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@ We looked into different variations of RNN in the last several
weeks (LSTMs, memory networks, neural Turing machines)

@ We will look into unsupervised learning for the next couple
lectures

@ We will first discuss restricted Boltzmann machines and deep
belief networks today
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Unsupervised learning

Unsupervised learning

@ We mostly looked into supervised learning problem throughout
the course, where essentially the expected outputs (labels) are
always given for the training data

@ For unsupervised learning, we are only given with data signals but
appropriate “labels” of the signals are not known

o Clustering is one major subproblem but not the only one
e For example, another problem can be data modeling. How to
create generative model for the given data
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Boltzmann machines
Boltzmann machines

@ Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985
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Boltzmann machines
Boltzmann machines

@ Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985

@ It is a binary generative model

@ Probability of a “configuration” is
government by the Boltzmann
distribution 2RCEX) where Z is a
normalization factor and called the
partition function (a name originated from
statistical physics)

@ The energy function E(x) has a very
simple form E(x) = —x” Wx — ¢'x

@ Typically some variables are hidden
whereas others are visible
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Restricted Boltzmann machines
Restricted Boltzmann machines

@ Boltzmann machine is a very powerful model. But with
unconstrained connectivity, there are not known efficient methods
to learn data and conduct inference for practical problems
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Restricted Boltzmann machines
Restricted Boltzmann machines

@ Boltzmann machine is a very powerful model. But with
unconstrained connectivity, there are not known efficient methods
to learn data and conduct inference for practical problems

@ Consequently, restricted Boltzmann machine (RBM) (originally
called Harmonium) was introduced by Paul Smolensky in 1986. It
restricted the hidden units and the visible units from connecting to
themselves

@ The model rose to prominence after fast learning algorithm was
invented by Hinton and his collaborators in mid-2000s
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Restricted Boltzmann machines
Restricted Boltzmann machines
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Restricted Boltzmann machines
Conditional probabilities
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Restricted Boltzmann machines

Derivation of conditional probabilities

_ p(x,h) exp(h"Wx+c'x+bTh)/Z
Y PO h) S o ymexp(WTWx +cTx +bTh)/Z

p(hix)
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Derivation of conditional probabilities

_ p(x,h) exp(h"Wx+c'x+bTh)/Z
Y PO h) S o ymexp(WTWx +cTx +bTh)/Z

_ exp (3, hWix + bih) wo [
Domeroy 2o eqo,1y PO MWix + bifry) Wi,

_ [1; exp (hiWix + b;h;)
Domeqoay 2o eqoy L1 exp(h Wix + bihy)
_ 1, exp (hiWix + b;h;)

p(hix)
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Restricted Boltzmann machines

Derivation of conditional probabilities

p(x,h) exp(h"Wx+c'x+bTh)/Z
> POGH) S ohcqo,1ym exp(WTWx + ¢ + bTh')/Z

_ exp (3, hWix + bih) wo [

Domeroy 2o eqo,1y PO MWix + bifry) Wi,
_ [, exp (hiWix + bih;)

Zh;e{(m} o Zhgﬂe{on} [1; exp(h; Wix + bih)

[1; exp (hiWix + bh;)
ety P WX+ bih) ) - (S (o 1) exp(hy Wank + i)
h w; ’ bih;i) /Z
exp (hiWx + c'x + bih;) / th|x
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Restricted Boltzmann machines

Derivation of conditional probabilities

(hix) = p(x,h) exp(h’ Wx +c'x+b"h)/Z
PO = S POCR) ~ e onu XP(NT W 1 67x + BTH)/Z
_ exp (30, hiWix + bihy) wo [
Domeroy 2o eqo,1y PO MWix + bifry) Wi,
_ [, exp (hiWix + bih;)
Domeqoay 2o eqoy L1 exp(h Wix + bihy)
[1; exp (hiWix + b;h;)
( e 0.1y EXP(H; Wix + by h')) (zh, c 0.1} EXP(My WX + th;ﬂ))
h W, b;h;
_ H exp (hiWx + c'x + bih;) / Hp (hix)
i (Zh’e{o 1y exp(hWix +clx + b/h'))
N.B. Can also be obtained immediately since hy, ho, - - - , hy are conditionally

independent given x
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Restricted Boltzmann machines

Derivation of conditional probabilities

exp (Wix + b;)
2 neqo,1) &XP(MWix + bihf'))

p(hi =1|x) = (
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Restricted Boltzmann machines

Derivation of conditional probabilities

exp (Wix + b))

p(hi = 1]x) =
(Zheqoy exp(HWx + b))

__ exp(Wix+bi)
(1 +exp( Wix + b;))
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Restricted Boltzmann machines

Derivation of conditional probabilities

exp (Wix + b))

p(hi = 1]x) =
(Zheqoy exp(HWx + b))

