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Review

We talked about restricted Boltzmann machines (RBMs) and deep
belief networks (DBNs) last time

DBNs were the first studied deep networks
RBMs have been served a useful tool for network pre-training

We will look into two important neural network models:
autoencoders and generative adversarial networks (GANs)
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Dimension reduction

Why autoencoders? Dimension reduction

As name suggests, the objective of dimension of reduction is to
decrease the dimension of input signals to ease later processing

It is often a preprocessing step
Was commonly used to compress features

It is a very old problem. The most representative algorithm is the
principal component analysis (PCA)
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Dimension reduction PCA

Principal component analysis (PCA)

Take N-dimensional data and find the M
orthogonal directions in which the data
have the most variance

We can represent an N-dimensional
datapoint by its projections onto the M
principal directions (i.e., with highest
variances)
This loses all information about where
the datapoint is located in the remaining
orthogonal directions

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 5 / 48



Dimension reduction PCA

Principal component analysis (PCA)

Take N-dimensional data and find the M
orthogonal directions in which the data
have the most variance

We can represent an N-dimensional
datapoint by its projections onto the M
principal directions (i.e., with highest
variances)
This loses all information about where
the datapoint is located in the remaining
orthogonal directions

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 5 / 48



Dimension reduction PCA

Principal component analysis (PCA)

Take N-dimensional data and find the M
orthogonal directions in which the data
have the most variance

We can represent an N-dimensional
datapoint by its projections onto the M
principal directions (i.e., with highest
variances)
This loses all information about where
the datapoint is located in the remaining
orthogonal directions

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 5 / 48



Dimension reduction PCA

PCA reconstruction

We reconstruct by using the mean value
(over all the data) on the N − M
directions that are not represented.

The reconstruction error is the sum over
the variances over all these
unrepresented directions

The variances are just eigenvalues of
covariance matrix of the data

PCA is “optimum”
Since we keep the largest variance
components, on average the distortion
is minimum among all linear dimension
reduction methods
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Dimension reduction PCA

Math review: Singular value decomposition (SVD)

For any N × K matrix A (assume K ≤ N), we can decompose it into
product of three matrices A

 =

 U


 D

 V

T

,

where U is N × K , D is K × K , and V is K × K . Moreover,
U is orthonormal, i.e., UT U = I
D is diagonal
V is orthonormal, i.e., V T V = I

Has nice geometric interpretation. Roughly speaking, any linear trans-
form can be decompose into rotation, scaling, and rotation again
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Dimension reduction PCA

SVD and PCA

Let X = [x1,x2, · · · ,xK ] be the matrix with columns as data
vectors. We can decompose X = UΣVT using SVD
Assume X is zero-mean, the covariance matrix C is just C ≈ XX T

k
Note that C ∼ UΣV T (UΣV T )T = UΣ2UT , thus singular values
are just square root of eigenvalues

Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X

One can easily verify that. Let X̂ = UΣ̂V T , where Σ̂ only keeps
the M largest singular values, then

Error =
∑

i

(x − x̂)T (x − x̂) = tr((X − X̂ )T (X − X̂ ))

=tr(V (Σ− Σ̂)UT U(Σ− Σ̂)V T ) = tr(V (Σ− Σ̂)(Σ− Σ̂)V T )

=tr(((Σ− Σ̂)V T )T (Σ− Σ̂)V T ) = tr((Σ− Σ̂)2)

=Sum of eigenvalues excluding the M largest ones
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Dimension reduction PCA

Optimal linear decoder ⇒ optimal linear encoder

PCA is optimum when things are “linear”
Interesting to know that as far as decoding is linear, the optimal
encoding is linear (PCA) as well

That is, if X̂ = Wh(X) for some optimal W
h(X) = TX for some optimal T

If decoding is restricted to be linear, then ultimately the optimal
X̂ = Wh(X) = UΣMVT

Let’s assume W = U, then

h(X) = ΣMVT = ΣMVT (XT X)−1(XT X)

= ΣMVT (VΣT UT UΣVT )−1(VΣT UT X)

