ECE 4973:

Lecture 12

Edge Detection

Samuel Cheng

Slide credits: James Hays, Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li, and Derek Hoiem

Think-Pair-Share *= Convolution operator

a) $\underline{G} = D * B$ b) $A = \underline{B} * \underline{C}$ c) $F = D * \underline{E}$

What we will learn today

- Edge detection
- Image Gradients
- Derivative of Gaussian
- Sobel edge detector
- Canny edge detector

- (A) Cave painting at Chauvet, France, about 30,000 B.C.;
- (B) Aerial photograph of the picture of a monkey as part of the Nazca Lines geoglyphs, Peru, about 700 200 B.C.;
- (C) Shen Zhou (1427-1509 A.D.): Poet on a mountain top, ink on paper, China;
- (D) Line drawing by 7-year old I. Lleras (2010 A.D.).

Hubel & Wiesel, 1960s

Walther, Chai, Caddigan, Beck & Fei-Fei, PNAS, 2011

Elder – Are Edges Incomplete? 1999

Edge 'code':

- position,
- gradient
 magnitude,
- gradient direction,
- blur.

Why do we care about edges?

 Extract information, preprocessing

 Recover geometry and viewpoint

Source: J. Hayes

Origins of edges

surface normal discontinuity

depth discontinuity

surface color discontinuity

illumination discontinuity

Closeup of edges

Surface normal discontinuity

Closeup of edges

Closeup of edges

Surface color discontinuity

What we will learn today

- Edge detection
- Image Gradients
- Derivative of Gaussian
- Sobel edge detector
- Canny edge detector

Characterizing edges

 An edge is a place of rapid change in the image intensity function

Intensity profile

Types of Discrete derivative in 1D

Backward

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

[-1, 1, 0]

Forward

$$\frac{df}{dx} = f(x+1) - f(x) = f'(x)$$

$$[0, -1, 1]$$

Central

$$\frac{df}{dx} = \frac{f(x+1) - f(x-1)}{2} = f'(x)$$

$$\frac{[-1,0,1]}{2}$$

1D discrete derivate example

$$[-1,1,0]$$

$$f(x) = 10 \quad 15 \quad 10 \quad 10 \quad 25 \quad 20 \quad 20$$

$$f'(x) = 0 \quad 5 \quad -5 \quad 0 \quad 15 \quad -5 \quad 0 \quad 0$$

2D discrete derivative - example

$$I = \begin{pmatrix} 8 & 8 & 16 & 16 & 16 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 8 & 8 & 16 & 16 & 16 \end{pmatrix} \begin{bmatrix} -1, 1, 0 \\ -1, 1, 0 \end{bmatrix}$$

$$I_{\mathbf{x}} = \begin{pmatrix} 0 & 0 & 8 & 0 & 0 \\ 0 & 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 & 0 \\ 0 & 0 & 8 & 0 & 0 \end{pmatrix}$$

Image gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient "angle" is given by
$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Source: Steve Seitz

Finite differences: example

• Which one is the gradient in the x-direction? How about y-direction?

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Source: S. Seitz

What we will learn today

- Edge detection
- Image Gradients
- Derivative of Gaussian
- Sobel edge detector
- Canny edge detector

Smoothing with different filters

Mean smoothing

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 [1 1 1]

Gaussian (smoothing * derivative)

Slide credit: Steve Seitz

Discrete Approximation

Prewitt edge detector

$$\mathbf{G}_{x} = \begin{bmatrix} +1 & 0 & -1 \\ +1 & 0 & -1 \\ +1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} +1 & 0 & -1 \end{bmatrix}$$
• Sobel edge detector smoothing differentiation

$$\mathbf{G}_{x} = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} [+1 & 0 & -1]$$
 differentiation

Sobel Operation

Magnitude:

$$\mathbf{G}=\sqrt{{\mathbf{G}_{x}}^{2}+{\mathbf{G}_{y}}^{2}}$$

Angle or direction of the gradient:

$$oldsymbol{\Theta} = atanigg(rac{\mathbf{G}_y}{\mathbf{G}_x}igg)$$

Sobel Filter example

Sobel Filter Problems

- Poor Localization (Trigger response in multiple adjacent pixels)
- Thresholding value favors certain directions over others
 - Can miss oblique edges more than horizontal or vertical edges
 - False negatives

