
ECE 4973: Lecture 13 
Local feature extraction

Slide credits: James Tompkin, Juan Carlos Niebles and 
Ranjay Krishna



General Approach
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Quick review: Harris Corner Detector
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“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

“flat” region:
no change in all 
directions
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Quick review: Harris Corner Detector
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• Fast approximation
– Avoid computing the

eigenvalues
– α: constant

(0.04 to 0.06)
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Quick review: Harris Corner Detector
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Quick review: Harris Corner Detector
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• Translation invariance
• Rotation invariance
• Scale invariance?

Not invariant to image scale!

All points will be 
classified as edges!

Corner
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WHAT IS THE ‘SCALE’ OF A 
FEATURE POINT?



Automatic Scale Selection

K. Grauman, B. Leibe
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How to find patch sizes at which f response is equal?

What is a good f ?



Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 
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1st Derivative of Gaussian

(Laplacian of Gaussian)

Earl F. Glynn

What Is A Useful Signature Function f ?



What Is A Useful Signature Function f ?
• “Blob” detector is common for corners

– - Laplacian (2nd derivative) of Gaussian (LoG)

K. Grauman, B. Leibe

Image blob size

Sc
al

e 
sp

ac
e

Function 
response



Scale Invariant Detectors

• Harris-Laplacian1

Find local maximum of:
– Harris corner detector in 

space (image coordinates)
– Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.  IJCV 2004
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Find local maxima in position-scale space

K. Grauman, B. Leibe
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Alternative approach

Ruye Wang

Approximate LoG with Difference-of-Gaussian (DoG).



Scale Invariant Detection

• Functions for determining scale
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Laplacian
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Scale Invariant Detectors

• Harris-Laplacian1

Find local maximum of:
– Harris corner detector in 

space (image coordinates)
– Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.  IJCV 2004
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• SIFT (Lowe)2

Find local maximum of:
– Difference of Gaussians in 

space and scale
– Post-processing to 

remove “outliers”
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https://en.wikipedia.org/wiki/Harris_affine_region_detector


Approximate LoG with Difference-of-Gaussian (DoG).
Don’t get confused with Derivative of Gaussian

1. Blur image with   σ Gaussian kernel
2. Blur image with kσ Gaussian kernel
3. Subtract 2. from 1.

Alternative approach

K. Grauman, B. Leibe
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Find local maxima in position-scale space of DoG

K. Grauman, B. Leibe
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Results: Difference-of-Gaussian
• Larger circles = larger scale
• Descriptors with maximal scale response

K. Grauman, B. Leibe
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Outlier Rejection
Avoid low contrast candidates (small magnitude extrema)
• Taylor series expansion of DoG from the center pixel

where 

• Minima or maxima at 
• Iterate                                , discard candidates if

– X(k+1) does not converge
– |D(x*)|< th(~0.03)
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Further Outlier Rejection
Remove edge-like points
• Use trick similar to Harris corner detector
• Compute Hessian of D

• Let                , then 

• Reject candidates when r>10, i.e.,
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Second derivative filters
• Dxy

 ?

• Dxx
 ?

0 0 0
1 2 1
0 0 0

 
− 

 
  

0 1 0
1 0 1

0 1

1
4

0

 
−

−


 
  

*
0 0 0 0
1 1 1 1

0 0 0 0

   
   =    
  

−

  

−




SOME OTHER “KEYPOINT” EXTRACTORS



Maximally Stable Extremal Regions [Matas ‘02]

• Based on Watershed segmentation algorithm
• Select regions that stay stable over a large parameter range

K. Grauman, B. Leibe



Example Results: MSER

K. Grauman, B. Leibe



Features from Accelerated Segment Test (FAST)

Slide credit: Allyson Auger

• Darker or lighter than 
target pixel for continuous 
13-pixel run

• Can check only 1, 5, 9, 13 
pixels first. Reject non-
corner quickly

• Very fast
• Use in ORB



Review: Interest points

• Keypoint detection: repeatable 
and distinctive
– Corners, blobs, stable regions
– Harris, DoG, MSER, pixel difference



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description: 
Extract feature descriptor around each 
interest point as vector.

3) Matching: 
Compute distance between feature 
vectors to find correspondence.
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K. Grauman, B. Leibe



Image representations

• Templates
– Intensity, gradients, etc.

• Histograms
– Color, texture, SIFT descriptors, etc.

James Hays



• Texture
• Local histograms of oriented gradients
• SIFT: Scale Invariant Feature Transform

SIFT – Lowe IJCV 2004

For what things do we compute histograms?

James Hays



SIFT
• Find Difference of Gaussian scale-space extrema
• Post-processing

– Position interpolation
– Discard low-contrast points
– Eliminate points along edges



SIFT
• Find Difference of Gaussian scale-space extrema
• Post-processing

– Position interpolation
– Discard low-contrast points
– Eliminate points along edges

• Orientation estimation



T. Tuytelaars, B. Leibe

SIFT Orientation Normalization
• Compute orientation histogram
• Select dominant orientation ϴ
• Normalize: rotate to fixed orientation

– In practice, use a local reference frame aligned with the orientation 
before computing orientation histogram 

0 2π

[Lowe, SIFT, 1999]

0 2π



SIFT
• Find Difference of Gaussian scale-space extrema
• Post-processing

– Position interpolation
– Discard low-contrast points
– Eliminate points along edges

• Orientation estimation
• Descriptor extraction

– Motivation: We want some sensitivity to spatial 
layout, but not too much, so blocks of histograms 
give us that.



SIFT Descriptor Extraction
• Given a keypoint with scale and orientation:

– Pick scale-space image which most closely matches 
estimated scale

– Resample image to match orientation OR
– Normalize orientation by shifting histogram.



