ECE 4973: Lecture 16 Optical Flow

Samuel Cheng

Slide credit: Juan Carlos Niebles and Ranjay Krishna

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Gunnar-Farneback method
- Pyramids for large motion
- Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

What we will learn today?

• Optical flow

- Lucas-Kanade method
- Horn-Schunk method
- Gunnar Farneback method
- Pyramids for large motion
- Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

From images to videos

- A video is a sequence of frames captured over time
- Now our image data is a function of space (x, y) and time (t)

Why is motion useful?

Why is motion useful?

• Definition: optical flow is the *apparent* motion of brightness patterns in the image

- Definition: optical flow is the *apparent* motion of brightness patterns in the image
- Note: apparent motion can be caused by lighting changes without any actual motion
 - Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination

- Definition: optical flow is the *apparent* motion of brightness patterns in the image
- Note: apparent motion can be caused by lighting changes without any actual motion
 - Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination

GOAL: Recover image motion at each pixel from optical flow

Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT

I(x,y,t-1)

I(x,y,t-1)

 \circ

 \circ

igodol

I(x,y,t)

 Given two subsequent frames, estimate the apparent motion field u(x,y), v(x,y) between them

- Given two subsequent frames, estimate the apparent motion field u(x,y), v(x,y) between them
- Key assumptions
 - **Brightness constancy:** projection of the same point looks the same in every frame

- Given two subsequent frames, estimate the apparent motion field u(x,y), v(x,y) between them
- Key assumptions
 - **Brightness constancy:** projection of the same point looks the same in every frame
 - Small motion: points do not move very far

- Given two subsequent frames, estimate the apparent motion field u(x,y), v(x,y) between them
- Key assumptions
 - **Brightness constancy:** projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - **Spatial coherence:** points move like their neighbors

Key Assumptions: small motions

Assumption:

The image motion of a surface patch changes gradually over time.

* Slide from Michael Black, CS143 2003

Key Assumptions: spatial coherence

Assumption

- * Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
- * Since they also project to nearby points in the image, we expect spatial coherence in image flow.

Key Assumptions: brightness Constancy

Assumption

Image measurements (e.g. brightness) in a small region remain the same although their location may change.

Key Assumptions: brightness Constancy

Assumption

Image measurements (e.g. brightness) in a small region remain the same although their location may change.

$$I(x+u, y+v, t+1) = I(x, y, t)$$

(assumption)

* Slide from Michael Black, CS143 2003

• Brightness Constancy Equation:

$$I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)$$

• Brightness Constancy Equation:

$$I(x, y, t - 1) = I(x + u(x, y), y + v(x, y), t)$$

Linearizing the right side using Taylor expansion:

$$I(x + u, y + v, t) \gg I(x, y, t - 1) + I_x \times u(x, y) + I_y \times v(x, y) + I_t$$

• Brightness Constancy Equation:

$$I(x, y, t - 1) = I(x + u(x, y), y + v(x, y), t)$$

Linearizing the right side using Taylor expansion:

 $I(x + u, y + v, t) \gg I(x, y, t - 1) + I_x * u(x, y) + I_y * v(x, y) + I_t$

• Brightness Constancy Equation:

$$I(x, y, t - 1) = I(x + u(x, y), y + v(x, y), t)$$

Linearizing the right side using Taylor expansion:

 $I(x + u, y + v, t) \gg I(x, y, t - 1) + I_x * u(x, y) + I_y * v(x, y) + I_t$

• Brightness Constancy Equation:

$$I(x, y, t - 1) = I(x + u(x, y), y + v(x, y), t)$$

Linearizing the right side using Taylor expansion:

 $I(x + u, y + v, t) \gg I(x, y, t - 1) + I_x \approx u(x, y) + I_y \times v(x, y) + I_t$ $I(x + u, y + v, t) - I(x, y, t - 1) = I_x \times u(x, y) + I_y \times v(x, y) + I_t$

