unchanged
 - Adds a constant to the phase.

Amplitude

Phase

Cheebra

Zebra phase, cheetah amplitude

Cheetah phase, zebra amplitude

- The frequency amplitude of natural images are quite similar — Heavy in low frequencies, falling off in high frequencies
- Most information in the image is "carried" in the phase, not the amplitude
 - Not quite clear why

Filtering in spatial domain

Slide: Hoiem

Now we can edit frequencies!

Low and High Pass filtering

Removing frequency bands

JPEG Image Compression

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Slides: Efros

Image compression using DCT

• Compute DCT filter responses in each 8x8 block

	\rightarrow								
Filter responses	-415.38	-30.19	-61.20	27.24	56.13	-20.10	-2.39	0.46	1
	4.47	-21.86	-60.76	10.25	13.15	-7.09	-8.54	4.88	
<i>C</i> –	-46.83	7.37	77.13	-24.56	-28.91	9.93	5.42	-5.65	v
G =	-48.53	12.07	34.10	-14.76	-10.24	6.30	1.83	1.95	
	12.12	-6.55	-13.20	-3.95	-1.88	1.75	-2.79	3.14	1 *
	-7.73	2.91	2.38	-5.94	-2.38	0.94	4.30	1.85	
	-1.03	0.18	0.42	-2.42	-0.88	-3.02	4.12	-0.66	
	-0.17	0.14	-1.07	-4.19	-1.17	-0.10	0.50	1.68	

Quantization divisers (element-wise)

	[16	11	10	16	24	40	51	61
Q =	12	12	14	19	26	58	60	55
	14	13	16	24	40	57	69	56
	14	17	22	29	51	87	80	62
	18	22	37	56	68	109	103	77
	24	35	55	64	81	104	113	92
	49	64	78	87	103	121	120	101
	72	92	95	98	112	100	103	99

Quantized values

	-26	-3	-6	2	2	-1	0	0
<i>B</i> =	0	-2	-4	1	1	0	0	0
	-3	1	5	-1	-1	0	0	0
	-3	1	2	-1	0	0	0	0
	1	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	-							_

JPEG Encoding

• Entropy coding (Huffman-variant)

Quantized values

Linearize *B* like this.

Color spaces: YCbCr

Fast to compute, good for compression, used by TV

Y (Cb=0.5,Cr=0.5)

Cb (Y=0.5,Cr=0.5)

Most JPEG images & videos subsample chroma

PSP Comp 3 2x2 Chroma subsampling 285K Original 1,261K lossless 968K PNG

Summary

- Signals and images can be decomposed into sinusoidal components (Fourier analysis/transform/spectral theorem)
 - High frequency components correspond to rough textures and edges
 - Low frequency components correspond to smooth regions
- Fourier coefficients are complex (with real and imaginary parts)
 - Can also be decomposed into amplitude and phase
 - Somehow phases carry more semantic information
- Can "filter" an image by removing some frequency components of an image
 - Low-pass filter (removing HP) tends to smooth out an image
- Images usually compressed more efficiently in frequency domain (e.g. JPEG)