_ exp(Wix+b)
(1 +exp( Wix + b;))
= sigm(b; + Wix)
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Restricted Boltzmann machines
Data generation

Equipped with the conditional probabilities p(x|h) and p(h|x), we can
generate simulated data given some hidden variables h’ using Gibbs
sampling

@ Sample x’ from p(x|h’)

@ Sample h” from p(h|x’)

@ Sample x” from p(x|h”)

@ ...
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Restricted Boltzmann machines

Marginal probability p(x)

px)= > exp(h’Wx+c'x+b"h)/Z
he{0,1}M
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px)= > exp(h’Wx+c'x+b"h)/Z
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px)= > exp(h’Wx+c'x+b"h)/Z
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Restricted Boltzmann machines

Marginal probability p(x)

px)= > exp(h’Wx+c'x+b"h)/Z
h€{01}M
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Restricted Boltzmann machines

Marginal probability p(x)

px)= > exp(h’Wx+c'x+b"h)/Z
h€{01}M

exp )Y Y e (Zh Wix + bih )

hie{0,1} hye{0,1}

_ exp(c’x) (hy Wyx-+by hy) (P Wy X+bahag)
== Z elmW 1 hy Z el Wax+byhy

hye{0,1} hye{0,1}

= %CTX) (1 + e(W1X+b1)) e (1 + e(WMx+bM))

T
_ exp(Zc X) exp (lOg(1 + e(W1x+b1)) 4 IOg( Te WMX+bM)))
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Restricted Boltzmann machines

p(x) =exp [ e"x+ Y log(1 + elVx+y | /7
j
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p(x) = exp <ch +) "log(1 + e ”’fx+bf))> /Z
i

= exp (ch + ) softplus(Wx + b,-)) /Z £ exp(—F(x))/Z,

i

where F(x) is known to be free energy, a term borrowed from statisti-

cal physics. Note that w = sigmod(t)
4 softplus(-)
e e INC-H S S S
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Restricted Boltzmann machines
Training RBM

Use the cross entropy loss,

1(6) = =3~ log p(x(V)
t
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Restricted Boltzmann machines
Training RBM

Use the cross entropy loss,

TZ log p(x()) = Z xM) —log Z,

t
where Z =%, exp(—F(x)).
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Restricted Boltzmann machines
Training RBM

Use the cross entropy loss,

TZ log p(x()) = Z xM) —log Z,

t
where Z =}, exp(—F(x)). And

9 —logp(x)  9F(x() exp(—F(x)) OF(x)
90 90 27 0
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Restricted Boltzmann machines
Training RBM

Use the cross entropy loss,

TZ log p(x()) = Z xM) —log Z,

t
where Z =}, exp(—F(x)). And

9 —logp(x)  9F(x() exp(—F(x)) OF(x)
90 90 27 0

_ OF (x(D) ' £ [aF(x)}

00 00
—

s \W_J
positive phase  npegative phase

N.B. The naming of the terms is not related to the sign in the equation.
It refers to the fact that adjusting the +ve phase terms to increase the
probability of the training data and the -ve terms to decrease the prob-
ability of the rest of x
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Restricted Boltzmann machines

Contrastive divergence (CD-k)

The negative phase term is very hard to compute exactly as we need
to sum over all x. The natural way out is to approximate using sam-
pling = contrastive divergence (CD-k) training

Key idea: @ Start sampling chain at x(9
©@ Obtain the point X with k Gibbs sampling steps
© Replace the expectation by a point estimate at X

ot (@/0/0/0/00)

( O(?OO) (0/0[0/0[0) OOPOO
(t) k

I PR
X X X =X

\ negative sample

N.B. CD-1 works surprisingly well in practice
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Restricted Boltzmann machines
Parameters update

al(o oF (x® OF (%
9N — 9FT) _ 9F%)  Recall that

So we have

F(x) = —¢"x—) " softolus(Wx + b))

1

oF(x)
80; =X
oF(x) . . : ‘
ob, —sigmoid( Wx + b;)
OF(x) : .
oW, —sigmoid(Wix + b;)x;
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Restricted Boltzmann machines
Parameters update

al0) _ oF(x) _ 9F(%)

So we have =7~ 50— — —50- Recall that
F(x) = —¢"x—) " softolus(Wx + b))
i
o,
8;(;) — _sigmoid(Wx + b))
88FV(‘2(“) = —sigmoid( Wix + b;)x;
This gives us

c<=c+ax-x)
b < b + a(sigmoid(Wx¥ + b) — sigmoid( WX + b))
W < W + a(sigmoid(Wx® + b)x®’ — sigmoid(Wx + b)x")