• Brightness Constancy Equation:

$$I(x, y, t - 1) = I(x + u(x, y), y + v(x, y), t)$$

Linearizing the right side using Taylor expansion:

$$I(x + u, y + v, t) \gg I(x, y, t - 1) + I_x \approx u(x, y) + I_y \times v(x, y) + I_t$$

$$I(x + u, y + v, t) - I(x, y, t - 1) = I_x \times u(x, y) + I_y \times v(x, y) + I_t$$

$$\rightarrow \nabla I^T [u \ v]^T + I_t = 0$$

• Brightness Constancy Equation:

$$I(x, y, t - 1) = I(x + u(x, y), y + v(x, y), t)$$

Linearizing the right side using Taylor expansion:

$$I(x + u, y + v, t) \gg I(x, y, t - 1) + I_x \approx u(x, y) + I_y \times v(x, y) + I_t$$

$$I(x + u, y + v, t) - I(x, y, t - 1) = I_x \times u(x, y) + I_y \times v(x, y) + I_t$$

$$\rightarrow \nabla I^T [u \ v]^T + I_t = 0$$

Hence, $I_x u + I_y v + I_t \approx 0$

Filters used to find the derivatives

 $\nabla I^T [u \ v]^T + I_t = 0$

• The component of the flow perpendicular to the gradient (i.e., parallel to the edge) cannot be measured gradient

 $\nabla I^T [u \ v]^T + I_t = 0$

• The component of the flow perpendicular to the gradient (i.e., parallel to the edge) cannot be measured gradient

 $\nabla I^T [u \ v]^T + I_t = 0$

• The component of the flow perpendicular to the gradient (i.e., parallel to the edge) cannot be measured gradient

 $\nabla I^T [u \ v]^T + I_t = 0$

• The component of the flow perpendicular to the gradient (i.e., parallel to the edge) cannot be measured gradient

 $\nabla I^T [u \ v]^T + I_t = 0$

• The component of the flow perpendicular to the gradient (i.e., parallel to the edge) cannot be measured gradient

The aperture problem

The aperture problem

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

The brightness constancy constraint

Can we use this equation to recover image motion (u,v) at each pixel?

$$\nabla I^T [u \ v]^T + I_t = 0$$

• How many equations and unknowns per pixel?

•One equation (this is a scalar equation!), two unknowns (u,v)

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Gunnar Farneback method
- Pyramids for large motion
- Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

• How to get more equations for a pixel?

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

- How to get more equations for a pixel?
- Spatial coherence constraint:

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

- How to get more equations for a pixel?
- Spatial coherence constraint:
- Assume the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel

$$\nabla I(\mathbf{p}_{i})^{T} \begin{bmatrix} u \\ v \end{bmatrix} + I_{t}(\mathbf{p}_{i}) = 0$$

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

- How to get more equations for a pixel?
- Spatial coherence constraint:
- Assume the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel

 $\nabla I(\mathbf{p_i})^T \begin{bmatrix} u \\ v \end{bmatrix} + I_t(\mathbf{p_i}) = 0$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

Lucas-Kanade flow

• Overconstrained linear system:

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix} A = b_{25\times 2 \ 2\times 1 \ 25\times 1}$$

Lucas-Kanade flow

• Overconstrained linear system

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix} A = -\begin{bmatrix} A & d = b \\ 25 \times 2 & 2 \times 1 & 25 \times 1 \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

Least squares solution for d given by $(A^T A) d = A^T b$

Lucas-Kanade flow

• Overconstrained linear system

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix} A = b$$

$$25 \times 2 2 \times 1 25 \times 1$$

Least squares solution for d given by $(A^T A) d = A^T b$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

The summations are over all pixels in the K x K window

Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

When is This Solvable?

- **A^TA** should be invertible
- A^TA should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of **A^TA** should not be too small
- **A^TA** should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad A^T b$$

When is This Solvable?

- **A^TA** should be invertible
- **A^TA** should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of **A^TA** should not be too small
- **A^TA** should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

Eigenvectors and eigenvalues of A^TA relate to edge direction and magnitude

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

- Eigenvectors and eigenvalues of A^TA relate to edge direction and magnitude
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

- Eigenvectors and eigenvalues of A^TA relate to edge direction and magnitude
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change
 - The other eigenvector is orthogonal to it

Interpreting the eigenvalues

Classification of image points using eigenvalues of the second moment matrix:

- large λ_1 , small λ_2

Low-texture region

– small λ_1 , small λ_2

High-texture region

Errors in Lucas-Kanade

What are the potential causes of errors in this procedure?

