
ECE 4973: Lecture 4
Image Filters

Samuel Cheng

Slide credits: Juan Carlos Niebles, Ranjay Krishna, James Hays, Noah
Snavely

System and Filters

5

6

Super-resolution
De-noising

In-painting

B
ertam

io
et al

Image filtering

• Image filtering:
• Compute function of local neighborhood at each position

• Really fundamental and everyone should know

• Handy if you don’t need state-of-the-art results
• Enhance images

• Denoise, resize, increase contrast, etc.

• Extract information from images
• Texture, edges, distinctive points, etc.

• Detect patterns
• Template matching

James Hays

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

[.,.]h[.,.]I

Image filtering

111

111

111

],[f

],[],[],[
,

lnkmIlkfnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]I

Image filtering

111

111

111

],[f

Credit: S. Seitz

],[],[],[
,

lnkmIlkfnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]I

Image filtering

111

111

111

],[f

Credit: S. Seitz

],[],[],[
,

lnkmIlkfnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]I

Image filtering

111

111

111

],[f

Credit: S. Seitz

],[],[],[
,

lnkmIlkfnmh
lk

++=

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]I

Image filtering

111

111

111

],[f

Credit: S. Seitz

],[],[],[
,

lnkmIlkfnmh
lk

++=

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]I

Image filtering

111

111

111

],[f

Credit: S. Seitz

?

],[],[],[
,

lnkmIlkfnmh
lk

++=

0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]I

Image filtering

111

111

111

],[f

Credit: S. Seitz

?

],[],[],[
,

lnkmIlkfnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]I

Image filtering
111

111

111],[f

Credit: S. Seitz

],[],[],[
,

lnkmIlkfnmh
lk

++=

What does it do?

• Replaces each pixel with

an average of its

neighborhood

• Achieve smoothing effect

(remove sharp features)

111

111

111

Slide credit: David Lowe (UBC)

],[f

Box Filter

What does it do?

• Replaces each pixel with

an average of its

neighborhood

• Achieve smoothing effect

(remove sharp features)

• Why does it sum to one?

111

111

111

Slide credit: David Lowe (UBC)

],[f

Box Filter

Smoothing with box filter
James Hays

Think-Pair-Share time

000

010

000

1.

000

100

000

2.

-101

-202

-101

111

111

111

000

020

000

-

3.

4.

1. Practice with linear filters

000

010

000

Original

?

Source: D. Lowe

1. Practice with linear filters

000

010

000

Original Filtered

(no change)

Source: D. Lowe

2. Practice with linear filters

000

100

000

Original

?

Source: D. Lowe

2. Practice with linear filters

000

100

000

Original Shifted left

By 1 pixel

Source: D. Lowe

3. Practice with linear filters

-101

-202

-101

Vertical Edge

(absolute value)

Sobel

David Lowe

1

2

1

1 0 -1*

=

3. Practice with linear filters

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel

David Lowe

4. Practice with linear filters

Original

111

111

111

000

020

000

- ?

(Note that filter sums to 1)

Source: D. Lowe

4. Practice with linear filters

Original

111

111

111

000

020

000

-

Sharpening filter

- Accentuates differences with local

average

Source: D. Lowe

Aka unsharp masking

4. Practice with linear filters

Source: D. Lowe

Two important properties of systems

• Shift invariance (same filter/rule throughout the image)

• Linearity

33

Equivalently: S(shift(I),f) = shift(S(I,f))

Is the moving average system is shift invariant?

34

Yes!

Linear Systems (filters)

• Is the moving average a linear system?

35

Yes!

Filter example #2: Image Segmentation

• Image segmentation based on a simple threshold:

36

255,

Simple thresholding

• Is thresholding shift-invariant?

• Is thresholding a linear system?
• f1[n,m] + f2[n,m] > T

• f1[n,m] < T

• f2[n,m]<T

37

No!

Yes!