SIFT Descriptor Extraction
• Given a keypoint with scale and orientation

Utkarsh Sinha

Gradient 
magnitude 

and 
orientation

8 bin ‘histogram’
- add magnitude 
amounts!



SIFT Descriptor Extraction
• Within each 4x4 window

Utkarsh Sinha

Gradient 
magnitude 

and 
orientation

8 bin ‘histogram’
- add magnitude 
amounts!

Weight magnitude 
that is added to 
‘histogram’ by 
Gaussian



SIFT Descriptor Extraction
• Extract 8 x 16 values into 128-dim vector
• Illumination invariance:

– Working in gradient space, so robust to I = I + b
– Normalize vector to [0…1]

• Robust to I = αI brightness changes

– Clamp all vector values > 0.2 to 0.2.
• Robust to “non-linear illumination effects” 
• Image value saturation / specular highlights

– Renormalize



HOW GOOD IS SIFT?



SIFT Repeatability

Lowe IJCV 2004
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SIFT Repeatability
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SIFT Repeatability

Lowe IJCV 2004



Local Descriptors: SURF

K. Grauman, B. Leibe

• Fast approximation of SIFT idea
 Efficient computation by 2D box filters & 

integral images
⇒ 6 times faster than SIFT

 Equivalent quality for object identification

[Bay, ECCV’06], [Cornelis, CVGPU’08]

• GPU implementation available
 Feature extraction @ 200Hz

(detector + descriptor, 640×480 img)
 http://www.vision.ee.ethz.ch/~surf



Local Descriptors: Shape Context

Count the number of points 
inside each bin, e.g.:

Count = 4

Count = 10

...

Log-polar binning: 
More precision for nearby 
points, more flexibility for 
farther points.

Belongie & Malik, ICCV 2001
K. Grauman, B. Leibe



Shape Context Descriptor



Self-similarity Descriptor

Matching Local Self-Similarities across Images 
and Videos, Shechtman and Irani, 2007

James Hays



Self-similarity Descriptor

Matching Local Self-Similarities across Images 
and Videos, Shechtman and Irani, 2007

James Hays



Self-similarity Descriptor

Matching Local Self-Similarities across Images 
and Videos, Shechtman and Irani, 2007

James Hays



Local binary pattern (LBP)
• Introduced by Ojala et al. in 1996
• Popular in late 2000



LBP



Different detectable textures by LBP



“Advanced” LBP(P,R)



Rotated LBP (RLBP)
• LBP is not rotational invariance by default
• But can easily modified it to be so



Review: Local Descriptors
• Most features can be thought of as templates, histograms 

(counts), or combinations
• The ideal descriptor should be

– Robust and Distinctive
– Compact and Efficient

• Most available descriptors focus on edge/gradient information
– Capture texture information
– Color rarely used

K. Grauman, B. Leibe



Binary Robust Independent Elementary Features (BRIEF)

• Very similar to LBP but the pattern is more arbitrary
• Random pattern is usually used

– Choose 256 pairs from 35x35 pixel area
– Input is first smooth with a 9x9 Gaussian filter with σ = 7

• Resulting in 256 bit string (32 bytes)
• Usually better in pattern matching than LBP, LBP is better in 

texture analysis
• Use in ORB



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description: 
Extract feature descriptor around each 
interest point as vector.

3) Matching: 
Compute distance between feature 
vectors to find correspondence.
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K. Grauman, B. Leibe



Distance: 0.34, 0.30, 0.40
Distance: 0.61, 1.22

How do we decide which features match?



Matching for SIFT-like features
• Euclidean distance:

• Cosine similarity:

Wikipedia



Feature Matching
• Criteria 1: 

– Compute distance in feature space, e.g., Euclidean distance between 
128-dim SIFT descriptors

– Match point to lowest distance (nearest neighbor)

• Problems:
– Does everything have a match?



Feature Matching
• Criteria 2: 

– Compute distance in feature space, e.g., Euclidean 
distance between 128-dim SIFT descriptors

– Match point to lowest distance (nearest neighbor)
– Ignore anything higher than threshold (no match!)

• Problems:
– Threshold is hard to pick
– Non-distinctive features could have lots of close 

matches, only one of which is correct



Nearest Neighbor Distance Ratio

Compare distance of closest (NN1) and second-
closest (NN2) feature vector neighbor.

• If NN1 ≈ NN2,     ratio 𝑁𝑁𝑁𝑁1
𝑁𝑁𝑁𝑁2

 will be ≈ 1   -> matches too close.

• As NN1 << NN2, ratio 𝑁𝑁𝑁𝑁1
𝑁𝑁𝑁𝑁2

 tends to 0.

Sorting by this ratio puts matches in order of confidence.
Threshold ratio – but how to choose?



Nearest Neighbor Distance Ratio
• Lowe computed a probability distribution functions of ratios
• 40,000 keypoints with hand-labeled ground truth

Lowe IJCV 2004

Ratio threshold 
depends on your 
application’s view on 
the trade-off between 
the number of false 
positives and true 
positives!



Efficient compute cost
• Naïve looping: Expensive

• Operate on matrices of descriptors
• E.g., for row vectors,

features_image1 * features_image2T

produces matrix of dot product results 
for all pairs of features



Matching for binary feature
• We focus on SIFT-like (floating point) features earlier
• For binary features such as BRIEF, Hamming distance is more 

reasonable (i.e., counting number of bit differences)
• What is the Hamming distance between A and B below?



Summary
• Keypoint detection: repeatable 

and distinctive
– Corners, blobs, stable regions
– Harris, DoG, pixel difference

• Descriptors: robust and selective
– Spatial histograms of orientation
– SIFT, LBP, BRIEF

• Matching:
– SIFT-like: Euclidean, cosine 

similarity (usually better)
– LBP-like (binary): Hamming distance
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