S. Cheng (OU-Tulsa) Deep belief networks Feb 2017 16/25



Restricted Boltzmann machines

Persistent CD
Tieleman, ICML 2008

@ Idea: Instead of initializing the chain to x(9), initialize the chain to
the negative sample of the last iteration

@ This has a similar effect of CD-k with a large k and yet can have
much lower complexity

K0 = b2 (OO0000) (e/0]0/0/0/0)

~p(hlx)” ~p(x/h

(OO?OO) GOO00 OO0

o R
) h 1 e
X« comes fromthe  x X =X

previous iteration \
negative sample
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Restricted Boltzmann machines

Gaussian-Bernoulli RBM

Extension to continuous variables

@ RBM is a binary model and thus is not suitable for continuous
data

@ One simple extension to allow the visible variables x to be
continuous while keeping the hidden variables h to be binary
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Gaussian-Bernoulli RBM

Extension to continuous variables

@ RBM is a binary model and thus is not suitable for continuous
data

@ One simple extension to allow the visible variables x to be
continuous while keeping the hidden variables h to be binary

@ In particular, we can simply add a quadratic term %xTx to the
energy function, i.e.,

E(x,h)=—-h"Wx —c'x—b"h+ %XTX
to get Gaussian distributed p(x|h)

S. Cheng (OU-Tulsa) Deep belief networks Feb 2017 18/25



Restricted Boltzmann machines

Gaussian-Bernoulli RBM

Extension to continuous variables

@ RBM is a binary model and thus is not suitable for continuous
data

@ One simple extension to allow the visible variables x to be
continuous while keeping the hidden variables h to be binary

@ In particular, we can simply add a quadratic term %xTx to the
energy function, i.e.,

E(x,h)=—-h"Wx —c'x—b"h+ %XTX

to get Gaussian distributed p(x|h)

@ For efficient training, the input data are typically preprocessed
with zero-mean and unit variance

@ A smaller learning rate is needed compared to a regular RBM
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Deep belief networks

Deep belief networks (DBN)

@ DBN is a generative model that mixes
undirected and directed connections

DBN’s graphical model @ Top 2 layers’ distribution p(h(®), h(®)) is
an RBN

RBM 4

SBN ¢
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Deep belief networks

Deep belief networks (DBN)

@ DBN is a generative model that mixes
undirected and directed connections
DBN’s graphical model (] TOp 2 Iayers’ distribution ,O(h(2), h(3)) is
an RBN
@ Other layers form a Bayesian network:

e The conditional distributions of layers
given the one above it are

RBM 4

p(hf” =1|h®) = sigm(bf” + W®,;h?)
p(h" = 1]1hM) = sigm(b® + W ;hM)

SBN ¢ /

e This is referred to as a sigmoid belief
network (SBN)
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Deep belief networks

Deep belief networks (DBN)

@ DBN is a generative model that mixes
undirected and directed connections
DBN’s graphical model (] TOp 2 Iayers’ distribution ,O(h(2), h(3)) is
an RBN
@ Other layers form a Bayesian network:

e The conditional distributions of layers
given the one above it are

RBM 4

p(hf” =1|h®) = sigm(bf” + W®,;h?)
p(h" = 1]1hM) = sigm(b® + W ;hM)

SBN ¢ /

e This is referred to as a sigmoid belief
network (SBN)

@ Note that DBN is not a feed-forward
network
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Deep belief networks

History of DBNs

According to Hinton’s coursera’s course

@ Professor Hinton was working on algorithms to train Sigmoid
belief network but gave up after many different ideas
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History of DBNs

According to Hinton’s coursera’s course

@ Professor Hinton was working on algorithms to train Sigmoid
belief network but gave up after many different ideas

@ He moved on to work with RBMs and invented the CD-k algorithm
for training RBMs

@ Since CD-k is very effective, it is very tempting to think if one can
train a Sigmoid belief network one layer at a time by treating each
layer as a RBM

e The procedure is working great. But it actually trains a different
model, the DBN instead of SBN (with some complicated math
behind), pointed out by Yee-Whye Teh
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Deep belief networks

History of DBNs

According to Hinton’s coursera’s course

@ Professor Hinton was working on algorithms to train Sigmoid
belief network but gave up after many different ideas

@ He moved on to work with RBMs and invented the CD-k algorithm
for training RBMs
@ Since CD-k is very effective, it is very tempting to think if one can
train a Sigmoid belief network one layer at a time by treating each
layer as a RBM
e The procedure is working great. But it actually trains a different
model, the DBN instead of SBN (with some complicated math
behind), pointed out by Yee-Whye Teh
@ DBN is actually the first successful deep neural network model
and revived the entire neural network field
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Deep belief networks

