
ECE 4973/5973: Lecture 11

Harris Corner Detector

Slide credits: James Tompkin, Rick Szeliski, Svetlana Lazebnik, Derek 

Hoiem and Grauman&Leibe



Corners

Slides from Rick Szeliski, Svetlana Lazebnik, Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial

Szeliski 4.1

Also called interest points, key points, etc.

Often described as ‘local’ features.

Filtering Edges

Feature 
points



Corner Detection: Basic Idea

• We might recognize the point by looking 
through a small window.

• We want a window shift in any direction to 
give a large change in intensity.

“Edge”:

no change 

along the edge 

direction

“Corner”:

significant 

change in all 

directions

“Flat” region:

no change in 

all directions

A. Efros



Corner Detection by Auto-correlation
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IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Change in appearance of window w(x,y) for shift [u,v]:



As a surface

Fun time:
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Correspond the three 

red crosses to (b,c,d).



Corner Detection by Auto-correlation
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We want to discover how E behaves for small shifts

Change in appearance of window w(x,y) for shift [u,v]:

But this is very slow to compute naively.

O(window_width2 * shift_range2 * image_width2)

O( 112 * 112 * 6002 ) = 5.2 billion of these 

14.6 thousand per pixel in your image



Corner Detection by Auto-correlation
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Can speed up using Tayler series expansion

Change in appearance of window w(x,y) for shift [u,v]:

We want to discover how E behaves for small shifts



Recall: Taylor series expansion

A function f can be represented by an infinite series 

of its derivatives at a single point a:

Approximation of 

f(x) = ex 

centered at f(0)

Wikipedia

As we care about window 

centered, we set a = 0

(MacLaurin series)



Approximating 𝐸(𝑢, 𝑣)
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𝐸(𝑢, 𝑣) ≈ ∑𝑥,𝑦𝑤(𝑥, 𝑦)[𝐼𝑥𝑢 + 𝐼𝑦𝑣]
2

𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) ≈ 𝐼(𝑥, 𝑦) +
𝜕𝐼(𝑥, 𝑦)

𝜕𝑥
𝑢 +

𝜕𝐼(𝑥, 𝑦)

𝜕𝑦
𝑣 = 𝐼(𝑥, 𝑦) + 𝐼𝑥𝑢 + 𝐼𝑦𝑣

= ∑𝑥,𝑦𝑤(𝑥, 𝑦) 𝑢 𝑣
𝐼𝑥
𝐼𝑦

𝐼𝑥 𝐼𝑦
𝑢
𝑣



The surface E(u,v) is locally approximated by a 

quadratic form. Let’s try to understand its shape.

Interpreting the second moment matrix
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Linear algebra review

• Eigenvalue and eigenvector (of a square matrix)
• Hermitian (transpose-complex conjugate invariant) ⇒ real eigenvalue

• Hermitian ⇒ eigenvectors of different eigenvalues are orthogonal

• Hermitian ⇒ a complete set of orthogonal eigenvectors ⇒ diagonalizable

• A square matrix ~ transformation of a vector
• Transforming bases by 𝑇 is the same as transforming coordinates by 𝑇⊤

• Unitary: 𝑈+𝑈 = 𝐼 ⇒ preserve inner product⇒ rotation/mirror image

• For real vectors and matrices

• Hermitian become symmetry condition ⇒ 𝐴⊤ = 𝐴

• Unitary matrices becomes orthogonal matrices ⇒ 𝑂⊤𝑂 = 𝐼



Eigenvector and eigenvalue

1. Scaled eigenvector is still eigenvector with 

same eigenvalue

2. Eigenvectors diagonalize the matrix

1 2 1 1 2 2[ ] [ ]M     =

11
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Linear algebra review

• Eigenvalue and eigenvector (of a square matrix)
• Hermitian (transpose-complex conjugate invariant) ⇒ real eigenvalue

• Hermitian ⇒ eigenvectors of different eigenvalues are orthogonal

• Hermitian ⇒ a complete set of orthogonal eigenvectors ⇒ diagonalizable

• A square matrix ~ transformation of a vector
• Transforming bases by 𝑇 is the same as transforming coordinates by 𝑇⊤