= ΣMVT (VΣTΣVT )−1VΣT UT︸ ︷︷ ︸
some linear transform

X

= ΣMVT V(ΣTΣ)−1VT VΣT UT X

= ΣM(ΣTΣ)−1ΣT UT X = ΣMΣ−1UT X
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Autoencoders

Autoencoders
Autoencoder is a way to
perform dimension reduction
with neural networks

h(x) = sigm(b + Wx)
x̂ = sigm(c + W∗h(x))︸ ︷︷ ︸

binary inputs
x̂ = c + W∗h(x)︸ ︷︷ ︸

continuous inputs

loss = ‖x − x̂‖
N.B., for continuous inputs,
the decoder is linear and so
the optimum autoencoder is
just equivalent to PCA
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N.B., for continuous inputs,
the decoder is linear and so
the optimum autoencoder is
just equivalent to PCA
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Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

\

When using multiple layers,
PCA is no longer optimal for
continuous input
The introduced nonlinearity
can efficiently represent data
that lies on a non-linear
manifold
It was an old idea (dated back
to 80’s) but it was considered
to be very hard to train
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Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

First really successful deep
autoencoder was trained in
2006 by Hinton’s group
It uses layer-by-layer RBM
pre-training as described in
the last lecture
Just use regular backprob for
fine-tuning

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 12 / 48



Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

First really successful deep
autoencoder was trained in
2006 by Hinton’s group
It uses layer-by-layer RBM
pre-training as described in
the last lecture
Just use regular backprob for
fine-tuning

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 12 / 48



Autoencoders Deep autoencoders

Deep autoencoder vs PCA
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Autoencoders Deep autoencoders

Deep autoencoder for 400,000 business documents
Hinton 2006
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Deep autoencoder for 400,000 image retrieval
Hinton 2006
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Autoencoders Stacked autoencoders

Stacked autoencoders
Alternative pretrianing approach

Besides pre-training
using RBMs, we
may also “expand”
a deep
autoencoders as a
stack of shallow
autoecoders
Shallow
autoencoders are
easier to train than
RBM

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 16 / 48



Autoencoders Stacked autoencoders

Stacked autoencoders
Alternative pretrianing approach

Besides pre-training
using RBMs, we
may also “expand”
a deep
autoencoders as a
stack of shallow
autoecoders
Shallow
autoencoders are
easier to train than
RBM

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 16 / 48



Autoencoders Stacked autoencoders

Stacked autoencoders
Alternative pretrianing approach

Besides pre-training
using RBMs, we
may also “expand”
a deep
autoencoders as a
stack of shallow
autoecoders
Shallow
autoencoders are
easier to train than
RBM

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 16 / 48



Autoencoders Stacked autoencoders

Denoising autoencoders
Vincent et al. 2008

Idea: representation should be robust
to introduction of noise

Randomly assign bits to zero for
binary case

Similar to dropout but for inputs
only

Gaussian additive noise for
continuous case

Loss function compares x̂ with
noiseless input x
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Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

Idea: encourage robustness of the model by forcing the hidden
units to be insensitive to slight change of inputs
Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

l(x) → l(x) + λ‖∇xh(x)‖2
F

Pros and cons
+ deterministic gradient ⇒ can use second order optimizers
+ could be more stable than denoising autoencoder, which needs
to use a sampled gradient
- Need to compute Jacobian of hidden layer
- More complex than denoising autoencoder, which just needs to
add one two lines of code
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Autoencoders Variational autoencoders

Discriminative models vs generative models

Discriminative models try to discriminate if one input is different
from another. But it is not possible to generate samples from the
models. Many classifiers are based on discriminative models, for
example, support vector machines
Generative models on the other hand can generate simulated
data, for example, DBNs and RBMs
Many older machine learning problems are classification
problems. Discriminative models provide a more direct solution
and thus were more attractive
Generative models have gained quite some attentions in recent
years

Generate labeled simulation data for semi-supervised learning
Simulate data for planning and reinforcement learning

“Generative autoencoders” ⇒ variational autoencoders
Instead of spitting out an approximate for the input
The decoder spits out parameters of a distribution
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Autoencoders Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

x

z

µ

X̂ ∼ N (µ, σ2)

p(z|x)?

