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Memory matters

@ RNN allows the networks to have some short term memory
e Btw, even with LSTM, memory tends to be “forgotten” after a short
period of time
e For more complicated tasks, like Q&A system, we need to have
longer-term memory
o BTW, we may consider the weights inside the network as long term
memory. But they are difficult to be manipulated with

@ We will consider neural Turing machine (NTM) today, which
process input in sequences, much like an LSTM, but with
additional benefits:

@ The external memory allows the network to learn algorithmic tasks
easier

@ Having larger capacity, without increasing the network’s trainable
parameters
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Standing on the shoulders of giants
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Turing machine
Turing machine

A Turing machine is atheoretical generalized
computer, composed of atape on which symbols
representing instructions are imprinted. The tape
can move backwards and forwards in the machine,
which can read the intructions and write the result-
ant output back onto the tape.

Sensors to M_ar.h_in_e

read, write, with finite #

or erase of states
Symbols on
tape

Moving tape
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Turing machine
Turing machine

@ Turing machine is a powerful model
@ Anything a real computer can compute, a Turing machine can
compute it

@ A computational model is known to be Turing complete if it can
simulate a Turing machine
@ RNN is known to be Turing complete (Siegelmann et al. 95)

@ But our end goal is not to have neural networks to replace our
computers

o We like to have neural networks to replace our programmers
o Key idea: turn neural networks into a differentiable neural computer
by giving them read-write access to external memory
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Turing machine

Neural Turing machine (NTM)

@ Can we teach a machine to write program?
o Sure!
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Turing machine

Neural Turing machine (NTM)

@ Can we teach a machine to write program?
o Sure!

@ A learned "memory copy” algorithm by NTM

initialise: move head to start location

while input delimiter not seen do
receive input vector
write input to head location
increment head location by 1

end while

return head to start location

while true do
read output vector from head location
emit output
increment head location by 1

end while
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Neural Turing machine
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Overview of neural Turing machine
Neural Turing machine

@ Question: How can we train computer to write program?

@ Answer: Some “random access memory” will help

@ Question: To train a networks, the model has to be differentiable.
But conventional way of memory addressing is not differentiable

@ Answer: Soft-“addressing” (attention)

External Input External Output
Central Processing Unit \ /
é Read Heads Write Heads

I |

Memory

Memory Unit
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Overview of neural Turing machine

Reading from memory

@ Consider M;, a M x N matrix, as a memory block just like RAM in
conventional computer system
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Reading from memory

@ Consider M;, a M x N matrix, as a memory block just like RAM in
conventional computer system

@ Unlike our PCs, we don’t read from a particular location
@ We read to all locations at the same time

M;(1)

re (1), w(@), - w(N)] | B |

M;(N)

where ), wy(i) = 1
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Overview of neural Turing machine

Reading from memory

@ Consider M;, a M x N matrix, as a memory block just like RAM in
conventional computer system

@ Unlike our PCs, we don’t read from a particular location
@ We read to all locations at the same time

M;(1)

re (1), w(@), - w(N)] | B |

M;(N)

where ), wy(i) = 1
@ Note that this addressing model is differentiable and hence is
trainable
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Overview of neural Turing machine

Writing to memory

Writing to memory is split into two separate steps:
Erase

M (i) « M1 (i) © [1 — wi(i)eq],

where © is element-wise multiplication
Add

M; (i) — M(i) + wi(i)ay

@ e;: Erase vector
@ a;: Add vector
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Memory addressing mechanism

Addressing mechanisms

How to pick and update addressing weight w;?
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Memory addressing mechanism
Content-based addressing

Pick address locations that matches with an input key k;

o exp (8K ke, M:(/)])
) S exp (5K T M ])

where
@ Klu,v] = W is a similarity measure (cosine similarity)
@ k; is a length-M key vector
@ j; is a key strength parameter
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Memory addressing mechanism

Interpolation gate (addressing inertia)

w{ — gwf + (1 — gr)wy_1,

where g; is called the interpolation gate in the original paper

Previous
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r.. 1
P
M,
L — 4
Controller
Outputs
_p — Content P
| kf Addressing > . VV',JI
3, ——————> w} Interpolation Ly ~
| "’ [ N Convolutional [W¢
= _| shift P ]
| s —t Sharpening | 3w,
[

S. Cheng (OU-Tulsa) Neural Turing machine Feb 2017 13/42



Memory addressing mechanism

Circular convolution (spreading)

Perturb to diversify the target addresses

N—1
w(i) Y wl()si(i - ),
j=0
01 ifA=-1
. ) o 08 ifA=0
where s;(-) is also called shift weighting. E.g., si(A) = ,
0.1 ifA=1
0  otherwise
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Memory addressing mechanism