- Suppose A^TA is easily invertible
- Suppose there is not much noise in the image

Errors in Lucas-Kanade

Inherent assumptions of this procedure

- Suppose A^TA is easily invertible
- Suppose there is not much noise in the image
- When our assumptions are violated
 - Brightness constancy is **not** satisfied
 - The motion is **not** small
 - A point does **not** move like its neighbors
 - window size is too large

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Gunnar Farneback method
- Pyramids for large motion
- Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

• The flow is formulated as a global energy function which is should be minimized:

$$E= \iint ig[(I_x u+I_y v+I_t)^2+lpha^2(\|
abla u\|^2+\|
abla v\|^2)ig]\,\mathrm{d}x\mathrm{d}y$$

• The flow is formulated as a global energy function which is should be minimized:

$$E= \iint ig| \left(I_x u + I_y v + I_t
ight)^2 + lpha^2 (\|
abla u\|^2 + \|
abla v\|^2)ig] \,\mathrm{d}x\mathrm{d}y$$

• The first part of the function is the brightness consistency.

• The flow is formulated as a global energy function which is should be minimized:

$$E = \iint ig[(I_x u + I_y v + I_t)^2 + lpha^2 \, \|
abla u\|^2 + \|
abla v\|^2ig] \, \mathrm{d}x\mathrm{d}y$$

• The second part is the smoothness constraint. It's trying to make sure that the changes between frames are small.

• The flow is formulated as a global energy function which is should be minimized:

$$E = \iint ig[(I_x u + I_y v + I_t)^2 + lpha^2 (\|
abla u\|^2 + \|
abla v\|^2)ig] \,\mathrm{d}x\mathrm{d}y$$

• α is a regularization constant. Larger values of α lead to smoother flow.
• The flow is formulated as a global energy function which is should be minimized:

$$E=\iintigg[\underbrace{(I_xu+I_yv+I_t)^2+lpha^2(\|
abla u\|^2+\|
abla v\|^2)}_{L(u,v,u_\chi,u_\chi,v_\chi,v_\chi)}igg]\,\mathrm{d}x\mathrm{d}y$$

• We want to find u, v to minimize E. Note that u, v themselves are function. E is a "functional" of u, v. By calculus of variation, as $\epsilon \rightarrow 0$, for arbitrary $\tilde{u}(x, y), \tilde{v}(x, y)$

$$\frac{1}{\epsilon} \left[E \left(u + \epsilon \tilde{u}, v + \epsilon \tilde{v}, u_x + \epsilon \tilde{u}_x, u_y + \epsilon \tilde{u}_y, v_x + \epsilon \tilde{v}_x, v_y + \epsilon \tilde{v}_y \right) - E \left(u, v, u_x, u_y, v_x, v_y \right) \right] = 0$$

- $E(u) = \int L(u, u_x) dx$
- If u is an extremum, $\frac{E(u+\epsilon \widetilde{u})-E(u)}{\epsilon} = 0$ for any \widetilde{u}

•
$$E(u) = \int L(u, u_x) dx$$

• If u is an extremum, $\frac{E(u+\epsilon \tilde{u})-E(u)}{\epsilon} = 0$ for any \tilde{u}
 $\Rightarrow \frac{1}{\epsilon} \int L(u+\epsilon \tilde{u}, u_x + \epsilon \tilde{u}_x) - L(u, u_x) dx = 0$

•
$$E(u) = \int L(u, u_x) dx$$

• If u is an extremum, $\frac{E(u+\epsilon \tilde{u})-E(u)}{\epsilon} = 0$ for any \tilde{u}
 $\Rightarrow \frac{1}{\epsilon} \int L(u+\epsilon \tilde{u}, u_x + \epsilon \tilde{u}_x) - L(u, u_x) dx = 0$
 $\Rightarrow \int \frac{\partial L}{\partial u} \tilde{u} + \frac{\partial L}{\partial u_x} \tilde{u}_x dx = 0$

•
$$E(u) = \int L(u, u_x) dx$$

• If u is an extremum, $\frac{E(u+\epsilon \tilde{u})-E(u)}{\epsilon} = 0$ for any \tilde{u}
 $\Rightarrow \frac{1}{\epsilon} \int L(u+\epsilon \tilde{u}, u_x + \epsilon \tilde{u}_x) - L(u, u_x) dx = 0$
 $\Rightarrow \int \frac{\partial L}{\partial u} \tilde{u} + \frac{\partial L}{\partial u_x} \tilde{u}_x dx = 0$
 $\Rightarrow \int \tilde{u} \left(\frac{\partial L}{\partial u} - \frac{\partial}{\partial x}\frac{\partial L}{\partial u_x}\right) dx = 0$