Tradeoff between smoothing at different scales

• Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Source: D. Forsyth

Summary: Characterizing edges

 An edge is a place of rapid change in the image intensity function

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Source: S. Seitz

Smoothing with different filters

Mean smoothing

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 [1 1 1]

Gaussian (smoothing * derivative)

Slide credit: Steve Seitz

What we will learn today

- Edge detection
- Image Gradients
- Derivative of Gaussian
- Sobel edge detector
- Canny edge detector

Smooth with Gaussian filter

• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Source: S. Seitz

Derivative theorem of convolution

This theorem gives us a very useful property:

$$\frac{d}{dx}(f * g) = \frac{d}{dx} \int_{x'} f(x')g(x - x')dx' = \int_{x'} f(x') \frac{d}{dx} g(x - x')dx' = f * \frac{d}{dx} g$$

• This saves us one operation:

Source: S. Seitz

Derivative of Gaussian filter

Derivative of Gaussian filter

Derivative of Gaussian vs Sobel Operator

- Derivative of Gaussian smooth out with all near-by neighbors
- Sobel smooth out only with neighbors ⊥ to the derivative's dir

$$\mathbf{G}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix} \qquad \mathbf{G}_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}$$

Derivative of Gaussian filter

Designing an edge detector

- Criteria for an "optimal" edge detector:
 - Accurate: low false positives (detecting spurious edges caused by noise), and low false negatives (missing real edges)

Designing an edge detector

- Criteria for an "optimal" edge detector:
 - Accurate: low false positives (detecting spurious edges caused by noise), and low false negatives (missing real edges)
 - Good localization: the edges detected must be as close as possible to the true edges

Designing an edge detector

- Criteria for an "optimal" edge detector:
 - Accurate: low false positives (detecting spurious edges caused by noise), and low false negatives (missing real edges)
 - Good localization: the edges detected must be as close as possible to the true edges
 - Single response: the detector must return one point only for each true edge point; that is, minimize the number of local maxima around the true edge

What we will learn today

- Edge detection
- Image Gradients
- A simple edge detector
- Sobel edge detector
- Canny edge detector

1. Filter image with x, y derivatives of Gaussian

Derivative of Gaussian filter

Compute Gradients

gx: X Derivative of Gaussian

gy: Y Derivative of Gaussian

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient

Compute Gradient Magnitude

$$\sqrt{gx^2 + gy^2}$$
 = gradient magnitude

(x4 for visualization)

Compute Gradient Orientation

- Threshold magnitude at minimum level
- Get orientation via $\theta = \operatorname{atan}\left(\frac{gy}{gx}\right)$

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width

Non-maximum suppression for each orientation

Before Non-max Suppression

Gradient magnitude (x4 for visualization)

After non-max suppression

Gradient magnitude (x4 for visualization)

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width
- 4. 'Hysteresis' Thresholding

'Hysteresis' (adaptive) thresholding

- Two thresholds high and low
- Grad. mag. > high threshold? = strong edge
- Grad. mag. < low threshold? noise
- In between = weak edge
- 'Follow' edges starting from strong edge pixels
- Continue them into weak edges
 - Connected components (Szeliski 3.3.4)

Edge linking

Source: D. Forsyth

Final Canny Edges

$$\sigma=\sqrt{2}$$
 , $t_{low}=0.05$, $t_{high}=0.1$

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width
- 4. 'Hysteresis' Thresholding:
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
 - 'Follow' edges starting from strong edge pixels
 - Connected components (Szeliski 3.3.4)

45 years of boundary detection

Summary

- Edge can be approximated with image gradient
 - Magnitude: edge strength
 - Direction: Orientation
- Filtering is needed to reduce image noise
 - Can combine with derivative to form a single filter
 - Sober/Derivative of Gaussian
- Canny edge detector
 - Derivative of Gaussian
 - Non-maximum suppression
 - Adaptive thresholding