Sharpening

W)

> (i)

where v; > 1 and this operation counteracts the blurring effect of the

we(i)

last step
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Experiments
Experiments

@ Test NTM’s ability to learn simple

algorithms like copying and sorting el O
@ Demonstrate that solutions generalize \c/
well beyond the range of training IS
@ Tested with three architectures e =
e NTM with feed forward controller Memory

e NTM with LSTM controller
e Standard LSTM network
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Experiment 1: Memory block copy

@ Tests whether NTM can store and retrieve data
e Trained to copy sequences of 8 bit vectors
e The input sequence is followed by a delimiter
@ Sequences vary between 1-20 vectors
e Trained to copy up to 20 consecutive vectors

10 - . T .
_ [ LSTM ——
] gl ¢ NTM with LSTM Controller —=— |
8 '| NTM with Feedforward Controller —
8 '
c 6t \
3 )
g .
8 arl
8- £
— 2 |
I

0 L

0 200 400 600 800 1000

sequence number (thousands)
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Experiments

Experiment 1: Memory block copy

NTM
,0
08
:

foraets _

Outputs

Tme ——

@ Text vector lengths: 10, 20, 30, and 50
@ Generalized well
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Experiments

Experiment 1: Memory block copy

NTM

forgets - -
OUtpLﬂs - -

foraets _

Outputs

Tme ——

@ Text vector lengths: 10, 20, 30, and 50

@ Generalized well

@ A ’synchronization” (duplication) error at the red arrow. But overall
subjectively similar to the targets
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Experiments

Experiment 1: Memory block copy

LSTM

Torgets - - _ _ 3
outputs - - “ m s

04
Torgets _ il

0.2

Time ——mM

@ Fail to generalize
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Experiments

Experiment 1: Memory block copy

Inputs Outputs

speay

Location ———»

Time —— Time ——»
Write Weightings Read Weightings

S. Cheng (OU-Tulsa) Neural Turing machine Feb 2017 20/ 42



Experiment 2: Repeat memory copy

@ Tests whether NTM can learn simple nested function
@ Extend copy by repeatedly copying input specified number of
times

@ Training is a random length sequence of 8 bit binary inputs plus a
scalar value for # of copies (both randomly chosen from 1—10)

200
180
160 |
140 |
120 |
100 ||
80 ||
60 | ¥\
40 | |
20 | |
0

LSTM —— |
NTM with LSTM Controller —=
NTM with Feedforward Controller —— |

cost per sequence (bits)

a A Pa-s ok
0 100 200 300 400 500

sequence number (thousands)
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Experiments

Experiment 2: Repeat memory copy

NTM
Length 10, Repeat 20

Outputs

Length 20, Repeat 10

Targets

LSTM

Length 10, Repeat 20

Targets
Outputs = '. ot [ T 1
Length 20, Repeat 10

Time

LSTM fails to generalize
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Experiments

Experiment 2: Repeat memory copy

Inputs Outputs
w -1.- ! - ,.. T L .... .; o
T & . 1]
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S. Cheng (OU-Tulsa) Neural Turing machine Feb 2017 23/42



Experiments
Experiment 3: Associative recall

@ Tests NTM'’s ability to associate data references

@ Training input is list of items, followed by a query item
@ Output is subsequent item in list

@ Each item is a three sequence 6-bit binary vector

@ Each ‘episode’ has between two and six items

20 . . . .
. 18 LSTM —— |
(2] 16 | NTM with LSTM Controller —=— |
a 14 NTM with Feedforward Controller —«—
% 12 |
g 10
3 8}
g 6
3 4t
8 Ll

0

0 200 400 600 800 100

sequence number (thousands)
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Experiments

Experiment 3: Associative recall

Inputs Outputs

a | ] 1

g eapeeld 27
T - -'.- lg
< ] .l.- .\.l .- :--U’

c
k]
s
S
Time ———» Time ——»»
Write Weightings Read Weightings
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Experiments

Experiment 3: Associative recall

cost per sequence (bits)

LSTM —e—
NTM with LSTM Controller —=
NTM with Feedforward Controller —

10 12 14 16 18

number of items per sequence

Figure 11: Generalisation Performance on Associative Recall for Longer Item Sequences.
The NTM with either a feedforward or LSTM controller generalises to much longer sequences
of items than the LSTM alone. In particular, the NTM with a feedforward controller is nearly

perfect for item sequences of twice the length of sequences in its training set.
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Experiments

Experiment 4: Dynamic N-Grams

@ Test whether NTM could rapidly adapt to new predictive
distributions

@ Trained on 6-gram binary pattern on 200 sequences
@ See if an NTM can learn the optimal estimator (Murphy 2012)