•
$$E(u) = \int L(u, u_x) dx$$

• If u is an extremum, $\frac{E(u+\epsilon \tilde{u})-E(u)}{\epsilon} = 0$ for any \tilde{u}
 $\Rightarrow \frac{1}{\epsilon} \int L(u+\epsilon \tilde{u}, u_x + \epsilon \tilde{u}_x) - L(u, u_x) dx = 0$
 $\Rightarrow \int \frac{\partial L}{\partial u} \tilde{u} + \frac{\partial L}{\partial u_x} \tilde{u}_x dx = 0$
 $\Rightarrow \int \tilde{u} \left(\frac{\partial L}{\partial u} - \frac{\partial}{\partial x} \frac{\partial L}{\partial u_x} \right) dx = 0$
 $\Rightarrow \frac{\partial L}{\partial u} - \frac{\partial}{\partial x} \frac{\partial L}{\partial u_x} = 0$

•
$$E(u,v) = \iint L(u,v,u_x,u_y,v_x,v_y) dx dy$$

•
$$E(u, v) = \iint L(u, v, u_x, u_y, v_x, v_y) dx dy$$

• If (u, v) is an extremum, $\frac{E(u+\epsilon \tilde{u}, v+\epsilon \tilde{v})-E(u, v)}{\epsilon} = 0$ for any $(\tilde{u}, \tilde{v}) \Rightarrow \cdots$

•
$$E(u, v) = \iint L(u, v, u_x, u_y, v_x, v_y) dx dy$$

• If (u, v) is an extremum, $\frac{E(u+\epsilon \tilde{u}, v+\epsilon \tilde{v})-E(u, v)}{\epsilon} = 0$ for any $(\tilde{u}, \tilde{v}) \Rightarrow \cdots$

$$\Rightarrow \begin{cases} \frac{\partial L}{\partial u} - \frac{\partial}{\partial x} \frac{\partial L}{\partial u_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial u_y} = 0\\ \frac{\partial L}{\partial v} - \frac{\partial}{\partial x} \frac{\partial L}{\partial v_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial v_y} = 0 \end{cases}$$

$$E= \iint igg[\underbrace{(I_x u+I_y v+I_t)^2+lpha^2(\|
abla u\|^2+\|
abla v\|^2)}_{L(u,v,u_x,u_y,v_x,v_y)} igg] \mathrm{d}x\mathrm{d}y$$

$$E= \iint igg[\underbrace{(I_x u+I_y v+I_t)^2+lpha^2(\|
abla u\|^2+\|
abla v\|^2)}_{L(u,v,u_x,u_y,v_x,v_y)} igg] \mathrm{d}x\mathrm{d}y$$

E-L:
$$\begin{cases} \frac{\partial L}{\partial u} - \frac{\partial}{\partial x} \frac{\partial L}{\partial u_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial u_y} = 0\\ \frac{\partial L}{\partial v} - \frac{\partial}{\partial x} \frac{\partial L}{\partial v_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial v_y} = 0 \end{cases}$$

$$E = \iint \left[\underbrace{(I_x u + I_y v + I_t)^2 + \alpha^2 (\|\nabla u\|^2 + \|\nabla v\|^2)}_{L(u,v,u_x,u_y,v_x,v_y)} \right] dxdy$$

$$E - L: \begin{cases} \frac{\partial L}{\partial u} - \frac{\partial}{\partial x} \frac{\partial L}{\partial u_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial u_y} = 0 \\ \frac{\partial L}{\partial v} - \frac{\partial}{\partial x} \frac{\partial L}{\partial v_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial v_y} = 0 \end{cases}$$

$$E - L: \begin{cases} \frac{\partial L}{\partial u} - \frac{\partial}{\partial x} \frac{\partial L}{\partial u_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial u_y} = 0 \\ \frac{\partial L}{\partial v} - \frac{\partial}{\partial x} \frac{\partial L}{\partial v_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial v_y} = 0 \end{cases}$$

