ECE 4973/5973: Lecture 11
Harris Corner Detector

Slide credits: James Tompkin, Rick Szeliski, Svetlana Lazebnik, Derek
Hoiem and Graumané&lLeibe



Filtering - Edges - Corners

Feature
points

Also called interest points, key points, etc.
Often described as ‘local’ features.

Szeliski 4.1



Corner Detection: Basic Idea

We might recognize the point by looking
through a small window.

We want a window shift in any direction to
give a large change in intensity.

“Flat” region: “Edge”: “Corner”:
no change in no change significant
all directions along the edge change in all

direction directions e
. ros



Corner Detection by Auto-correlation

Change in appearance of window w(x,y) for shift [u,v]:

E(u,v)=> wx, Y)[I(x+u,y+v)—1(x, ]
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1 in window, O outside Gaussian

Source: R. Szeliski



Fun time:

Correspond the three
red crossesto (b,c,d).

As a surface



Corner Detection by Auto-correlation

Change in appearance of window w(x,y) for shift [u,V]:

E(u,v)=> wx, Y)[I(X+u,y+v)—1(x, ]

W e want to discover how E behaves for small shifts

But this Is very slow to compute naively.
O(window_width? * shift_range? * image_width?)

O( 112 * 112 * 6007 ) = 5.2 billion of these
14.6 thousand per pixel in your image



Corner Detection by Auto-correlation

Change in appearance of window w(x,y) for shift [u,V]:

E(u,v)=> wx, Y)[I(X+u,y+v)—1(x, ]

W e want to discover how E behaves for small shifts

Can speed up using Tayler series expansion



Recall: Taylor series expansion

A function f can be represented by an infinite series
of its derivatives at a single point a:

f! fﬂ a fH! a
@)+ L2 @0y D T o oy

20 Wikipedia
As we care about window . =
centered, we seta=0
(MacLaurin series) 10!

Approximation of 0 ————
f(x) = ex
centered at f(0)




Approximating E (u, v)

E(u,v) =) w(x, y)[1(x+u,y+v)—I(x, y)]2

Al (x,y) dl(x,y)
u +
dx dy

[((x+uy+v)=I(xy)+ v=I(xy)+Lu+lv

E(u,v) = ¥, ,wxy)[Lu+ L,v]
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Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a
quadratic form. Let’s try to understand its shape.

E(u,v) = [u v] M

12 1.1
M= weey) [1 : 1]
X,y X2y y

[ g(z?) gU.lL)
gLl  g(3)




Linear algebra review

« Eigenvalue and eigenvector (of a square matrix)

« Hermitian (transpose-complex conjugate invariant) = real eigenvalue
« Hermitian = eigenvectors of different eigenvalues are orthogonal
« Hermitian = a complete set of orthogonal eigenvectors = diagonalizable



Eigenvector and eigenvalue

M ¢ = A ¢

LT
bl !

eigemector ~ Glgemalue

1. Scaled eigenvector is still eigenvector with
same eigenvalue

Ma:;ﬁ:_/}a;ﬁ

eigenvector eigenvalue

2. Eigenvectors diagonalize the matrix

|\/|[¢¢]—'ﬂl¢/1¢]_[';9‘Jf’]_i1 "
1 P21 = LM% 40 lR- _0 ﬁ-;;__

~RMR=| }
12



Linear algebra review

« Eigenvalue and eigenvector (of a square matrix)

« Hermitian (transpose-complex conjugate invariant) = real eigenvalue
« Hermitian = eigenvectors of different eigenvalues are orthogonal
« Hermitian = a complete set of orthogonal eigenvectors = diagonalizable

« A square matrix ~ transformation of a vector
« Transforming bases by T is the same as transforming coordinates by T'"

u
++ 1] U
(T[by, b,]™) [uzl—[bpbz] (T+ [uzD
« Unitary: UTU = I = preserve inner product = rotation/mirror image
(Uu, Uv) = (Uw)*(Uv) =ut U Uv =uv = (u,v)

* Forreal vectors and matrices
 Hermitian become symmetry condition = AT = A
- Unitary matrices becomes orthogonal matrices = 070 = I



Eigenvector and eigenvalue

3. For symmetric M, R can be made
orthonormal (orthogonal and normalized)

* Inparticular, ¢ L@, if A4 #A4, (try at home)

« R orthonormal < R*=R' < R is a rotation
operation

4. E(u,v) =1 is arotated eclipse (by R)

E(u,v) = [u v] M {u}:[u V] RFl }Rl {u}
Vv A, V

(e ) e
|

Equation of a elipse éligned with x/v-axes
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Interpreting the second moment matrix

- ,
\

] ol
\\ (i)

direction of the
fastest change

direction of the
slowest change

(u VR F‘ }Rl H:l
A, %

M

The axis lengths of the ellipse are determined by the eigenvalues,
and the orientation is determined by a rotation matrix R.



Fun time

BN

\ (7\~min)_1/2

A >>0,4, >>0 Flat region
4 >>0,4,~0 Corner
A =0,4,=0 Edge



Classification of image points using eigenvalues of M




Classification of image points using eigenvalues of M

Cornerness
Ay

C=hh-alh+4)

a. constant (0.04 to 0.06)




Classification of image points using eigenvalues of M
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Classification of image points using eigenvalues of M

Cornerness 2
C=hk-alh+4h)

a. constant (0.04 to 0.06)

Remember your linear algebra:

Determinant: det(4) = [[ A = XX+ M.

i=1

Trace: tr(4) = > A

C =det(M)—a trace(M)?




Harris corner detector

1) Compute M matrix for each window to recover
a cornerness score C.
* Note: We can find M purely from the per-pixel image derivatives!

2) Threshold to find pixels which give large corner
response (C > threshold).

3) Find the local maxima pixels,
l.e., suppress non-maxima.

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.



http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Corner Detector [Harrisss]

v — [9(15) g(lxly)] 0. Inputimage
g(ly)  g(ly) We want to compute M at each pixel.

1. Compute image derivatives (optionally, blur first).

2. Compute M components
as squares of derivatives.

3. Gaussian filter g() with width o

4. Compute cornerness
C = det(M) — a trace(M)?
2
= gD o 9(13) — g(Iy o 1)

2
~a[g(2) + g(12)]
5. Threshold on C to pick high cornerness

6. Non-maxima suppression to pick peaks.



Harris Detector: Steps




Harris Detector: Steps

Compute corner response C




Harris Detector: Steps

Find points with large corner response: C > threshold




Harris Detector: Steps

Take only the points of local maxima of C




Harris Detector: Steps




Shi-Tomashi corner detector

« Just a slight variation of Harris corner detector

* Instead of having
as criterion. We have C=44,-al4 +/12)2
instead C =min(4, 4,)




Conclusion

« Key point, interest point, local feature detection is a staple In

computer vision. Uses such as
* Image alignment

« 3D reconstruction

« Motiontracking (robots, drones, AR)

* Indexing and database retrieval

* Object recognition

« Harris corner detection is one classic example
« More key point detection technigues next time