Ni(c) + %

P(B = 1|Ny(c), No(c),c) = N (©) + No(o) + 1
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Experiments

Experiment 4: Dynamic N-Grams

160 3 :
_ | LSTM ——
2 155 || NTM with LSTM Controller =
=) ' NTM with Feedforward Controller ——
8 150 ], Optimal Estimator
c
[
3 1451
[
w
5 140 |
Q
8 135}
[$]

130 x ' - -

0 200 400 600 800 1000

sequence number (thousands)

Figure 13: Dynamic N-Gram Learning Curves.
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Experiments

Experiment 4: Dynamic N-Grams

~ WHLRR DRI AL TIRIT

Error occur at the locations indicated by the red arrows
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Experiments

Experiment 4: Dynamic N-Grams

e n |} .

Read Weights

Time —»

Green and red arrows correspond to places where controller trying to
access locations for contexts 00010 and 01111
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Experiment 5: Priority sort

@ Tests whether NTM can sort data

@ Input is sequence of 20 random binary vectors, each with a scalar
rating drawn from [—1, 1]

@ Target sequence is 16 highest priority vectors

57 46 3 2 1

Priority \f\/\/\/\/
1234567. ..

Inputs Targets
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Experiments

Experiment 5: Priority sort

Hypothesised Locations Write Weightings Read Weightings
C - - .
Qo
o
©
(9]
S
Time —— Time ——» Time ——»

NTM seems to use priority to determine the relative location of each
write
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Experiment 5: Priority sort
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Experiments
Experiment parameters

@ RMSProp algorithm
@ Momentum 0.9
@ All LSTM’s had three stacked hidden layers

S. Cheng (OU-Tulsa) Neural Turing machine Feb 2017 34 /42



Experiments
Experiment parameters

Task #Heads Controller Size Memory Size Learning Rate #Parameters
Copy 1 100 128 x 20 104 17,162
Repeat Copy 1 100 128 % 20 104 16,712
Associative 4 256 128 x 20 10~ 146, 845
N-Grams 1 100 128 x 20 3x10°° 14, 656
Priority Sort 8 512 128 x 20 3x107° 508, 305

Table 1: NTM with Feedforward Controller Experimental Settings
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Experiments
Experiment parameters

Task #Heads Controller Size Memory Size Learning Rate #Parameters
Copy 1 100 128 x 20 104 67,561
Repeat Copy 1 100 128 x 20 1074 66,111
Associative 1 100 128 x 20 104 70,330
N-Grams 1 100 128 x 20 3x107° 61,749
Priority Sort 5 2 x 100 128 x 20 3x107° 269, 038

Table 2: NTM with LSTM Controller Experimental Settings
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Experiments
Experiment parameters

Task Network Size Learning Rate #Parameters
Copy 3 x 256 3x10°° 1,352,969
Repeat Copy 3 x 512 3x10°3 5,312,007
Associative 3 x 256 1074 1,344,518
N-Grams 3 x 128 10~4 331,905
Priority Sort 3 x 128 3x 1073 384,424

Table 3: LSTM Network Experimental Settings
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Experiments
Follow-up work

@ Named “Differentiable neural computer”

@ Published in Graves, Alex, et al. "Hybrid computing using a neural
network with dynamic external memory.” Nature (2016)

@ Check out this deepmind blog post as well
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https://deepmind.com/blog/differentiable-neural-computers/

Experiments
DNC architecture

lllustration of the DNC architecture

Controller Heads Memory Links Usage

Output Write '

*
« Read
' Read

*

Input

The neural network controller receives external inputs and, based on these,
interacts with the memory using read and write operations known as “heads”.
To help the controller navigate the memory, DNC stores “temporal links” to
keep track of the order things were written in, and records the current “usage”
level of each memory location
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Experiments
Memory addressing

Addressing is based on three different distinct forms of attention mech-
anisms

@ Content lookup: matching key with memory just as in neural
Turing machine

©@ Temporal link: provide mechanism for head to iterate through the
memories in the order they were written (or written)

© Memory “usage monitoring”: DNC keep a “free list” tracking the
usage of memory allocation
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Experiments

Family tree puzzle

maternal great uncle = mother's, mother's, mother's, son.
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https://youtu.be/B9U8sI7TcMY

Conclusions
Conclusions

@ NTM is a neural net architecture with external memory that is
differentiable end-to-end

@ Experiments demonstrate that NTMs are capable of learning
simple algorithms and are capable of generalizing beyond training
regime

@ DNC improves NTM mainly on the memory management part

o Able to free up unused memory
o Avoid overwrite useful memory
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