𝑆 𝑓1 𝑛,𝑚 + 𝑓2 𝑛,𝑚 = 1

𝑆 𝑓1 𝑛,𝑚] + 𝑆[𝑓2 𝑛,𝑚 = 0

Correlation (we are doing so far)

This is called a (cross-)correlation operation:

Let be the image, be the kernel
(filter), and be the output image

• Can think of as a “dot product” between
local neighborhood and kernel for each pixel

Convolution
• Same as cross-correlation, except that the kernel is

“flipped” (horizontally and vertically)

This is called a convolution operation:

[,] [,]flip
k k

u k v k

H u v F i u j v
=− =−

= − − − −

*G H F=

[,] [,]flip flip

u k v k

k k

H u v F i u j v H F
=− =−

= + + = 

1-D: 𝑦 𝑡 = σ𝜏 𝑎 𝜏 ℎ[𝑡 − 𝜏]

Where is convolution coming from?

Why do mathematicians and signal processing researchers like
convolution?

Any linear and shift-invariant operator can
be represented as a convolution (and
specified by its impulse response)

Source: S. Lazebnik

Convolution properties
• Commutative: a * b = b * a

• Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c
• Often apply several filters one after another: (((a * b1) * b2) * b3)

• This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Correlation is NOT associative

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a

Source: S. Lazebnik

*) *()() *(flip flip flipa c a bb cb c a  =  =

(𝑎 ⊗ 𝑏)⊗ 𝑐 = (𝑎𝑓𝑙𝑖𝑝 ∗ 𝑏) ⊗ 𝑐 = (𝑎𝑓𝑙𝑖𝑝 ∗ 𝑏)𝑓𝑙𝑖𝑝 ∗ 𝑐

What is ?

• 𝑎 ∗ 𝑏 𝑓𝑙𝑖𝑝 = σ𝑖 𝑎 𝑖 𝑏 𝑛 − 𝑖 𝑓𝑙𝑖𝑝

= σ𝑖 𝑎 𝑖 𝑏[−𝑛 − 𝑖]

= σ𝑖 𝑎𝑓𝑙𝑖𝑝 −𝑖 𝑏𝑓𝑙𝑖𝑝[𝑛 + 𝑖]

= σ𝑗 𝑎𝑓𝑙𝑖𝑝 𝑗 𝑏𝑓𝑙𝑖𝑝[𝑛 − 𝑗] (𝑗 = −𝑖)

= 𝑎𝑓𝑙𝑖𝑝 ∗ 𝑏𝑓𝑙𝑖𝑝

Convolution properties
• Commutative: a * b = b * a

• Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c
• Often apply several filters one after another: (((a * b1) * b2) * b3)

• This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Correlation is NOT associative

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a

Source: S. Lazebnik

*) *()() *(flip flip flipa c a bb cb c a  =  =

(𝑎 ⊗ 𝑏)⊗ 𝑐 = (𝑎𝑓𝑙𝑖𝑝 ∗ 𝑏) ⊗ 𝑐 = (𝑎𝑓𝑙𝑖𝑝 ∗ 𝑏)𝑓𝑙𝑖𝑝 ∗ 𝑐 = (𝑎 ∗ 𝑏𝑓𝑙𝑖𝑝) ∗ 𝑐

Image support and edge effect

49

•A computer will only convolve finite support
signals.
• What happens at the edge?

f

h

• zero “padding”
• edge value replication
• mirror extension
• more (beyond the scope of this class)

Convolution vs. (Cross) Correlation

• A convolution is a filtering operation

• Correlation compares the similarity of two sets of data

53

Convolution vs. (Cross) Correlation

Convolution Correlation

Associative: (ab)c=a(bc) Yes No

Commutative: ab=ba Yes No

Distributive: a(b+c)=ab+ac Yes Yes

Linear Yes Yes

Application Filtering Matching

54

• They are equivalent when the filter “kernel” is
symmetric

• N.B. cv2.filter2D implements correlation rather than
conv

• Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003

0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022

0.013 0.059 0.097 0.059 0.013

0.003 0.013 0.022 0.013 0.003

5 x 5,  = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian

x
y

x

y

Smoothing with Gaussian filter
James Hays

Smoothing with box filter
James Hays

Gaussian filters

• Remove “high-frequency” components from the image (low-pass
filter)
• Images become more smooth

• Gaussian convolved with Gaussian…
…is another Gaussian

– So can smooth with small-width kernel, repeat, and get same result as larger-
width kernel would have

– Convolving two times with Gaussian kernel of width σ is same as convolving
once with kernel of width σ√2

• Separable kernel
– Factors into product of two 1D Gaussians

Source: K. Grauman

Separability of the Gaussian filter

Source: D. Lowe

Separability example

*

*

=

=

2D convolution

(center location only)

Source: K. Grauman

The filter factors

into a product of 1D

filters:

Perform convolution

along rows:

Followed by convolution

along the remaining column:

=

Separability

Why is separability useful in practice?