NN with θ

p(z|x) = p(z)p(x |z)
p(x) = p(z)p(x |z)∫

p(z)p(x |z)dz

For simplicity, pick p(z) = N (z;0,1)
and p(x |z) = N (µ, σ2), the posterior
p(z|x) is still intractable since
computing p(x) needs to integrate
over all possible z
We might use MAP or Monte Carlo
sampling (MCMC) to estimate p(z|x)
but

MAP: - too biased
MCMC: - too expensive
⇒ Variational inference
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Variational autoencoder
Kingma and Willing 2014

x

µ

Z

µ

X̂ ∼ N (µ, σ2)

NN with φ

∼ N(µ, σ2)

NN with θ

Instead of trying to find the exact
posterior p(z|x), approximate it as a
Gaussian distribution with parameters
obtained through an NN
Unfortunately, the loss − log p(x) is
still intractable, but we can
approximate log p(x) with a lower
bound
Instead of minimizing the loss, or
maximizing log p(x) directly, we will
maximize its lower bound instead
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Autoencoders Variational autoencoders

Variational lower bound (EBLO)

log p(x) = log
p(x |z)p(z)

p(z|x)
= log

p(x |z)p(z)
p(z|x)

q(z|x)
q(z|x)

= log p(x |z)− log
q(z|x)
p(z)

+ log
q(z|x)
p(z|x)

Since the above is true for all z,

log p(x) = EZ∼q(z|x)

[
log p(x |z)− log

q(z|x)
p(z)

+ log
q(z|x)
p(z|x)

]
= EZ∼q(z|x) [log p(x |z)]− KL(q(z|x)‖p(z))︸ ︷︷ ︸

EBLO(x , θ, φ) “Evidence Lower BOund”

+ KL(q(z|x) ‖p(z|x))︸ ︷︷ ︸
≥0

Training: θ∗, φ∗ = arg maxθ,φ
∑

i EBLO(x (i), θ, φ)
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Autoencoders Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

Maximizing EBLO means that:
Want small KL(q(z|x)‖p(z)) (the difference between the approx
distribution from p(z))

This turns out to have closed-form solution since we are dealing
with Gaussian distributions

Want large EZ∼q(z|x)[log p(x |z)] (expected log prob of the
evidence with approx distribution)

need to backprop through a random node z
can be solved by the ”reparametrization trick”
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Autoencoders Variational autoencoders

Reparametrization trick
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Autoencoders Variational autoencoders

Trained on faces with convnet encoder/decoder
Alec Radford 2015
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GANs

Generative adversarial networks (GANs)
Goodfellow et al. 2014

random
number

generator

generator
samplediscriminatordata sample

yes/no

generator

data sample?
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GANs

Generative adversarial networks (GANs)
Goodfellow et al. 2014

Z ∼ p(z)

x ∼ p(x |z)D(x)x ∼ q(x)

1/0

G(z)

x ∼ q(x)

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 27 / 48



GANs

Minimax game of a GAN

Probability of model data: pmodel(x) =
∫

z p(z)p(x |z)dz
Probability of true data: pdata(x) = q(x)
Discriminator wants to catch fake data

J(D) = −1
2

Ex∼pdata log D(x)− 1
2

Ez log(1 − D(G(z)))

= −1
2

Ex∼pdata log D(x)− 1
2

Ex∼pmodel log(1 − D(x))

Generator wants to fool the discriminator

J(G) = −J(D)
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GANs

Optimal discriminator D∗(x)

By calculus of variations, for any ∆(x),

∂J(D)(D∗(X ) + λ∆(x))
∂λ

∣∣∣∣
λ=0

= 0

⇒ −
∂Ex∼pdata log(D∗(x) + λ∆(x))

∂λ
−

∂Ex∼pmodel log(1 − D∗(x)− λ∆(x))
∂λ

∣∣∣∣
λ=0

= 0

⇒ −Ex∼pdata

[
1

D∗(x) + λ∆(x)

]
+ Ex∼pmodel

[
1

1 − D∗(x)− λ∆(x)

