ECE 4973/5973: Lecture 6 Resampling

Samuel Cheng Slide credits: Noah Snavely

Image Scaling

This image is too big to fit on the screen. How can we generate a half-sized version?

Image sub-sampling

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

1/8

1/4

Image sub-sampling

1/2

1/4 (2x zoom) 1/8 (4x zoom)

Why does this look so crufty?

Source: S. Seitz

Image sub-sampling

Even worse for synthetic images

http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/ The blue and green colors are actually the same

Artifacts from sampling

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = $1/30$ sec. for video, $1/24$ sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Aliasing problem

• 1D example (sinewave):

Aliasing problem

• 1D example (sinewave):

Nyquist-Shannon Sampling Theorem

- When sampling a signal at discrete intervals, the sampling frequency must be $\geq 2 \times f_{\text{max}}$
- f_{max} = max frequency

Nyquist limit – 2D example

Revisit FT

$$
f(t) \xrightarrow{\mathcal{F}} F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt
$$

$$
F(\omega) \xrightarrow{\mathcal{F}^{-1}} f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega
$$

$$
\frac{f(t) * g(t) \stackrel{\mathcal{F}}{\rightarrow} F(\omega) G(\omega)}{f(t) g(t) \stackrel{\mathcal{F}}{\rightarrow} F(\omega) * G(\omega)}
$$

$$
\mathcal{F}[f(t)*g(t)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau \ e^{-i\omega t} dt = \int_{-\infty}^{\infty} f(\tau) \int_{-\infty}^{\infty} g(t-\tau)e^{-i\omega(t-\tau)}dt \ e^{-i\omega \tau} d\tau
$$

$$
= \int_{-\infty}^{\infty} f(\tau) G(\omega) e^{-i\omega \tau} d\tau = G(\omega) \int_{-\infty}^{\infty} f(\tau) e^{-i\omega \tau} d\tau = F(\omega) G(\omega)
$$

$$
f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega \xrightarrow{\omega + t'} f(-\omega') = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(t') e^{-i\omega' t'} dt' = \frac{1}{2\pi} \mathcal{F}[F(t')] (\omega')
$$

$$
f(t) \xrightarrow{\mathcal{F}} F(\omega) \Leftrightarrow F(t) \xrightarrow{\mathcal{F}} 2\pi f(-\omega)
$$

Pulse train

- A function $f(t)$ sampled at $t = nT$ is simply $f(t)p(t)$
- $\mathcal{F}[f(t)p(t)] = F(\omega) * P(\omega)$
- What is $P(\omega)$?

$$
f(t)g(t) \stackrel{\mathcal{F}}{\rightarrow} F(\omega) * G(\omega)
$$

Fourier Transform of Pulse train

 $f(t) \rightarrow$ $\mathcal F$ $F(\omega) \Leftrightarrow F(t) \rightarrow$ $\mathcal F$ $2\pi f(-\omega$

Fourier Series of Pulse train

$$
\left\langle e^{i2\pi n \frac{t}{T}}, e^{i2\pi m \frac{t}{T}} \right\rangle = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{t}{2}} e^{i2\pi (n-m) \frac{t}{T}} dt = \begin{cases} 1 & \text{if } n = m \\ 0 & \text{otherwise} \end{cases}
$$

 $\mathbf \tau$

Fourier Transform of Pulse train

Revisit Nyquist-Shannon Theorem

interact(plot sinc,a=widgets.FloatSlider(min=1, max=30, step=0.05, value=15))

Aliasing in downsampling

- Downsampling is just resampling at lower rate
- Aliasing if baseband overlaps

 $f(t)g(t) \rightarrow$ $\mathcal F$ $F(\omega) * G(\omega)$

256x256 128x128 64x64 16x16 32x32

Forsyth and Ponce 2002

Gaussian pre-filtering

Gaussian 1/2

• Solution: filter the image, *then* subsample

Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

• Solution: filter the image, *then* subsample

Compare with...

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Upsampling

- This image is too small for this screen:
- How can we make it 10 times as big?
- Simplest approach: repeat each row and column 10 times
- ("Nearest neighbor interpolation")

 $d = 1$ in this example

Recall how a digital image is formed

 $F[x, y] =$ quantize{ $f(xd, yd)$ }

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Adapted from: S. Seitz

 $d = 1$ in this example

Recall how a digital image is formed

 $F[x, y] =$ quantize{ $f(xd, yd)$ }

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

 $d = 1$ in this example

- What if we don't know f ?
	- Guess an approximation: \tilde{f}
	- Can be done in a principled way: filtering
	- Convert F to a continuous function:

 $f_F(x) = F(\frac{x}{d})$ when $\frac{x}{d}$ is an integer, 0 otherwise

• Reconstruct by convolution with a *reconstruction filter, h*

$$
\tilde{f}=h*f_F
$$

Adapted from: S. Seitz

Frequency representation

Source: B. Curless

Reconstruction filters

• What does the 2D version of this hat function look like?

 $h(x,y)$ $h(x)$

performs linear interpolation

(tent function) performs **bilinear interpolation**

 $[(12-9B-6C)|x|^{3}+(-18+12B+6C)|x|^{2}+(6-2B)]$

 $(-B-6C)|x|^{3}$ + $(6B + 30C)|x|^{2}$ + $(-12B - 48C)|x|$ + $(8B + 24C)$

 $|x|$ < 1 $1 \le |x| < 2$

otherwise

Better filters give better resampled images

• **Bicubic** is common choice

 $r(x) = \frac{1}{6}$ Cubic reconstruction filter

Summary: downsampling and upsampling

Nearest-neighbor interpolation Bilinear interpolation Bicubic interpolation

DSP Interpretation

Image resampling

Upsampling downsampling

Hybrid Image

Salvador Dali, 1976

Another example

• Who is (s)he?

Hybrid Images

• A. Oliva, A. Torralba, P.G. Schyns, "Hybrid Images," SIGGRAPH 2006

Hybrid Image in FFT

Why do we get different, distance-dependent interpretations of hybrid images?

Campbell-Robson contrast sensitivity curve

Perceptual cues in the mid-high frequencies dominate perception.

Project 1 function: vis_hybrid_image.m Gaussian pyramid

Laplace Pyramid

- Derive from Gaussian pyramid
	- G1=pydn(G0); G2=pydn(G1), …
	- One level of laplace pyramid is difference between approximated and original Gaussian pyramid levels
	- $-$ L0=G0-pyup(G1); L1 = G1-pyup(G2)

Image composting

- Generate L-pyramid of orange
- Generate L-pyramid of apple
- Combine two pyramids
	- For all levels, one half from one pyramid, the other half from another
- Reconstruct image from combine pyramid

Summary

- Product in time domain = convolution in freq domain
	- Sampling can be represented as signal multiplied by pulse train
	- Infinite repeated copy in frequency domain
	- When copies overlaps => aliasing
- Downsampling naively will lead to aliasing
	- Solution: apply low pass filter before downsample
- Should apply low pass filter after upsampling
- Laplace pyramid and Gaussian pyramid
- Hybrid image and composting image