ECE 49/3: Lecture 4
Image Filters

Samuel Cheng

Slide credits: Juan Carlos Niebles, Ranjay Krishna, James Hays, Noah
Snavely
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Image filtering

* Image filtering:
* Compute function of local neighborhood at each position

* Really fundamental and everyone should know

* Handy if you don’t need state-of-the-art results
* Enhance images
* Denoise, resize, increase contrast, etc.

* Extract information from images
» Texture, edges, distinctive points, etc.

* Detect patterns
* Template matching

James Hays
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Image filtering
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Box Filter

What does it do?

* Replaces each pixel with 111 |1
an average of its 1
neighborhood — |1 (1|1

9
_ _ 1] 1] 1
* Achieve smoothing effect

(remove sharp features)

Slide credit: David Lowe (UBC)



Box Filter

What does it do?

* Replaces each pixel with 111 |1
an average of its 1
neighborhood — |1 (1|1

9
_ _ 1] 1] 1
* Achieve smoothing effect

(remove sharp features)

 Why does it sum to one?

Slide credit: David Lowe (UBC)



James Hays

Smoothing with box filter




Think-Pair-Share time
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1. Practice with linear filters
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Source:D. Lowe



1. Practice with linear filters

Original Filtered
(no change)

Source:D. Lowe



2. Practice with linear filters
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Original

Source:D. Lowe



2. Practice with linear filters

Original Shifted left
By 1 pixel

Source:D. Lowe



3. Practice with linear filters
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3. Practice with linear filters
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4. Practice with linear filters
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Original
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4. Practice with linear filters
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Original

Sharpening filter
- Accentuates differences with local
average

Aka unsharp masking

Source:D. Lowe



4. Practice with linear filters

before

Source:D. Lowe



Two important properties of systems

* Shift invariance (same filter/rule throughout the image)

f [T?» — N, T — mo] i} g[n — Nng, M — mo]

Equivalently: S(shift(I),f) = shift(S(I, f))

* Linearity

Slafiln,m| + Bfjln, m]| = aS[filn,m]| + BS[f;[n, m]]
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s the moving average system is shift invariant?
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fin,m| — g[n,m|= 9 Z Z fln—Fk,m—1]
k=—11=—1
fln —no, m — mo

1 1
i> % y: y: f[(n —no) — k, (m —Mp) — l]

k=—11l=-1

= g[n —no,m —mo| Yes!
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Linear Systems (filters)
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* |s the moving average a linear system?

Yes!



Filter example #2: Image Segmentation

* Image segmentation based on a simple threshold:

n. m] = 255, fIn,m] > 100
U, hj = 0, otherwise.
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Simple thresholding

fln,m| — | System § | — g|n, m|

* Is thresholding shift-invariant?

Yes!

* Is thresholding a linear system?

* fl[n,m]+f2[n,m]>T S[f1n, .|_f2 n,ml]| =1
* fl[n,m]<T S|f1ln, ml] + S[f2[n,ml] =0
 f2[n,m]<T

No!
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This is called a (cross-)correlation operation:

G=HQXF

 (Can think of as a “dot product” between
local neighborhood and kernel for each pixel



Convolution

* Same as cross-correlation, except that the kernel is
“flipped” (horizontally and vertically)

k k
i, j] = y: S: Hlu,v|F[t —u,j — v

u——kzj-—k

= ZZH“"“[ u,—V]F[i—u, j—Vv]
U=—Kv=—

= Z ZH luVIF[i+u, j+v]=H™ ®F
u=—kv=—k

This is called a convolution operation:

G=H*F
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Where is convolution coming from?
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~h(t)=exp(-t)

1-D: y[t] = Xralz]h[t — 1]




Why do mathematicians and signal processing researchers like
convolution?

Any linear and shift-invariant operator can
be represented as a convolution (and
specified by its impulse response)

Source: S. Lazebnik



Convolution properties

e Commutative:a*b=b *a
e Conceptually no difference between filter and signal
* Associative:a*(b*c)=(a *b) *c
* Often apply several filters one after another: (((a * b;) * b,) * b;)
* This is equivalent to applying one filter: a * (b, * b, * b,)
* Correlation is NOT associative

a (b®C) =a® (bflip *C) =a *(bflip *C)
(@a®b)®c= (aflip *bh) Q c = (aflip * b)flip *C

flip

Source: S. Lazebnik



Whatis (@ * b) £y ?
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= Aflip * bflip



Convolution properties

e Commutative:a*b=b *a
e Conceptually no difference between filter and signal
* Associative:a*(b*c)=(a *b) *c
* Often apply several filters one after another: (((a * b;) * b,) * b;)
* This is equivalent to applying one filter: a * (b, * b, * b,)
* Correlation is NOT associative

a®(b®c)=a®(by, *c)=ay, *(by, *C)
(@a®b)&c=(app *b) @ c=(Aryp * b)f1ip * ¢ = (a*bpyp) * ¢

flip flip

e Distributes over addition: a * (b+c¢)=(a * b) + (a * c)
e Scalars factor out: ka *b=a *kb=k (a * b)
* |dentity: unit impulse e=1[0,0,1,0,0],a *e=a

