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Review

We looked into different variations of RNN in the last several
weeks (LSTMs, memory networks, neural Turing machines)
We will look into unsupervised learning for the next couple
lectures
We will first discuss restricted Boltzmann machines and deep
belief networks today
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Unsupervised learning

Unsupervised learning

We mostly looked into supervised learning problem throughout
the course, where essentially the expected outputs (labels) are
always given for the training data
For unsupervised learning, we are only given with data signals but
appropriate “labels” of the signals are not known

Clustering is one major subproblem but not the only one
For example, another problem can be data modeling. How to
create generative model for the given data
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Boltzmann machines

Boltzmann machines

Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985
It is a binary generative model
Probability of a “configuration” is
government by the Boltzmann
distribution exp(−E(x))

Z , where Z is a
normalization factor and called the
partition function (a name originated from
statistical physics)
The energy function E(x) has a very
simple form E(x) = −xT Wx − cT x
Typically some variables are hidden
whereas others are visible
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Restricted Boltzmann machines

Restricted Boltzmann machines

Boltzmann machine is a very powerful model. But with
unconstrained connectivity, there are not known efficient methods
to learn data and conduct inference for practical problems
Consequently, restricted Boltzmann machine (RBM) (originally
called Harmonium) was introduced by Paul Smolensky in 1986. It
restricted the hidden units and the visible units from connecting to
themselves
The model rose to prominence after fast learning algorithm was
invented by Hinton and his collaborators in mid-2000s
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Restricted Boltzmann machines

Restricted Boltzmann machines

Energy function: E(x,h) = −hT Wx − cT x − bT h
Distribution:

p(x,h) =
exp(−E(x,h))

Z
=

exp(hT Wx)exp(cT x)exp(bT h)
Z
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Restricted Boltzmann machines

Conditional probabilities
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Restricted Boltzmann machines

Derivation of conditional probabilities

p(h|x) = p(x,h)∑
h′ p(x,h′)

=
exp(hT Wx + cT x + bT h)/Z∑

h′∈{0,1}M exp(h′T Wx + cT x + bT h′)/Z

=
exp (

∑
i hiWix + bihi)∑

h′
1∈{0,1} · · ·

∑
h′

M∈{0,1} exp(
∑

i h′
i Wix + bih′

i )

W =

W1
· · ·
WM


=

∏
i exp (hiWix + bihi)∑

h′
1∈{0,1} · · ·

∑
h′

M∈{0,1}
∏

i exp(h′
i Wix + bih′

i )

=

∏
i exp (hiWix + bihi)(∑

h′
1∈{0,1} exp(h′

1W1x + b1h′
1)
)
· · ·
(∑

h′
M∈{0,1} exp(h′

MWMx + bMh′
M)
)

=
∏

i

exp
(
hiWix + cT x + bihi

)
/Z(∑

h′
i ∈{0,1} exp(h′

i Wix + cT x + bih′
i )
)
/Z

=
∏

i

p(hi |x)

N.B. Can also be obtained immediately since h1,h2, · · · ,hM are conditionally
independent given x
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Restricted Boltzmann machines

Derivation of conditional probabilities

p(hi = 1|x) = exp (Wix + bi)(∑
h′

i ∈{0,1} exp(h′
iWix + bih′

i)
)

=
exp (Wix + bi)

(1 + exp( Wix + bi))

= sigm(bi + Wix)

S. Cheng (OU-Tulsa) Deep belief networks Feb 2017 10 / 25



Restricted Boltzmann machines

Derivation of conditional probabilities

p(hi = 1|x) = exp (Wix + bi)(∑
h′

i ∈{0,1} exp(h′
iWix + bih′

i)
)

=
exp (Wix + bi)

(1 + exp( Wix + bi))

= sigm(bi + Wix)

S. Cheng (OU-Tulsa) Deep belief networks Feb 2017 10 / 25



Restricted Boltzmann machines

Derivation of conditional probabilities

p(hi = 1|x) = exp (Wix + bi)(∑
h′

i ∈{0,1} exp(h′
iWix + bih′

i)
)

