ECE 4973/5973: Lecture 6
Resampling

Samuel Cheng
Slide credits: Noah Snavely



Image Scaling

Thisimage is too big to fit on the
screen. How can we generatea
half-sized version?




Image sub-sampling

Throw away every other row and
column to create a 1/2 size image

- called image sub-sampling
Source:S. Seitz



Image sub-sampling
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| 1/2 1/4 (2x zoom) 1/8 (4x zoom)

Why does this look so crufty?

Source:S. Seitz



Image sub-sampling

Source: F. Durand



Even worse for synthetic images

Source: L. Zhang






The blue and green colors are actually the same
http://blogs.discovermagazine.com/badastronomy/2009/06/24 /the-blue-and-the-green/



Artifacts from sampling
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Interesting videos




Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[f camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDPDROB

frame O frame 1 frame 2 frame 3 frame 4
0 ] n .,
shutter open fime

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

Slide by Steve Seitz



Aliasing problem

1D example (sinewave):
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Aliasing problem

1D example (sinewave):
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Source: S. Marschner



Nyquist-Shannon Sampling Theorem

* When sampling a signal at discrete intervals, the
sampling frequency must be > 2 xf__,

* f ., =maxfrequency
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Nyquist limit — 2D example

Good sampling

How to sample?




Revisit FT
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Pulse train

* Afunction f(t) sampledatt =nT is
simply f(£)p(t)

» FIf(Mp)] = F(w) * P(w)
 Whatis P(w)?

F(O)g(t) S F(w) * G(w)




Fourier Transform of Pulse train
p(t)
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Fourier Series of Pulse train

p(t)
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Fourier Transform of Pulse train
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Revisit Nyquist-Shannon Theorem

interact(plot sinc,a=widgets.FloatSlider(min=1, max=30, step=0.05, value=15))
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No aliasing as long as bandwidth < 3

F(Dg(t) S F(w) * G(w)




Aliasing in downsampling

X(w)
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Anti-aliasing
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Forsyth and Ponce 2002



Gaussian pre-filtering

Gaussian 1/2

e Solution: filter the image, then subsample

Source:S. Seitz



Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

e Solution: filter the image, then subsample

Source:S. Seitz



Compare with...

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Source:S. Seitz



Upsampling

This image is too small for this screen: &
How can we make it 10 times as big?
Simplest approach:
repeat each row

and column 10 times
(“Nearest neighbor

interpolation”)



Image interpolation

d =1 inthis
example

Recall how a digital image is formed
Flx,y] = quantize{ f(xd, yd)}

e |tis a discrete point-sampling of a continuous function

e |f we could somehow reconstruct the original function, any new
image could be generated, at any resolution and scale

Adapted from:S. Seitz



Image interpolation
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Image interpolation

d=1inthis

1

A / example
1 /2 25 3 4 5> L
 What if we don’t know f ?

e Guessan approximation:f
e Can be done in a principled way: filtering
e Convert F' to a continuous function:
fr(z) = F(3) when 7 is an integer, 0 otherwise

e Reconstruct by convolution with a reconstruction filter, h

~

J=hx*[F

Adapted from:S. Seitz



Frequency representation

z[n] X(2)




Image interpolation

sinc(x)

T

gauss(xy

“Ideal” reconstruction

Nearest-neighbor
interpolation

Linear interpolation

Gaussian reconstruction

Source:; B. Curless



Reconstruction filters

e What does the 2D version of this hat function look like?

performs (tent function) performs
linear interpolation bilinear interpolation

Better filters give better resampled images

e Bicubicis commonchoice pS
£
[(12-93-6C)\x|’+(—18+123+6C)|x|2+(6-23) <1
/ \ r(x)—%r(a6C)x|‘+(63+3oolx|2+(12348C)|x+(83+240 1<|x]<2

/ \ 0 otherwise
/ \

Cubic reconstruction filter



Summary: downsampling and upsampling

X(w)
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Image interpolation

Original image: &

Nearest-neighbor interpolation Bilinear interpolation Bicubic interpolation



DSP Interpretation




Image resampling

T m ik

Upsampling downsampling




Hybrid Image

Salvador Dali, 1976



Another example

* Who is (s)he?



Hays

Hybrid Images
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* A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006
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Why do we get different, distance-dependent
interpretations of hybrid images?

Hays



Campbell-Robson contrast sensitivity curve

Perceptual cues in the mid-high
frequencies dominate perception.

Contrast decrease (log)
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Frequency increase (log)




Image Pyramids

Level 4
Blur and &1 16 resolution

Subsample > glevel 3

Blur and resolution
subsample ‘:* Level 2
< 1/4 resolution
Blur and _
subsample
Level 1
Blur and 1/2 resolution
subsample

Level 0
Original
image

Project 1 function:
vis_hybrid_image.m

Wikipedia— Image Pyramids



Gaussian
pyramid
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Gaussian
pyramid
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* Derive from Gaussian pyramid
— G1=pydn(GO0); G2=pydn(G1),...
— One level of laplace pyramid is difference

between approximated and original Gaussian
pyramid levels

— LO=GO-pyup(G1); L1 =G1-pyup(G2)




Image composting

* Generatel-pyramid of orange
* Generate L-pyramid of apple

Pyramid Blending

* Combinetwo pyramids

— Foralllevels, one half from one
pyramid, the other half from
another

*  Reconstructimage from combine
pyramid




Summary

Product in time domain = convolution in freq domain

— Sampling can be represented as signal multiplied by pulse train
— Infinite repeated copy in frequency domain

— When copies overlaps => aliasing

Downsampling naively will lead to aliasing

— Solution: apply low pass filter before downsample
Should apply low pass filter after upsampling
Laplace pyramid and Gaussian pyramid
Hybrid image and composting image



