
ECE 4973: Lecture 4 
Image Filters

Samuel Cheng

Slide credits: Juan Carlos Niebles, Ranjay Krishna, James Hays, Noah 
Snavely
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Image filtering

• Image filtering: 
• Compute function of local neighborhood at each position

• Really fundamental and everyone should know

• Handy if you don’t need state-of-the-art results
• Enhance images

• Denoise, resize, increase contrast, etc.

• Extract information from images
• Texture, edges, distinctive points, etc.

• Detect patterns
• Template matching

James Hays
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What does it do?

• Replaces each pixel with 

an average of its 

neighborhood

• Achieve smoothing effect 

(remove sharp features)
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What does it do?

• Replaces each pixel with 

an average of its 

neighborhood

• Achieve smoothing effect 

(remove sharp features)

• Why does it sum to one?
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Smoothing with box filter
James Hays



Think-Pair-Share time
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1. Practice with linear filters
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1. Practice with linear filters
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2. Practice with linear filters
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2. Practice with linear filters
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3. Practice with linear filters
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3. Practice with linear filters
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4. Practice with linear filters
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4. Practice with linear filters
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Sharpening filter

- Accentuates differences with local 

average

Source: D. Lowe

Aka unsharp masking



4. Practice with linear filters

Source: D. Lowe



Two important properties of systems

• Shift invariance (same filter/rule throughout the image)

• Linearity

33

Equivalently: S(shift(I),f) = shift(S(I,f))



Is the moving average system is shift invariant? 

34

Yes!



Linear Systems (filters)

• Is the moving average a linear system?

35

Yes!



Filter example #2: Image Segmentation

• Image segmentation based on a simple threshold:

36

255,



Simple thresholding

• Is thresholding shift-invariant?

• Is thresholding a linear system?
• f1[n,m] + f2[n,m] > T

• f1[n,m] < T

• f2[n,m]<T

37

No!

Yes!

𝑆 𝑓1 𝑛,𝑚 + 𝑓2 𝑛,𝑚 = 1

𝑆 𝑓1 𝑛,𝑚 ] + 𝑆[𝑓2 𝑛,𝑚 = 0



Correlation (we are doing so far)

This is called a (cross-)correlation operation:

Let      be the image,      be the kernel 
(filter), and      be the output image

• Can think of as a “dot product” between 
local neighborhood and kernel for each pixel



Convolution
• Same as cross-correlation, except that the kernel is 

“flipped” (horizontally and vertically)

This is called a convolution operation:

[ , ] [ , ]flip
k k

u k v k

H u v F i u j v
=− =−

= − − − −

*G H F=

[ , ] [ , ]flip flip

u k v k

k k

H u v F i u j v H F
=− =−

= + + = 



1-D: 𝑦 𝑡 = σ𝜏 𝑎 𝜏 ℎ[𝑡 − 𝜏]

Where is convolution coming from?



Why do mathematicians and signal processing researchers like 
convolution?

Any linear and shift-invariant operator can 
be represented as a convolution (and 
specified by its impulse response)

Source: S. Lazebnik



Convolution properties
• Commutative: a * b = b * a

• Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c
• Often apply several filters one after another: (((a * b1) * b2) * b3)

• This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Correlation is NOT associative

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a

Source: S. Lazebnik

* ) *( )( ) *( flip flip flipa c a bb cb c a  =  =

(𝑎 ⊗ 𝑏)⊗ 𝑐 = (𝑎𝑓𝑙𝑖𝑝 ∗ 𝑏) ⊗ 𝑐 = (𝑎𝑓𝑙𝑖𝑝 ∗ 𝑏)𝑓𝑙𝑖𝑝 ∗ 𝑐



What is ? 

• 𝑎 ∗ 𝑏 𝑓𝑙𝑖𝑝 = σ𝑖 𝑎 𝑖 𝑏 𝑛 − 𝑖 𝑓𝑙𝑖𝑝

= σ𝑖 𝑎 𝑖 𝑏[−𝑛 − 𝑖]

= σ𝑖 𝑎𝑓𝑙𝑖𝑝 −𝑖 𝑏𝑓𝑙𝑖𝑝[𝑛 + 𝑖]

= σ𝑗 𝑎𝑓𝑙𝑖𝑝 𝑗 𝑏𝑓𝑙𝑖𝑝[𝑛 − 𝑗] (𝑗 = −𝑖)

= 𝑎𝑓𝑙𝑖𝑝 ∗ 𝑏𝑓𝑙𝑖𝑝



Convolution properties
• Commutative: a * b = b * a

• Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c
• Often apply several filters one after another: (((a * b1) * b2) * b3)

• This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Correlation is NOT associative

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a

Source: S. Lazebnik

* ) *( )( ) *( flip flip flipa c a bb cb c a  =  =

(𝑎 ⊗ 𝑏)⊗ 𝑐 = (𝑎𝑓𝑙𝑖𝑝 ∗ 𝑏) ⊗ 𝑐 = (𝑎𝑓𝑙𝑖𝑝 ∗ 𝑏)𝑓𝑙𝑖𝑝 ∗ 𝑐 = (𝑎 ∗ 𝑏𝑓𝑙𝑖𝑝) ∗ 𝑐



Image support and edge effect

49

•A computer will only convolve finite support 
signals. 
• What happens at the edge?

