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What we will learn today?

• Optical flow

• Lucas-Kanade method

• Horn-Schunk method

• Gunnar-Farneback method

• Pyramids for large motion

• Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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From images to videos

• A video is a sequence of frames captured over time

• Now our image data is a function of space (x, y) and time (t)
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• Definition: optical flow is the apparent motion of 
brightness patterns in the image

• Note: apparent motion can be caused by lighting 
changes without any actual motion
• Think of a uniform rotating sphere under fixed lighting 

vs. a stationary sphere under moving illumination
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Optical flow
• Definition: optical flow is the apparent motion of 

brightness patterns in the image

• Note: apparent motion can be caused by lighting 
changes without any actual motion
• Think of a uniform rotating sphere under fixed lighting 

vs. a stationary sphere under moving illumination

GOAL: Recover image motion at each pixel from 
optical flow
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Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT 

Optical flow

Vector field function of the 
spatio-temporal image 
brightness variations 



Estimating optical flow
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Estimating optical flow
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• Key assumptions
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every frame

• Small motion: points do not move very far

• Spatial coherence: points move like their neighbors

I(x,y,t–1) I(x,y,t)

So
u

rc
e:

 S
ilv

io
 S

av
ar

es
e



Estimating optical flow

• Given two subsequent frames, estimate the apparent motion field 
u(x,y), v(x,y) between them

• Key assumptions
• Brightness constancy:  projection of the same point looks the same in 

every frame

• Small motion: points do not move very far

• Spatial coherence: points move like their neighbors

I(x,y,t–1) I(x,y,t)

So
u

rc
e:

 S
ilv

io
 S

av
ar

es
e



Estimating optical flow

• Given two subsequent frames, estimate the apparent motion field 
u(x,y), v(x,y) between them

• Key assumptions
• Brightness constancy:  projection of the same point looks the same in 

every frame

• Small motion: points do not move very far

• Spatial coherence: points move like their neighbors

I(x,y,t–1) I(x,y,t)

So
u

rc
e:

 S
ilv

io
 S

av
ar

es
e



Key Assumptions: small motions

* Slide from Michael Black, CS143 2003
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• Brightness Constancy Equation:

I(x, y, t -1) = I(x+u(x, y), y+v(x, y), t)

I(x,y,t–1) I(x,y,t)

→ ∇𝐼𝑇 𝑢 𝑣 𝑇 + 𝐼𝑡 = 0
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The brightness constancy constraint
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• Brightness Constancy Equation:

I(x, y, t -1) = I(x+u(x, y), y+v(x, y), t)

Linearizing the right side using Taylor expansion:

I(x,y,t–1) I(x,y,t)

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 ≈ 0Hence,

Image derivative along x
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The brightness constancy constraint



Filters used to find the derivatives

𝐼𝑥 𝐼𝑦 𝐼𝑡



• The component of the flow perpendicular to the gradient 
(i.e., parallel to the edge) cannot be measured
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gradient
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• The component of the flow perpendicular to the gradient 
(i.e., parallel to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v ) satisfies the equation, 
so does (u+u’, v+v’ ) if

∇𝐼𝑇 𝑢′ 𝑣′ 𝑇 = 0
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The aperture problem

Actual motion
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The aperture problem
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The brightness constancy constraint

• How many equations and unknowns per pixel?
•One equation (this is a scalar equation!), two unknowns (u,v)

• Can we use this equation to recover image motion (u,v) at 
each pixel?

∇𝐼𝑇 𝑢 𝑣 𝑇 + 𝐼𝑡 = 0



What we will learn today?

• Optical flow

• Lucas-Kanade method

• Horn-Schunk method

• Gunnar Farneback method

• Pyramids for large motion

• Applications

Reading: [Szeliski] Chapters: 8.4, 8.5
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Solving the  ambiguity…

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo 
vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–
679, 1981.
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• How to get more equations for a pixel?

• Spatial coherence constraint:

• Assume the pixel’s neighbors have the same (u,v)
• If we use a 5x5 window, that gives us 25 equations per pixel
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Lucas-Kanade flow
• Overconstrained linear system:
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Lucas-Kanade flow
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by
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Conditions for solvability
• Optimal (u, v) satisfies Lucas-Kanade equation
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Conditions for solvability
• Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues 1 and  2 of ATA should not be too small

• ATA should be well-conditioned

–  1/  2 should not be too large ( 1 = larger eigenvalue)
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Conditions for solvability
• Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind anything to you?

