ECE 49/3: Lecture 13
Local feature extraction

Slide credits: James Tompkin, Juan Carlos Niebles and
Ranjay Krishna



General Approach

Similarity
" measure
[0
= e.g. color e.g. color
“Npixels d(fA,fB)<T
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. Find a set of

distinctive key-
points

. Define a region

around each
keypoint

. Extract and

normalize the
region content

. Compute a local

descriptor from the
normalized region

. Match local

descriptors

Slide credit: Bastian Leibe



Quick review: Harris Corner Detector

“flat” region: “edge”: “corner”:
no change in all no change along significant change
directions the edge direction in all directions

Slide credit: Alyosha Efros



Quick review: Harris Corner Detector

6 =det(M)—atrace(M)’ = A4, —a(4, + 4,)

* Fast approximation

— Avoid computing the
eigenvalues

— o constant
(0.04 to 0.06)

Slide credit: Kristen Grauman
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Quick review: Harris Corner Detector

Slide adapted from Darya Frolova, Denis Simakov



Quick review: Harris Corner Detector

 Translation invariance

e Rotation invariance

 Scale invariance?

A mm £

Corner All points will be
classified as edges!

N\

Not invariant to image scale!

Slide credit: Kristen Grauman
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WHAT IS THE ‘SCALE’ OF A
FEATURE POINT?



Automatic Scale Selection

f([il...im (x,0)) = f(Iil...im (x',o"))

How to find patch sizes at which f response is equal?
What is a good 7

K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)

Response
of some
function f

; a0 10 9
2.0°3.39 e 10 ‘:r.a]F- )

f, ., (x,0)) S, . (x',0")

K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)

Response
of some
function f
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z.0°3.89 crale 18 <r.r-1]:=
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K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)

Response
of some
function f
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)

Response
of some
function f
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z.0°3.89 crale 18 <r.r-1]:=

f, ., (x,0)) fd, . (x',09)

K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)

Response |}
of some
function f

scale i 44 | i
fa, ., (x,0)) VACIS

K. Grauman, B. Leibe
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)

Response
of some
function f

sdhmrTrTTTTTT T T
20389

S, (x,0))

K. Grauman, B. Leibe
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What Is A Useful Signature Function f ?

Single Gaussian

15t Derivative of Gaussian

1st Derivative

100

Earl F. Glynn



What Is A Useful Signature Function f ?
“Blob” detector is common for corners

— - LapIaC|an (2" derivative) of Gaussian (LoG)

Scale spac

A

I://I
\ Function
/ response

\
"IIII
I

> Image blob size




Scale Invariant Detectors

scale

* Harris-Laplacian? )

Find local maximum of:

— Harris corner detector in

Yy

space (image coordinates)

— Laplacian in scale .
<« Harris

\

<« Laplacian —>

1K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. 1JCV 2004
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Find local maxima in position-scale space

1 \ Find maxima

Pl ey ey
S A
s L A S

S S S S

= List of
(x, y,s)

K. Grauman, B. Leibe



Alternative approach

Approximate LoG with Difference-of-Gaussian (DoG).

expl -2 el el el — -
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Scale Invariant Detection

* Functions for determining scale _

Kernels:

0.2}

_ |

(Laplacian)

0.1

_ 7 SRS TR NSNS SR W RS NN (S NSNS SRR

(Difference of Gaussians)

-0.3F

== .Laplacian :
{| == DoG :

1) 17,1 OO SOOI SRS SOOI, */ ATTRNE B

where Gaussian R
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Laplacian

2000

Characteristic scale
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Scale Invariant Detectors

. . scale
* Harris-Laplacian' )

— Harris corner detector in

-
Find local maximum of: y .
/’\

T
(-
@
@)
©
o
: ) 9
space (image coordinates) Y L
— Laplacian in scale < Harris >
e SIFT (Lowe)? scale
Find local maximum of: 1 — A
— Difference of Gaussians in = /0
@)
space and scale 3
— Post-processing to Y S~
remove “outliers” >
<« DoG — X