$$E - L: \begin{cases} \frac{\partial L}{\partial u} - \frac{\partial}{\partial x} \frac{\partial L}{\partial u_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial v_y} = 0 \\ \frac{\partial L}{\partial v_x} - \frac{\partial}{\partial x} \frac{\partial L}{\partial v_y} - \frac{\partial}{\partial y} \frac{\partial L}{\partial v_y} = 0 \end{cases}$$

$$E - L: \begin{cases} \frac{\partial L}{\partial v} - \frac{\partial}{\partial x} \frac{\partial L}{\partial v_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial v_y} = 0 \\ \frac{\partial L}{\partial v_x} - \frac{\partial}{\partial x} \frac{\partial L}{\partial v_y} - \frac{\partial}{\partial y} \frac{\partial L}{\partial v_y} = 0 \end{cases}$$

$$E = \iint \left[\underbrace{(I_x u + I_y v + I_t)^2 + \alpha^2 (\|\nabla u\|^2 + \|\nabla v\|^2)}_{L(u,v,u_x,u_y,v_x,v_y)} \right] dxdy$$

$$= \lim_{t \to \infty} \left\{ \frac{\partial L}{\partial u} - \frac{\partial}{\partial x} \frac{\partial L}{\partial u_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial u_y} = 0 \\ \frac{\partial L}{\partial v} - \frac{\partial}{\partial x} \frac{\partial L}{\partial v_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial v_y} = 0 \\ \frac{\partial L}{\partial v} = 2(I_x u + I_y v + I_t)I_y \\ \frac{\partial L}{\partial v} = 2(I_x u + I_y v + I_t)I_y \\ \frac{\partial L}{\partial u_x} = 2\alpha^2 u_x, \quad \frac{\partial L}{\partial u_y} = 2\alpha^2 u_y \\ \frac{\partial L}{\partial v_x} = 2\alpha^2 v_x, \quad \frac{\partial L}{\partial v_y} = 2\alpha^2 v_y \\ \frac{\partial L}{\partial v_x} = 2\alpha^2 v_x, \quad \frac{\partial L}{\partial v_y} = 2\alpha^2 v_y \\ I_x(I_x u + I_y v + I_t) - \alpha^2 \nabla^2 u = 0 \\ I_y(I_x u + I_y v + I_t) - \alpha^2 \nabla^2 v = 0 \\ \end{bmatrix}$$

$$I_x(I_x u + I_y v + I_t) - \alpha^2 \nabla^2 u = 0$$
$$I_y(I_x u + I_y v + I_t) - \alpha^2 \nabla^2 v = 0$$

$$I_x(I_x u + I_y v + I_t) - \alpha^2 \nabla^2 u = 0$$

$$I_y(I_x u + I_y v + I_t) - \alpha^2 \nabla^2 v = 0$$

• Where the Laplace operator can be often computed as

$$\nabla^2 u(x, y) = \overline{u}(x, y) - u(x, y)$$

where $\overline{u}(x,y)$ is the weighted average of *u* measured at (x,y).

• Now we substitute $\nabla^2 u(x, y) = \overline{u}(x, y) - u(x, y)$ in: $I_x (I_x u + I_y v + I_t) - \alpha^2 \nabla^2 u = 0$ $I_v (I_x u + I_v v + I_t) - \alpha^2 \nabla^2 v = 0$

- Now we substitute $\nabla^2 u(x, y) = \overline{u}(x, y) u(x, y)$ in: $I_x (I_x u + I_y v + I_t) - \alpha^2 \nabla^2 u = 0$ $I_v (I_x u + I_v v + I_t) - \alpha^2 \nabla^2 v = 0$
- We get:

$$(I_x^2 + \alpha^2)u + I_x I_y v = \alpha^2 \overline{u} - I_x I_t$$
$$I_x I_y u + (I_y^2 + \alpha^2)v = \alpha^2 \overline{v} - I_y I_t$$

• Which is linear in u and v and can be solved for each pixel individually.

Dense Optical Flow with Michael Black's method

$$E = \iint ig[(I_x u + I_y v + I_t)^2 + lpha^2 (\|
abla u\|^2 + \|
abla v\|^2)ig] \,\mathrm{d}x\mathrm{d}y$$

- Michael Black took Horn-Schunk's method one step further, starting from the regularization constant:
- Which looks like a quadratic:

 $\| | | \nabla u \|^2 + \| \nabla v \|^2$

• And replaced it with this:

• Why does this regularization work better?