When is This Solvable?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues 1 and  2 of ATA should not be too small

• ATA should be well-conditioned

–  1/  2 should not be too large ( 1 = larger eigenvalue)
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M = ATA is the second moment matrix !

(Harris corner detector…)
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• Eigenvectors and eigenvalues of ATA relate to edge 
direction and magnitude 
• The eigenvector associated with the larger eigenvalue points in 

the direction of fastest intensity change

• The other eigenvector is orthogonal to it

M = ATA is the second moment matrix !
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• Eigenvectors and eigenvalues of ATA relate to edge 
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Interpreting the eigenvalues

1

2

“Corner”

1 and 2 are large,

1 ~ 2

1 and 2 are small “Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of image points using eigenvalues of the 
second moment matrix:
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Edge

– gradients very large or very small

– large 1, small 2
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Low-texture region

– gradients have small magnitude

– small 1, small 2
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High-texture region

– gradients are different, large magnitudes

– large 1, large 2
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Errors in Lucas-Kanade

What are the potential causes of errors in this procedure?

• Suppose ATA is easily invertible

• Suppose there is not much noise in the image

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Errors in Lucas-Kanade

Inherent assumptions of this procedure

• Suppose ATA is easily invertible

• Suppose there is not much noise in the image

• When our assumptions are violated

– Brightness constancy is not satisfied

– The motion is not small

– A point does not move like its neighbors

• window size is too large

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



What we will learn today?

• Optical flow

• Lucas-Kanade method

• Horn-Schunk method

• Gunnar Farneback method

• Pyramids for large motion

• Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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• The flow is formulated as a global energy function which is should be 
minimized:
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• The flow is formulated as a global energy function which is should be 
minimized:

• The first part of the function is the brightness consistency.



Horn-Schunk method for optical flow

• The flow is formulated as a global energy function which is should be 
minimized:

• The second part is the smoothness constraint. It’s trying to make sure 
that the changes between frames are small.



Horn-Schunk method for optical flow

• The flow is formulated as a global energy function which is should be 
minimized:

• 𝛼 is a regularization constant. Larger values of 𝛼 lead to smoother 
flow.



Horn-Schunk method for optical flow

• The flow is formulated as a global energy function which is should be 
minimized:

• We want to find 𝑢, 𝑣 to minimize E. Note that 𝑢, 𝑣 themselves are 
function. E is a “functional” of 𝑢, 𝑣.  By calculus of variation, as ϵ→0, 
for arbitrary ෤𝑢 𝑥, 𝑦 , ෤𝑣(𝑥, 𝑦)

1

ϵ
𝐸 𝑢 + 𝜖 ෤𝑢,𝑣 + 𝜖 ෤𝑣, 𝑢𝑥 + 𝜖 ෤𝑢𝑥, 𝑢𝑦 + 𝜖 ෤𝑢𝑦, 𝑣𝑥 + 𝜖 ෤𝑣𝑥, 𝑣𝑦 + 𝜖 ෤𝑣𝑦 − 𝐸 𝑢, 𝑣, 𝑢𝑥, 𝑢𝑦, 𝑣𝑥, 𝑣𝑦 = 0

𝐿(𝑢,𝑣,𝑢𝑥,𝑢𝑦,𝑣𝑥,𝑣𝑦)



Euler Lagrange equation (1-D case)

• 𝐸 𝑢 = 𝐿׬ 𝑢, 𝑢𝑥 𝑑𝑥

• If 𝑢 is an extremum, 
𝐸 𝑢+𝜖෥𝑢 −𝐸 𝑢

𝜖
= 0 for any ෤𝑢

⇒
1

𝜖
න𝐿 𝑢 + 𝜖෤𝑢, 𝑢𝑥 + 𝜖෤𝑢𝑥 − 𝐿 𝑢, 𝑢𝑥 𝑑𝑥 = 0

⇒න
𝜕𝐿

𝜕𝑢
෤𝑢 +

𝜕𝐿

𝜕𝑢𝑥
෤𝑢𝑥𝑑𝑥 = 0

⇒
𝜕𝐿

𝜕𝑢
−

𝜕

𝜕𝑥

𝜕𝐿

𝜕𝑢𝑥
= 0
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• Where the Laplace operator can be often 
computed as

where             is the weighted average of u measured at (x,y).
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Dense Optical Flow with Michael 
Black’s method 

• Michael Black took Horn-Schunk’s method one step 
further, starting from the regularization constant:

• Which looks like a quadratic:

• And replaced it with this:

• Why does this regularization work better?