1K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. 1JCV 2004
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https://en.wikipedia.org/wiki/Harris_affine_region_detector

Alternative approach

Approximate LoG with Difference-of-Gaussian (DoG).
Don’t get confused with Derivative of Gaussian

1. Blur image with o Gaussian kernel
2. Blur image with ko Gaussian kernel
3. Subtract 2. from 1.

K. Grauman, B. Leibe



Find local maxima in position-scale space of DoG

Input image

oc=0707.k =2 =1.414

| \ Find maxima

Pl ey ey
S A
s L A S

s L S LSS
..‘ 7‘ 7@'
> S
O SIS S

= List of
(x, y,s)

K. Grauman, B. Leibe



Results: Difference-of-Gaussian

e Larger circles = larger scale

* Descriptors with maximal scale response

K. Grauman, B. Leibe



Outlier Rejection

Avoid low contrast candidates (small magnitude extrema)

* Taylor series expansion of DoG from the center pixel
oD" 1 ,0°D

D(x)=D, + X+—X X A S
" bx 27 ox2 P
£ L S LS S
_1 S S S S S S S
o°D oD s

e Minima or maxima at X*=-—

92D " D . OX : :
* |terate x&+D « — , discard candidates if

2
0x 0x e ()

— Xk+1) does not converge
— |D(x*)| < th(~0.03)



Further Outlier Rejection
Remove edge-like points

e Use trick similar to Harris corner detector
* Compute Hessian of D

H_|:Dxx ny} tr(H)=D_ +D, =4 +4,
D, D,| det(H)=D,D, —D; =42,

* Llet »=4/4,,then
tr(H)’ _ (h+24) _ (rd, +24,)° _ (r+1)°
det(H) A4,  rA2

. Reject candidates when r>10, i.e., UD" (10+])

det(H) 10

(r +1)* / r is a monotonic function for » > 1



Second derivative filters

+ D, ?

D 7

XX

0
-1
0

1 0




SOME OTHER “KEYPOINT” EXTRACTORS



Maximally Stable Extremal Regions mats oz
* Based on Watershed segmentation algorithm
e Select regions that stay stable over a large parameter range

K. Grauman, B. Leibe



Example Results: MSER

K. Grauman, B. Leibe



Features from Accelerated Segment Test (FAST)

* Darker or lighter than
target pixel for continuous
13_pixe| run 13-pixel run

* Cancheckonly1,5,9, 13
pixels first. Reject non-
corner quickly

* Very fast
* Usein ORB

Slide credit: Allyson Auger



Review: Interest points

* Keypoint detection: repeatable
and distinctive

— Corners, blobs, stable regions
— Harris, DoG, MSER, pixel difference

-

‘-!.\zee‘ |
3 "'%“3{

—

(a) Gray scale input image (b) Detected MSERS



Local features: main components

1) Detection:

Find a set of distinctive key points.

2) Description:
Extract feature descriptor around each
interest point as vector.

1
X, x, =[x",...,x""]

3) Matching:
Compute distance between feature
vectors to find correspondence.

d(x,,X,)<T

K. Grauman, B. Leibe



Image representations

Y2 21

 Templates i
-,

— Intensity, gradients, etc. L1 J

* Histograms

— Color, texture, SIFT descriptors, etc.



For what things do we compute histograms?

e Texture
* Local histograms of oriented gradients
e SIFT: Scale Invariant Feature Transform
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SIFT — Lowe [JCV 2004
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SIFT

* Find Difference of Gaussian scale-space extrema

* Post-processing
— Position interpolation
— Discard low-contrast points
— Eliminate points along edges



SIFT

* Find Difference of Gaussian scale-space extrema

* Post-processing
— Position interpolation
— Discard low-contrast points
— Eliminate points along edges

* Orientation estimation



SIFT Orientation Normalization

 Compute orientation histogram
e Select dominant orientation 6

e Normalize: rotate to fixed orientation

— In practice, use a local reference frame aligned with the orientation
before computing orientation histogram




SIFT

Find Difference of Gaussian scale-space extrema

Post-processing

— Position interpolation

— Discard low-contrast points
— Eliminate points along edges

Orientation estimation

Descriptor extraction

— Motivation: We want some sensitivity to spatial
layout, but not too much, so blocks of histograms
give us that.