History of DBNs

According to Hinton’s coursera’s course

@ Professor Hinton was working on algorithms to train Sigmoid
belief network but gave up after many different ideas

@ He moved on to work with RBMs and invented the CD-k algorithm
for training RBMs

@ Since CD-k is very effective, it is very tempting to think if one can
train a Sigmoid belief network one layer at a time by treating each
layer as a RBM

e The procedure is working great. But it actually trains a different
model, the DBN instead of SBN (with some complicated math
behind), pointed out by Yee-Whye Teh

@ DBN is actually the first successful deep neural network model
and revived the entire neural network field

@ Try not to get confused of DBN with deep Boltzmann machines
(DBMs), where each layer is composed of an RBM
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Deep belief networks
Pretraining of DBNs

DBN’s graphical model
n@® As mentioned in the previous slide

@ Treat the bottom two layers as an RBM

RBM { e .
and train it with the input data x

SBN ¢
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Deep belief networks
Pretraining of DBNs

DBN’s graphical model

RBM

SBN ¢

S. Cheng (OU-Tulsa)

n@® As mentioned in the previous slide

@ Treat the bottom two layers as an RBM
and train it with the input data x

@ Treat the next two layers as an RBM and
train it with the h() obtained in the last
nh® step

Deep belief networks Feb 2017 21/25



Deep belief networks
Pretraining of DBNs

DBN’s graphical model
n@® As mentioned in the previous slide
@ Treat the bottom two layers as an RBM
and train it with the input data x
@ Treat the next two layers as an RBM and
train it with the h() obtained in the last
h® step
@ Keep continuing while keeping the
trained weights

RBM

SBN ¢
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Deep belief networks

Fine-tuning of DBN

Up-down algorithm (aka contrastive wake-sleep algorithm)

After learning many layers of features, we can fine-tune the features to

improve generation
@ Do a stochastic bottom-up pass
e Construct hidden variables with reconstruction weight R (initialized

as the transpose of W)
o Use the approximated hidden variables to fine tune W
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Up-down algorithm (aka contrastive wake-sleep algorithm)

After learning many layers of features, we can fine-tune the features to

improve generation

@ Do a stochastic bottom-up pass
e Construct hidden variables with reconstruction weight R (initialized

as the transpose of W)
o Use the approximated hidden variables to fine tune W

@ Do a few iterations of sampling in the top level RBM
o Adjust top-level RBM weights using CD-k
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Deep belief networks

Fine-tuning of DBN

Up-down algorithm (aka contrastive wake-sleep algorithm)

After learning many layers of features, we can fine-tune the features to

improve generation

@ Do a stochastic bottom-up pass
e Construct hidden variables with reconstruction weight R (initialized

as the transpose of W)
o Use the approximated hidden variables to fine tune W

@ Do a few iterations of sampling in the top level RBM
o Adjust top-level RBM weights using CD-k
© Do a stochastic top-down pass
o Generate simulation data and use that to fine-tune the
reconstruction weights R
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Deep belief networks
MNIST example

@ Test on MNIST dataset

28 x 28
pixel
image
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@ Train 500 hidden units with the
image block as input

500 units
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Deep belief networks
MNIST example

S. Cheng (OU-Tulsa)

@ Test on MNIST dataset

@ Train 500 hidden units with the
image block as input

@ Train another 500 hidden units

500 units with the trained 500 hidden
units as input
500 units
28 x 28
pixel
image
Deep belief networks Feb 2017 23/25



Deep belief networks
MNIST example
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500 units

Rin

500 units

|

28 x 28
pixel
image

@ Test on MNIST dataset
@ Train 500 hidden units with the
image block as input

@ Train another 500 hidden units
with the trained 500 hidden
units as input
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Deep belief networks
MNIST example
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@ Test on MNIST dataset

@ Train 500 hidden units with the
image block as input

@ Train another 500 hidden units

with the trained 500 hidden
units as input

@ Prepare another 2000 hidden
units

@ Train the 2000 hidden units
with the previously trained 500
hidden units and target labels
as input
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@ Test on MNIST dataset

@ Train 500 hidden units with the
image block as input

@ Train another 500 hidden units
with the trained 500 hidden
units as input

@ Prepare another 2000 hidden

500 units units
1 @ Train the 2000 hidden units
with the previously trained 500
2%i>>§e%8 hidden units and target labels
image as input
@ Error rate is about 1%
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Conclusions
Conclusions

@ Restricted Boltzmann machines (RBMs) and deep belief networks
(DBNs) are both generative models

@ RBMs can be trained efficiently with contrastive divergence
(CD-k) algorithm

@ DBNs can be trained by first pre-trained each pair of layers as an
RBM and then fine-tune with up-down algorithm

@ DBNs are the earliest deep neural network model and essential
the starting point of “deep learning” research
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