What we will learn today?

• Optical flow

• Lucas-Kanade method

• Horn-Schunk method

• Gunnar Farneback method

• Pyramids for large motion

• Applications
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Gunnar Farneback Optical Flow

• A’s and b’s should vary with location. Thus

• Consider a window instead, and minimizes

𝐴(𝐱) =
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෍

Δ𝐱∈𝒩

𝑤(Δ𝐱)‖𝐴(𝐱 + Δ𝐱)𝑑(𝐱) − Δ𝑏(𝐱 + Δ𝐱)‖2
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Δ𝑏(𝐱) = −
1

2
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Iterative update

• Assume previous some a priori displacement field 

𝐴(𝐱) =
𝐴1(𝐱) + 𝐴2(𝐱 +

ሚ𝐝(𝐱))

2

Δ𝑏(𝐱) = −
1

2
(𝑏2(𝐱) − 𝑏1(𝐱)) + 𝐴(𝐱) ሚ𝐝(𝐱)

ሚ𝐝(𝐱)

𝐝 𝐱 ← 𝐴 𝐱 −1Δ𝑏(𝐱)
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• Small motion: points do not move very far

• Brightness constancy:  projection of the same point looks 
the same in every frame
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Reduce the resolution!
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Optical Flow Results
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Optical Flow Results
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• http://www.ces.clemson.edu/~stb/klt/
• OpenCV

http://www.ces.clemson.edu/~stb/klt/


What we will learn today?

• Optical flow

• Lucas-Kanade method

• Horn-Schunk method

• Pyramids for large motion

• Common fate

• Applications



• Key assumptions (Errors in Lucas-Kanade)

• Small motion: points do not move very far

• Brightness constancy:  projection of the same point looks 
the same in every frame

• Spatial coherence: points move like their neighbors

Recap
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Motion segmentation
• How do we represent the motion in this scene?
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Motion segmentation

• Break image sequence into “layers” each of which has a 
coherent (affine) motion

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.
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Example result

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. So
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http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf


What we will learn today?

• Optical flow

• Lucas-Kanade method

• Horn-Schunk method

• Gunnar Farneback method

• Pyramids for large motion

• Applications



Uses of motion

• Tracking features

• Segmenting objects based on motion cues

• Learning dynamical models

• Improving video quality
• Motion stabilization

• Super resolution

• Tracking objects

• Recognizing events and activities



Estimating 3D structure
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Segmenting objects based on motion cues

• Background subtraction
• A static camera is observing a scene

• Goal: separate the static background from the moving foreground
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Segmenting objects based on motion cues

• Motion segmentation
• Segment the video into multiple coherently moving objects

S. J. Pundlik and S. T. Birchfield, Motion Segmentation at Any Speed, 
Proceedings of the British Machine Vision Conference  (BMVC) 2006
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Z.Yin and R.Collins, "On-the-fly Object Modeling while Tracking," IEEE Computer Vision and Pattern 
Recognition (CVPR '07), Minneapolis, MN, June 2007. 

Tracking objects
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D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their Appearance. PAMI 2007.

Tracker

Recognizing events and activities
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http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html


When do the optical flow assumptions fail?

In other words, in what situations does the displacement of 
pixel patches 
not represent physical movement of points in space?

1. Well, TV is based on illusory motion 

– the set is stationary yet things seem to move 

2. A uniform rotating sphere 

– nothing seems to move, yet it is rotating 

3. Changing directions or intensities of lighting can make things seem to move 

– for example, if the specular highlight on a rotating sphere moves.

4. Muscle movement can make some spots on a cheetah move opposite direction of motion. 

– And infinitely more break downs of optical flow.



Optical flow without motion!



Summary

• Optical flow: apparent motion in a video sequence

• Optical flow are based on following assumptions:
• Brightness constancy
• Small motion
• Spatial coherence

• Optical flow methods
• Lucas-Kanade: same motion over a patch
• Horn-Schunk: enforcing small motion with total variation penalty
• Gunnar-Farneback: model intensity as quadratic function
• Combine with pyramid to address larger motions

• Applications: motion segmentation, reconstruction, etc. 
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