Separability

Why is separability useful in practice?

MxN image, PxQ filter

• 2D convolution: ~MNPQ multiply-adds

• Separable 2D: ~MN(P+Q) multiply-adds

Speed up = PQ/(P+Q)

9x9 filter = ~4.5x faster

Practical matters

How big should the filter be?
• Values at edges should be near zero

• Gaussians have infinite extent…

• Rule of thumb for Gaussian: set filter half-width to
about 3 σ

James Hays

What we have learned today?

• Image histograms

• Linear systems (filters)

• Convolution and correlation

• Gaussian filter

• Median filter

64

Median filters
• Operates over a window by selecting the median

intensity in the window.

• ‘Rank’ filter as based on ordering of gray levels
• E.G., min, max, range filters

Steve Seitz, Steve Marschner

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]I

Image filtering - mean

111

111

111

],[f

Credit: S. Seitz

?

],[],[],[
,

lnkmIlkfnmh
lk

++=

0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]I

Image filtering - mean

111

111

111

],[f

Credit: S. Seitz

],[],[],[
,

lnkmIlkfnmh
lk

++=

?

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]I

Median filter?

Credit: S. Seitz

Median filters
• Operates over a window by selecting the median

intensity in the window.

• What advantage does a median filter have over a mean
filter?

Steve Seitz, Steve Marschner

Noisy Jack – Salt and Pepper

Mean Jack – 3 x 3 filter

Very Mean Jack – 11 x 11 filter

Noisy Jack – Salt and Pepper

Median Jack – 3 x 3

Very Median Jack – 11 x 11

Median filters
• Operates over a window by selecting the median

intensity in the window.

• What advantage does a median filter have over a mean
filter?

• Is a median filter a kind of convolution?

Secret: Median filtering is sorting.

• Is median filter linear?

Steve Seitz, Steve Marschner

What we have learned today?

• Image histograms

• Linear systems (filters)

• Convolution and correlation

• Gaussian filter

• Median filter

77

Bonus materials

Bilateral filtering

• Bilateral filter tries to smooth image but still
preserve edges

vs

increasing texture

with Gaussian convolution

H A L O S

increasing texture

with bilateral filter

N O H A L O S

Definition

space range
normalization

space

Gaussian blur

Bilateral filter
[Aurich 95, Smith 97, Tomasi 98]

• only spatial distance, intensity ignored

• spatial and range distances

• weights sum to 1

space

space

ra
n

g
e

p

p

q

q

Example on a Real Image

• Kernels can have complex, spatially varying shapes

• Linear? Shift-invariant?

input output







Bilateral Filter is Expensive

• Brute-force computation is slow
(several minutes)
• Two nested for loops:

for each pixel, look at all pixels
• Non-linear, depends on image content
 no FFT, no pre-computation…

• Fast approximations exist
• E.g., Durand 02, Weiss 06

• Significant loss of accuracy
• No formal understanding of accuracy versus speed

• Better approximation (see this paper)

https://people.csail.mit.edu/sparis/publi/2006/eccv/Paris_06_Fast_Approximation.pdf

Summary
• Filtering is important

• Even it does not give you state-of-the-art result, very handy for lots of things (denoising in particular)

• Very basic, everyone expects you to understand that

• Core component to understand more advance techniques (convolutional neural network, for example)

• Most interesting (manageable) filters are linear, often shift-invariant (same everywhere)
• All linear shift-invariant filters can be depicted with convolution

• Most convolutional filters people referred to in CV is actually cross-correlation in signal processing

• Filters that are separable (e.g., Gaussian filters) can be further speed up

• Some common filters:
• Gaussian filters (linear? shift-invariant? Separable?)

• Yes, yes, yes

• Median filters (linear? shift-invariant? Separable?)
• No, yes, no

• Bilateral filters (linear? shift-invariant? Separable?)
• No, yes, no