• Unitary: 𝑈+𝑈 = 𝐼 ⇒ preserve inner product⇒ rotation/mirror image

• For real vectors and matrices

• Hermitian become symmetry condition ⇒ 𝐴⊤ = 𝐴

• Unitary matrices becomes orthogonal matrices ⇒ 𝑂⊤𝑂 = 𝐼

𝑈𝑢, 𝑈𝑣 = 𝑈𝑢 + 𝑈𝑣 = 𝑢+𝑈+𝑈𝑣 = 𝑢+𝑣 = ⟨𝑢, 𝑣⟩

𝑇 𝒃1 , 𝒃2
+ +

𝑢1
𝑢2

= 𝒃1, 𝒃2 𝑇+
𝑢1
𝑢2



Eigenvector and eigenvalue

3. For symmetric M, R can be made 

orthonormal (orthogonal and normalized)

• In particular,               if               (try at home)

• R orthonormal                          R is a rotation 

operation

4. E(u,v) = 1 is a rotated eclipse (by R) 

1 2 ⊥ 1 2 

1 1
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Interpreting the second moment matrix

The axis lengths of the ellipse are determined by the eigenvalues,

and the orientation is determined by a rotation matrix 𝑅.

direction of the 

slowest change

direction of the 

fastest change
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Fun time

(max)
-1/2

(min)
-1/2

1 20, 0  

1 20, 0  

1 20, 0  

Flat region

Corner

Edge



Classification of image points using eigenvalues of M

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region



Classification of image points using eigenvalues of M

“Corner”

C > 0

“Edge” 

C < 0

“Edge” 

C < 0

“Flat” 

region

|C| small

1

22
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Cornerness

α: constant (0.04 to 0.06)
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Classification of image points using eigenvalues of M

“Corner”

C > 0

“Edge” 

C < 0

“Edge” 

C < 0

“Flat” 

region

|C| small

1

2

Cornerness

α: constant (0.04 to 0.06)
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Classification of image points using eigenvalues of M

“Corner”

C > th

“Edge” 

C < th

“Edge” 

C < th

“Flat” 

region

|C| small

2)(trace)det( MMC −=

Determinant:

Trace:

1

2

Remember your linear algebra:

Cornerness

α: constant (0.04 to 0.06)



Harris corner detector

1) Compute M matrix for each window to recover 

a cornerness score 𝐶.
• Note: We can find M purely from the per-pixel image derivatives!

2) Threshold to find pixels which give large corner 

response (𝐶 > threshold).

3) Find the local maxima pixels,

i.e., suppress non-maxima.

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Corner Detector [Harris88]

1. Compute image derivatives (optionally, blur first).

2. Compute 𝑀 components

as squares of derivatives.

3. Gaussian filter g() with width s

𝐼𝑥 𝐼𝑦

𝑔(𝐼𝑥2) 𝑔(𝐼𝑦2) 𝑔(𝐼𝑥 ∘ 𝐼𝑦)

4. Compute cornerness

𝑅 5. Threshold on 𝐶 to pick high cornerness

6. Non-maxima suppression to pick peaks.

James Hays

0. Input image

We want to compute M at each pixel.
𝐼

𝐼𝑥𝑦𝐼𝑥
2 𝐼𝑦

2

𝐶 = det 𝑀 −𝛼 trace 𝑀 2

= 𝑔 𝐼𝑥
2 ∘ 𝑔 𝐼𝑦

2 − 𝑔 𝐼𝑥 ∘ 𝐼𝑦
2

−𝛼 𝑔 𝐼𝑥
2 + 𝑔 𝐼𝑦

2 2

𝑀 =
𝑔(𝐼𝑥

2) 𝑔(𝐼𝑥𝐼𝑦)

𝑔(𝐼𝑥𝐼𝑦) 𝑔(𝐼𝑦
2)



Harris Detector: Steps



Harris Detector: Steps

Compute corner response 𝐶



Harris Detector: Steps

Find points with large corner response: 𝐶 > threshold



Harris Detector: Steps

Take only the points of local maxima of 𝐶



Harris Detector: Steps



Shi-Tomashi corner detector

• Just a slight variation of Harris corner detector

• Instead of having

as criterion. We have 

instead 
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Conclusion

• Key point, interest point, local feature detection is a staple in 

computer vision. Uses such as
• Image alignment 

• 3D reconstruction

• Motion tracking (robots, drones, AR)

• Indexing and database retrieval

• Object recognition

• Harris corner detection is one classic example

• More key point detection techniques next time