=
exp (Wix + bi)

(1 + exp( Wix + bi))

= sigm(bi + Wix)

S. Cheng (OU-Tulsa) Deep belief networks Feb 2017 10 / 25



Restricted Boltzmann machines

Data generation

Equipped with the conditional probabilities p(x|h) and p(h|x), we can
generate simulated data given some hidden variables h′ using Gibbs
sampling

Sample x′ from p(x|h′)

Sample h′′ from p(h|x′)

Sample x′′ from p(x|h′′)

· · ·
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Restricted Boltzmann machines

Marginal probability p(x)

p(x) =
∑

h∈{0,1}M

exp(hT Wx + cT x + bT h)/Z

=
exp(cT x)

Z

∑
h1∈{0,1}

· · ·
∑

hM∈{0,1}

exp

(∑
i

hiWix + bihi

)

=
exp(cT x)

Z

 ∑
h1∈{0,1}

e(h1W1x+b1h1)

 · · ·

 ∑
hM∈{0,1}

e(hM WM x+bM hM )


=

exp(cT x)
Z

(
1 + e(W1x+b1)

)
· · ·
(

1 + e(WM x+bM )
)

=
exp(cT x)

Z
exp

(
log(1 + e(W1x+b1)) + · · ·+ log(1 + e(WM x+bM ))

)
= exp

(
cT x +

∑
i

log(1 + e(Wi x+bi ))

)
/Z
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Restricted Boltzmann machines

p(x) = exp

(
cT x +

∑
i

log(1 + e(Wi x+bi ))

)
/Z

= exp

(
cT x +

∑
i

softplus(Wix + bi)

)
/Z , exp(−F (x))/Z ,

where F (x) is known to be free energy, a term borrowed from statisti-

cal physics. Note that ∂softplus(t)
∂t = sigmod(t)
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Restricted Boltzmann machines

Training RBM

Use the cross entropy loss,

l(θ) =
1
T

∑
t

− log p(x(t)) =
1
T

∑
t

F (x(t))− log Z ,

where Z =
∑

x exp(−F (x)). And

∂ − log p(x(t))

∂θ
=

∂F (x(t))

∂θ
−
∑

x

exp(−F (x))
Z

∂F (x)
∂θ

=
∂F (x(t))

∂θ︸ ︷︷ ︸
positive phase

− E
[
∂F (x)
∂θ

]
︸ ︷︷ ︸

negative phase

N.B. The naming of the terms is not related to the sign in the equation.
It refers to the fact that adjusting the +ve phase terms to increase the
probability of the training data and the -ve terms to decrease the prob-
ability of the rest of x
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ability of the rest of x
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Restricted Boltzmann machines

Contrastive divergence (CD-k )

The negative phase term is very hard to compute exactly as we need
to sum over all x. The natural way out is to approximate using sam-
pling ⇒ contrastive divergence (CD-k ) training

Key idea: 1 Start sampling chain at x(t)

2 Obtain the point x̃ with k Gibbs sampling steps
3 Replace the expectation by a point estimate at x̃

N.B. CD-1 works surprisingly well in practice
S. Cheng (OU-Tulsa) Deep belief networks Feb 2017 15 / 25



Restricted Boltzmann machines

Parameters update
So we have ∂l(θ)

∂θ = ∂F (x(t))
∂θ − ∂F (x̃)

∂θ . Recall that

F (x) = −cT x −
∑

i

softplus(Wix + bi)

∂F (x)
∂ci

= −xi

∂F (x)
∂bi

= −sigmoid(Wix + bi)

∂F (x)
∂Wij

= −sigmoid(Wix + bi)xj

This gives us

c ⇐ c + α(x(t) − x̃)

b ⇐ b + α(sigmoid(Wx(t) + b)− sigmoid(W x̃ + b))

W ⇐ W + α(sigmoid(Wx(t) + b)x(t)T
− sigmoid(W x̃ + b)x̃T )
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Restricted Boltzmann machines