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Gunnar Farneback method
- Pyramids for large motion
- Applications

- Model image intensity with quadratic function
- Image 1:
- Image 2:

- Model image intensity with quadratic function
- Image 1:

$$f_1(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + b_1^T \mathbf{x} + c_1$$

- Model image intensity with quadratic function
- Image 1:

$$f_1(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + b_1^T \mathbf{x} + c_1$$

$$f_2(\mathbf{x}) = f_1(\mathbf{x} + \mathbf{d}) = (\mathbf{x} - \mathbf{d})^T A(\mathbf{x} - \mathbf{d}) + b_1^T (\mathbf{x} - \mathbf{d}) + c_1$$

- Model image intensity with quadratic function
- Image 1:

$$f_1(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + b_1^T \mathbf{x} + c_1$$

$$f_2(\mathbf{x}) = f_1(\mathbf{x} + \mathbf{d}) = (\mathbf{x} - \mathbf{d})^T A(\mathbf{x} - \mathbf{d}) + b_1^T (\mathbf{x} - \mathbf{d}) + c_1$$
$$= \mathbf{x}^T A \mathbf{x} + \underbrace{(b_1 - 2A_1 \mathbf{d})^T}_{b_2^T} \mathbf{x} + \cdots$$

- Model image intensity with quadratic function
- Image 1:

$$f_1(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + b_1^T \mathbf{x} + c_1$$

• Image 2:

$$f_2(\mathbf{x}) = f_1(\mathbf{x} + \mathbf{d}) = (\mathbf{x} - \mathbf{d})^T A(\mathbf{x} - \mathbf{d}) + b_1^T (\mathbf{x} - \mathbf{d}) + c_1$$
$$= \mathbf{x}^T A \mathbf{x} + \underbrace{(b_1 - 2A_1 \mathbf{d})^T}_{b_2^T} \mathbf{x} + \cdots$$

 $\Rightarrow b_2 = b_1 - 2A\mathbf{d}$

- Model image intensity with quadratic function
- Image 1:

$$f_1(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + b_1^T \mathbf{x} + c_1$$

$$f_2(\mathbf{x}) = f_1(\mathbf{x} + \mathbf{d}) = (\mathbf{x} - \mathbf{d})^T A(\mathbf{x} - \mathbf{d}) + b_1^T (\mathbf{x} - \mathbf{d}) + c_1$$
$$= \mathbf{x}^T A \mathbf{x} + \underbrace{(b_1 - 2A\mathbf{d})^T}_{b_2^T} \mathbf{x} + \cdots$$

$$\Rightarrow b_2 = b_1 - 2A\mathbf{d}$$

$$\Rightarrow \mathbf{d} = -\frac{1}{2}A^{-1}(b_2 - b_1) = A^{-1}\Delta b \qquad \Delta b = -\frac{1}{2}(b_2 - b_1)$$

• A's and b's should vary with location. Thus

$$A(\mathbf{x}) = \frac{A_1(\mathbf{x}) + A_2(\mathbf{x})}{2}$$
$$\Delta b(\mathbf{x}) = -\frac{1}{2}(b_2(\mathbf{x}) - b_1(\mathbf{x}))$$

$$A(\mathbf{x})\mathbf{d}(\mathbf{x}) = \Delta b(\mathbf{x})$$

• A's and b's should vary with location. Thus

$$A(\mathbf{x}) = \frac{A_1(\mathbf{x}) + A_2(\mathbf{x})}{2}$$
$$\Delta b(\mathbf{x}) = -\frac{1}{2}(b_2(\mathbf{x}) - b_1(\mathbf{x}))$$
$$A(\mathbf{x})\mathbf{d}(\mathbf{x}) = \Delta b(\mathbf{x})$$