f

h

• zero “padding”
• edge value replication
• mirror extension
• more (beyond the scope of this class)



Convolution vs. (Cross) Correlation

• A convolution is a filtering operation

• Correlation compares the similarity of two sets of data

53



Convolution vs. (Cross) Correlation

Convolution Correlation

Associative: (ab)c=a(bc) Yes No

Commutative: ab=ba Yes No

Distributive: a(b+c)=ab+ac Yes Yes

Linear Yes Yes

Application Filtering Matching

54

• They are equivalent when the filter “kernel” is 
symmetric

• N.B. cv2.filter2D implements correlation rather than 
conv



• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003

0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
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5 x 5,  = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian

x
y

x

y



Smoothing with Gaussian filter
James Hays



Smoothing with box filter
James Hays



Gaussian filters

• Remove “high-frequency” components from the image (low-pass 
filter)
• Images become more smooth

• Gaussian convolved with Gaussian…
…is another Gaussian

– So can smooth with small-width kernel, repeat, and get same result as larger-
width kernel would have

– Convolving two times with Gaussian kernel of width σ is same as convolving 
once with kernel of width  σ√2 

• Separable kernel
– Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Source: D. Lowe



Separability example

*

*

=

=

2D convolution

(center location only)

Source: K. Grauman

The filter factors

into a product of 1D

filters:

Perform convolution

along rows:

Followed by convolution

along the remaining column:

=



Separability

Why is separability useful in practice?



Separability

Why is separability useful in practice?

MxN image, PxQ filter

• 2D convolution: ~MNPQ multiply-adds

• Separable 2D:    ~MN(P+Q) multiply-adds

Speed up = PQ/(P+Q)

9x9 filter = ~4.5x faster



Practical matters

How big should the filter be?
• Values at edges should be near zero

• Gaussians have infinite extent…

• Rule of thumb for Gaussian: set filter half-width to 
about 3 σ

James Hays



What we have learned today?

• Image histograms

• Linear systems (filters)

• Convolution and correlation

• Gaussian filter

• Median filter

64



Median filters
• Operates over a window by selecting the median 

intensity in the window.

• ‘Rank’ filter as based on ordering of gray levels
• E.G., min, max, range filters

Steve Seitz, Steve Marschner
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Median filters
• Operates over a window by selecting the median 

intensity in the window.

• What advantage does a median filter have over a mean 
filter?

Steve Seitz, Steve Marschner



Noisy Jack – Salt and Pepper



Mean Jack – 3 x 3 filter



Very Mean Jack – 11 x 11 filter



Noisy Jack – Salt and Pepper



Median Jack – 3 x 3



Very Median Jack – 11 x 11



Median filters
• Operates over a window by selecting the median 

intensity in the window.

• What advantage does a median filter have over a mean 
filter?

• Is a median filter a kind of convolution?

Secret: Median filtering is sorting.

• Is median filter linear?

Steve Seitz, Steve Marschner



What we have learned today?

• Image histograms

• Linear systems (filters)

• Convolution and correlation

• Gaussian filter

• Median filter

77



Bonus materials



Bilateral filtering

• Bilateral filter tries to smooth image but still 
preserve edges

vs



increasing texture

with Gaussian convolution

H A L O S



increasing texture

with bilateral filter

N O   H A L O S



Definition

space range
normalization

space

Gaussian blur

Bilateral filter
[Aurich 95, Smith 97, Tomasi 98]

• only spatial distance, intensity ignored

• spatial and range distances

• weights sum to 1

space

space

ra
n

g
e

p

p

q

q



Example on a Real Image

• Kernels can have complex, spatially varying shapes

• Linear? Shift-invariant?

input output









Bilateral Filter is Expensive

• Brute-force computation is slow 
(several minutes)
• Two nested for loops: 

for each pixel, look at all pixels
• Non-linear, depends on image content 
 no FFT, no pre-computation…

• Fast approximations exist 
• E.g., Durand 02, Weiss 06

• Significant loss of accuracy
• No formal understanding of accuracy versus speed

• Better approximation (see this paper)

https://people.csail.mit.edu/sparis/publi/2006/eccv/Paris_06_Fast_Approximation.pdf


Summary
• Filtering is important

• Even it does not give you state-of-the-art result, very handy for lots of things (denoising in particular)

• Very basic, everyone expects you to understand that

• Core component to understand more advance techniques (convolutional neural network, for example)

• Most interesting (manageable) filters are linear, often shift-invariant (same everywhere)
• All linear shift-invariant filters can be depicted with convolution

• Most convolutional filters people referred to in CV is actually cross-correlation in signal processing

• Filters that are separable (e.g., Gaussian filters) can be further speed up

• Some common filters: 
• Gaussian filters (linear? shift-invariant? Separable?)

• Yes, yes, yes

• Median filters (linear? shift-invariant? Separable?)
• No, yes, no

• Bilateral filters (linear? shift-invariant? Separable?) 
• No, yes, no