SIFT Descriptor Extraction

* Given a keypoint with scale and orientation:

— Pick scale-space image which most closely matches
estimated scale

— Resample image to match orientation OR
— Normalize orientation by shifting histogram.
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SIFT Descriptor Extraction

* Given a keypoint with scale and orientation

16x16 window 128 dimensional vector
l‘ ..l. ph W
AR
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Utkarsh Sinha



SIFT Descriptor Extraction

e Within each 4x4 window

H alls K
Gradient . Al /< 8 bin ‘histogram’
magnitude ¥ - add magnitude
and x|\ amounts!
orientation ‘1Y
21 2R
“a

Weight magnitude
that is added to
‘histogram’ by
Gaussian

Utkarsh Sinha



SIFT Descriptor Extraction

e Extract 8 x 16 values into 128-dim vector

* [[lumination invariance:
— Working in gradient space, so robustto/=1/+b
— Normalize vector to [0...1]
* Robust to / = al brightness changes

— Clamp all vector values > 0.2 to 0.2.
* Robust to “non-linear illumination effects”
* Image value saturation / specular highlights

— Renormalize



HOW GOOD IS SIFT?



SIFT Repeatability
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SIFT Repeatability

S SO I“— —t |
a0 b————. JI-_____’I___L_F_?T__._'—__;___IEE_'—T__
_ | | T
= | | | I .
= 60 b————. _|I ________ I _________ 4|_ _______ _%_._._ .....
z | | | |
™ I I I |
% d_[] _________ _{. ________ I _________ .I_ _______ _I_ _________
o Matching location and scale —+—
20 | Matching location, scale, and orientation -—s-— |
| Mearest dlescriptnrin Itjatat:nase ln
| | | |
0 I I I |
0 10 20 30 40 all

Viewpoint angle (degrees)

Lowe IJCV 2004



SIFT Repeatability

o With 16 orientations — +
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Lowe IJCV 2004



SIFT Repeatability
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Lowe IJCV 2004



Local Descriptors: SURF

Fast approximation of SIFT idea

Efficient computation by 2D box filters &
integral images
=> 6 times faster than SIFT

Equivalent quality for object identification

GPU implementation available

Feature extraction @ 200Hz
(detector + descriptor, 640x480 img)

http://www.vision.ee.ethz.ch/~surf

[Bay, ECCV’06], [Cornelis, CVGPU'08]

K. Grauman, B. Leibe



Local Descriptors: Shape Context

Count the number of points
inside each bin, e.g.:

Count=4

Count =10

Log-polar binning:

More precision for nearby
points, more flexibility for
farther points.

Belongie & Malik, ICCV 2001



Shape Context Descriptor




Self-similarity Descriptor

Figure 1. These images of the same object (a heart) do NOT share
common image properties (colors, textures, edges), but DO share
a similar geometric layout of local internal self-similarities.

Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007



Self-similarity Descriptor

Input image Correlation Image
- surface descriptor

L .
o =t ‘) &
' ¥ i
Ly
image o
w . |
" L ry

Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007



Self-similarity Descriptor

Matc
and Videos, Shechtman and Irani, 2007



Local binary pattern (LBP)

* Introduced by Ojala et al. in 1996
* Popular in late 2000

3(7(2
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Neighborhood
of a gray-scale
image

Binary code for 2 g,
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Representation
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LBP




Different detectable textures by LBP

SRENIESILY

Spot Spot / flat Line end Edge



“Advanced” LBP(P,R)

P = Pixels
R = Radius

=

LBP(8,1)

S8

L0

*|

LBP(16,2)

LBP(20,4)



Rotated LBP (RLBP)