• Consider a window instead, and minimizes

$$\sum_{\Delta \mathbf{x} \in \mathcal{N}} w(\Delta \mathbf{x}) \| A(\mathbf{x} + \Delta \mathbf{x}) d(\mathbf{x}) - \Delta b(\mathbf{x} + \Delta \mathbf{x}) \|^2$$

$$\mathbf{d}(\mathbf{x}) = \left(\sum w A^T A\right)^{-1} \sum w A^T \Delta b$$

Iterative update

• Assume previous some a priori displacement field $\tilde{d}(x)$

$$A(\mathbf{x}) = \frac{A_1(\mathbf{x}) + A_2(\mathbf{x} + \tilde{\mathbf{d}}(\mathbf{x}))}{2}$$

$$\Delta b(\mathbf{x}) = -\frac{1}{2}(b_2(\mathbf{x}) - b_1(\mathbf{x})) + \mathbf{A}(\mathbf{x})\mathbf{\tilde{d}}(\mathbf{x})$$

$$\mathbf{d}(\mathbf{x}) \leftarrow A(\mathbf{x})^{-1} \Delta b(\mathbf{x})$$

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Gunnar Farneback method
- Pyramids for large motion
- Applications

Source: Silvio Savarese

• Key assumptions (Errors in Lucas-Kanade)

• Small motion: points do not move very far

- Small motion: points do not move very far
- **Brightness constancy:** projection of the same point looks the same in every frame

- Small motion: points do not move very far
- **Brightness constancy:** projection of the same point looks the same in every frame
- **Spatial coherence:** points move like their neighbors

- Small motion: points do not move very far
- **Brightness constancy:** projection of the same point looks the same in every frame
- **Spatial coherence:** points move like their neighbors

- Small motion: points do not move very far
- **Brightness constancy:** projection of the same point looks the same in every frame
- **Spatial coherence:** points move like their neighbors

Revisiting the small motion assumption

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2nd order terms dominate)
 - How might we solve this problem?

Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2nd order terms dominate)
 - How might we solve this problem?

Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2nd order terms dominate)
 - How might we solve this problem?

Reduce the resolution!

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Optical Flow Results

Optical Flow Results

CAP5415 Computer Vision 2003 * From Khurram Hassan-Shafique

Optical Flow Results

CAP5415 Computer Vision 2003 * From Khurram Hassan-Shafique

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Pyramids for large motion
- Common fate
- Applications

Recap

• Key assumptions (Errors in Lucas-Kanade)

- Small motion: points do not move very far
- **Brightness constancy:** projection of the same point looks the same in every frame

• **Spatial coherence:** points move like their neighbors

Source: Silvio Savarese

Motion segmentation

• How do we represent the motion in this scene?

Motion segmentation

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

• Break image sequence into "layers" each of which has a coherent (affine) motion

Example result

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Gunnar Farneback method
- Pyramids for large motion
- Applications

Uses of motion

- Tracking features
- Segmenting objects based on motion cues
- Learning dynamical models
- Improving video quality
 - Motion stabilization
 - Super resolution
- Tracking objects
- Recognizing events and activities

Estimating 3D structure

Source: Silvio Savarese

Segmenting objects based on motion cues

- Background subtraction
 - A static camera is observing a scene
 - Goal: separate the static *background* from the moving *foreground*

Segmenting objects based on motion cues

- Motion segmentation
 - Segment the video into multiple *coherently* moving objects

Tracking objects

Z.Yin and R.Collins, "On-the-fly Object Modeling while Tracking," *IEEE Computer Vision and Pattern Recognition (CVPR '07),* Minneapolis, MN, June 2007.

Recognizing events and activities

D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their Appearance</u>. PAMI 2007.

Source: Silvio Savarese

When do the optical flow assumptions fail?

In other words, in what situations does the displacement of pixel patches

not represent physical movement of points in space?

1. Well, TV is based on illusory motion

- the set is stationary yet things seem to move

2. A uniform rotating sphere

- nothing seems to move, yet it is rotating

3. Changing directions or intensities of lighting can make things seem to move

- for example, if the specular highlight on a rotating sphere moves.
- 4. Muscle movement can make some spots on a cheetah move opposite direction of motion.
 And infinitely more break downs of optical flow.

Summary

- Optical flow: apparent motion in a video sequence
- Optical flow are based on following assumptions:
 - Brightness constancy
 - Small motion
 - Spatial coherence
- Optical flow methods
 - Lucas-Kanade: same motion over a patch
 - Horn-Schunk: enforcing small motion with total variation penalty
 - Gunnar-Farneback: model intensity as quadratic function
 - Combine with pyramid to address larger motions
- Applications: motion segmentation, reconstruction, etc.