Source: S. Lazebnik



Image support and edge effect

*A computer will only convolve finite support
signals.
* What happens at the edge?

e zero “padding”

e edge value replication
h e mirror extension

® MOVIE (beyond the scope of this class)
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Convolution vs. (Cross) Correlation

* A convolution is a filtering operation

* Correlation compares the similarity of two sets of data




Convolution vs. (Cross) Correlation

Associative: (ab)c=a(bc) Yes No
Commutative: ab=ba Yes No
Distributive: a(b+c)=ab+ac Yes Yes
Linear Yes Yes
Application Filtering Matching

* They are equivalent when the filter “kernel” is
symmetric

* N.B. cv2.filter2D implements correlation rather than
conv

54



Important filter: Gaussian

* Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
y | 0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5,0=1
1 _(@%+y?)
G’{;r - ——F 202
2ro?

Slide credit: Christopher Rasmussen



James Hays

Smoothing with Gaussian filter




James Hays

Smoothing with box filter




Gaussian filters

e Remove “high-frequency” components from the image (low-pass
filter)

* Images become more smooth

e Gaussian convolved with Gaussian...
...iIs another Gaussian

— So can smooth with small-width kernel, repeat, and get same result as larger-
width kernel would have

— Convolving two times with Gaussian kernel of width o is same as convolving
once with kernel of width ov2

e Separable kernel
— Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Xty
GU(Xry) — exXp 252

1 . 1 -5
— — exp 20 _—_ exp 20
V2o V2To

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe



Separability example

2D convolution >1a 12 1«13 |5 |5
(center location only)

The filter factors

into a product of 1D 2 1412]=]|>2
filters: 112 |1 1
_ 2 13]3 11
Perform convolution 1 |2 I e I P e e 8
along rows:
4 |4 |6 18

Followed by convolution
along the remaining column:

Source: K. Grauman



Separability

Why is separability useful in practice?



Separability
Why is separability useful in practice?

MxN image, PxQ_filter
e 2D convolution: “MNPQ multiply-adds
e Separable 2D: ~MN(P+Q) multiply-adds

Speed up = PQ/(P+Q)
9x9 filter = ~4.5x faster



Practical matters

How big should the filter be?

* Values at edges should be near zero
* Gaussians have infinite extent...

e Rule of thumb for Gaussian: set filter half-width to
about3 o

James Hays



What we have learned today?

 Median filter



Median filters

* Operates over a window by selecting the median
intensity in the window.

e ‘Rank’ filter as based on ordering of gray levels
* E.G., min, max, range filters

Steve Seitz, Steve Marschner



Image filtering - mean
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Median filter?
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Median filters

* Operates over a window by selecting the median
intensity in the window.

* What advantage does a median filter have over a mean
filter?

Steve Seitz, Steve Marschner



Noisy Jack — Salt and Pepper




— 3 x 3 filter

Mean Jack







Noisy Jack — Salt and Pepper




Median Jack —3 x 3




Very Median Jack —11 x 11




Median filters

* Operates over a window by selecting the median
intensity in the window.

* What advantage does a median filter have over a mean
filter?

* s a median filter a kind of convolution?
Secret: Median filtering is sorting.
e |s median filter linear?

Steve Seitz, Steve Marschner



What we have learned today?

* Image histograms

* Linear systems (filters)

* Convolution and correlation
e Gaussian filter

* Median filter



Bonus materials



Bilateral filtering

* Bilateral filter tries to smooth image but still
preserve edges
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Definition

Gaussian blur
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[Aurich 95, Smith 97, Tomasi 98]
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Example on a Real Image

* Kernels can have complex, spatially varying shapes
* Linear? Shift-invariant?




Bilateral Filter is Expensive

* Brute-force computation is slow
(several minutes)

* Two nested for loops:
for each pixel, look at all pixels

* Non-linear, depends onimage content
= no FFT, no pre-computation...

* Fast approximations exist
* E.g., Durand 02, Weiss 06

 Significant loss of accuracy
* No formal understanding of accuracy versus speed

» Better approximation (see this paper)


https://people.csail.mit.edu/sparis/publi/2006/eccv/Paris_06_Fast_Approximation.pdf

Summary

Filtering is important
* Even it does not give you state-of-the-art result, very handy for lots of things (denoisingin particular)
* Very basic, everyone expects you to understand that
* Core componentto understand more advance techniques (convolutional neural network, for example)

Most interesting (manageable) filters are linear, often shift-invariant (same everywhere)
* Alllinear shift-invariantfilters can be depicted with convolution
* Most convolutionalfilters people referred to in CV is actually cross-correlation in signal processing

Filters that are separable (e.g., Gaussian filters) can be further speed up

Some common filters:
* Gaussian filters (linear? shift-invariant? Separable?)
* Yes, yes, yes
* Medianfilters (linear? shift-invariant? Separable?)
* No, yes, no
 Bilateralfilters (linear? shift-invariant? Separable?)
* No, yes, no