* LBP is not rotational invariance by default
* But can easily modified it to be so
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Review: Local Descriptors

* Most features can be thought of as templates, histograms
(counts), or combinations

* The ideal descriptor should be pAaNBELN R
— Robust and Distinctive ( SRS ) > I
NI ~\
— Compact and Efficient o

* Most available descriptors focus on edge/gradient information

— Capture texture information

— Color rarely used

K. Grauman, B. Leibe



Binary Robust Independent Elementary Features (BRIEF)

* Very similar to LBP but the pattern is more arbitrary

 Random pattern is usually used
— Choose 256 pairs from 35x35 pixel area
— Input is first smooth with a 9x9 Gaussian filter with o =7

e Resulting in 256 bit string (32 bytes)

e Usually better in pattern matching than LBP, LBP is better in
texture analysis

e Usein ORB



Local features: main components

1) Detection:

Find a set of distinctive key points.

2) Description:
Extract feature descriptor around each
interest point as vector.

1
X, X, :[xl(l),...,xf,)]

3) Matching:
Compute distance between feature
vectors to find correspondence.

K. Grauman, B. Leibe



How do we decide which features match2

Distance: 0.34, 0.30, 0.40
Distance: 0.61, 1.22



Matching for SIFT-like features

 Euclidean distance:

d(p,q) = d(q,p) = \/(QI —p1)’ + (@2 —p2)’> + -+ (¢ — Pn)?

= % i(% —Pq:)z-
i=1

e Cosine similarity:
a-b = |al|,|/b]|, cos b

A-B O = arccos(z+y/1zI1yl)

1A |2 (Bl

similarity = cos(f) =

Wikipedia



Feature Matching

 Criteria 1:

— Compute distance in feature space, e.g., Euclidean distance between
128-dim SIFT descriptors

— Match point to lowest distance (nearest neighbor)

* Problems:

— Does everything have a match?



Feature Matching

 Criteria 2:

— Compute distance in feature space, e.g., Euclidean
distance between 128-dim SIFT descriptors

— Match point to lowest distance (nearest neighbor)
— Ignore anything higher than threshold (no match!)

* Problems:
— Threshold is hard to pick

— Non-distinctive features could have lots of close
matches, only one of which is correct



Nearest Neighbor Distance Ratio

Compare distance of closest (NN1) and second-
closest (NNZ2) feature vector neighbor.

. NN1 .
e [fNN1=NN2, ratio N2 will be =1 -> matches too close.

e As NN1 << NN2, ratio NVL tends to 0.
NN?2

Sorting by this ratio puts matches in order of confidence.
Threshold ratio — but how to choose?



Nearest Neighbor Distance Ratio

* Lowe computed a probability distribution functions of ratios
e 40,000 keypoints with hand-labeled ground truth

0.8
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0.6

0.5

PDF
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0.1

0

PDF for correct matches +
PDF for incorrect matches *
:r"( i-!f\\
ff! \’“\
/ ®
/ N\,
0O 01 02 03 04 05 06 07 08 059

Ratio of distances (closest/next closest)

1

Ratio threshold
depends on your
application’s view on
the trade-off between
the number of false
positives and true
positives!

Lowe IJCV 2004



Efficient compute cost

* Naive looping: Expensive

* Operate on matrices of descriptors
* E.g., for row vectors,

features imagel * features image2?

produces matrix of dot product results
for all pairs of features



Matching for binary feature

* We focus on SIFT-like (floating point) features earlier

* For binary features such as BRIEF, Hamming distance is more
reasonable (i.e., counting number of bit differences)

* What is the Hamming distance between A and B below?

- || -
FEY
>




Summary

* Keypoint detection: repeatable
and distinctive

— Corners, blobs, stable regions
— Harris, DoG, pixel difference
e Descriptors: robust and selective
— Spatial histograms of orientation
— SIFT, LBP, BRIEF
* Matching:

— SIFT-like: Euclidean, cosine
similarity (usually better)

— LBP-like (binary): Hamming distance
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