Persistent CD
Tieleman, ICML 2008

Idea: Instead of initializing the chain to x(t), initialize the chain to
the negative sample of the last iteration
This has a similar effect of CD-k with a large k and yet can have
much lower complexity

S. Cheng (OU-Tulsa) Deep belief networks Feb 2017 17 / 25



Restricted Boltzmann machines

Gaussian-Bernoulli RBM
Extension to continuous variables

RBM is a binary model and thus is not suitable for continuous
data
One simple extension to allow the visible variables x to be
continuous while keeping the hidden variables h to be binary
In particular, we can simply add a quadratic term 1

2xT x to the
energy function, i.e.,

E(x ,h) = −hT Wx − cT x − bT h +
1
2

xT x

to get Gaussian distributed p(x |h)
For efficient training, the input data are typically preprocessed
with zero-mean and unit variance
A smaller learning rate is needed compared to a regular RBM
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Deep belief networks

Deep belief networks (DBN)

DBN is a generative model that mixes
undirected and directed connections
Top 2 layers’ distribution p(h(2),h(3)) is
an RBN
Other layers form a Bayesian network:

The conditional distributions of layers
given the one above it are

p(h(1)
i = 1|h(2)) = sigm(b(1)

i + W (2)
ih(2))

p(h(1)
i = 1|h(1)) = sigm(b(0)

i + W (1)
ih(1))

This is referred to as a sigmoid belief
network (SBN)

Note that DBN is not a feed-forward
network
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Deep belief networks

History of DBNs
According to HInton’s coursera’s course

Professor Hinton was working on algorithms to train Sigmoid
belief network but gave up after many different ideas
He moved on to work with RBMs and invented the CD-k algorithm
for training RBMs
Since CD-k is very effective, it is very tempting to think if one can
train a Sigmoid belief network one layer at a time by treating each
layer as a RBM

The procedure is working great. But it actually trains a different
model, the DBN instead of SBN (with some complicated math
behind), pointed out by Yee-Whye Teh

DBN is actually the first successful deep neural network model
and revived the entire neural network field
Try not to get confused of DBN with deep Boltzmann machines
(DBMs), where each layer is composed of an RBM
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Deep belief networks

Pretraining of DBNs

As mentioned in the previous slide
Treat the bottom two layers as an RBM
and train it with the input data x
Treat the next two layers as an RBM and
train it with the h(1) obtained in the last
step
Keep continuing while keeping the
trained weights
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Deep belief networks

Fine-tuning of DBN
Up-down algorithm (aka contrastive wake-sleep algorithm)

After learning many layers of features, we can fine-tune the features to
improve generation

1 Do a stochastic bottom-up pass
Construct hidden variables with reconstruction weight R (initialized
as the transpose of W )
Use the approximated hidden variables to fine tune W

2 Do a few iterations of sampling in the top level RBM
Adjust top-level RBM weights using CD-k

3 Do a stochastic top-down pass
Generate simulation data and use that to fine-tune the
reconstruction weights R
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Deep belief networks

MNIST example

28 × 28
pixel

image

500 units

500 units

2000 units

10 labels

Test on MNIST dataset
Train 500 hidden units with the
image block as input
Train another 500 hidden units
with the trained 500 hidden
units as input
Prepare another 2000 hidden
units
Train the 2000 hidden units
with the previously trained 500
hidden units and target labels
as input
Error rate is about 1%
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Deep belief networks

Demo

http://www.cs.toronto.edu/˜hinton/adi/index.htm
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Conclusions

Conclusions

Restricted Boltzmann machines (RBMs) and deep belief networks
(DBNs) are both generative models
RBMs can be trained efficiently with contrastive divergence
(CD-k ) algorithm
DBNs can be trained by first pre-trained each pair of layers as an
RBM and then fine-tune with up-down algorithm
DBNs are the earliest deep neural network model and essential
the starting point of “deep learning” research

S. Cheng (OU-Tulsa) Deep belief networks Feb 2017 25 / 25


	Unsupervised learning
	Boltzmann machines
	Restricted Boltzmann machines
	Deep belief networks
	Conclusions