]∣∣∣∣
λ=0

= 0

⇒
∫

x

[
pdata(x)
D∗(x)

− pmodel(x)
1 − D∗(x)

]
dx = 0

⇒D∗(x) =
pdata(x)

pdata(x) + pmodel(x)
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GANs Design tricks

Non-saturating cost function

The discriminator cost function
J(D) = −1

2Ex∼pdata log D(x)− 1
2Ex∼pmodel log(1 − D(x)) is a very

reasonable choice and usually will not be modified
On the other hand, we have more freedom on choosing the
generator cost

The minimax cost J(G) = −J(D) is theoretically appealing but is not
the default choice in practice
The main problem is that gradient may be small because the
gradients contributed by the two terms could cancel each other in
some cases
The default choice is to maximize only the log-probability of the
discriminator being mistake (non-saturating cost), i.e.,

J(G) = −Ex∼pmodel log D(x).

This guarantees that the gradient is always non-zero (unless
discriminator always get fooled)
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GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

Default discriminator cost can also be written as

cross entropy(1,discriminator(data))
+cross entropy(0,discriminator(samples))

Experiment shows that one-sided label smoothed cost enhance
system stability

cross entropy(0.9,discriminator(data))
+cross entropy(0,discriminator(samples))

Essentially prevent extrapolating effect from extreme samples
Generally does not reduce classification accuracy, only confidence
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GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

It is important not to smooth the negative labels though, i.e., say

cross entropy(1 − α,discriminator(data))
+cross entropy(β, discriminator(samples))

with β > 0
Just follow the same derivation as before, we can get the optimum
D(x) as

D∗(x) =
(1 − α)pdata(x) + βpmodel(x)

pdata(x) + pmodel(x)

Since the numerator has significantly more effect on the peak
locations of D(x), consequently affect where the generator will
create data. β > 0 can reinforce undesirable positive feedback
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GANs Design tricks

Issue on batch normalization
Goodfellow 2016

Batch normalization is preferred and highly recommended. But it can
cause strong intra-batch correlation
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GANs Design tricks

Fixing batch norm

Reference batch norm: one possible approach is keep one
reference batch and always normalized based on that batch. That
is, always subtract mean from that of the reference batch and
adjust variance to that of the reference batch

Can easily overfit to the particular reference batch

Virtual batch norm: a partial solution by combining the reference
batch norm and conventional batch norm. Fix a reference batch,
but every time inputs are normalize to the net mean and variance
of the virtual batch containing both inputs and all elements of the
reference batch
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GANs Design tricks

Balancing G and D

Usually it is more preferable to have a bigger and deeper D
Some researchers also run more D steps than G steps. The
results are mixed though
Some take home messages

Use non-saturating cost
Use label smoothing

Do not try to limit D from being “too smart”

The original theoretical justification is that D is supposed to be
perfect
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GANs Design tricks

Mode collapse
Metz et al. 2016

Below demonstrates why D should be smart.
Basically the minmax and the minmax problem is not the same
and can lead to drastically different solutions

min
G

max
D

V (G,D) 6= max
D

min
G

V (G,D)

D in the inner loop: converge to the correct distribution
G in the inner loop: place all mass on most likely point

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 36 / 48



GANs Design tricks

Mode collapse
Metz et al. 2016

Below demonstrates why D should be smart.
Basically the minmax and the minmax problem is not the same
and can lead to drastically different solutions

min
G

max
D

V (G,D) 6= max
D

min
G

V (G,D)

D in the inner loop: converge to the correct distribution
G in the inner loop: place all mass on most likely point

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 36 / 48



GANs Design tricks

Minibatch features
Salimans et al. 2016

Mode collapse can lead to low diversity of generated data
One attempt to mitigate this problem is to introduce the so-called
minibatch features

Basically classify each example by comparing the features to other
members in the minibatch
Reject a sample if the feature to close to existing ones
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GANs Design tricks

Unrolled Gans
Metz et al. 2016

A more direct approach was proposed by Google brain
Trying to ensure that the generated sample is a solution of the
minmax rather than the maxmin problem
Have the generator to unroll k future steps and predict what
discriminator will think of the current sample

Since generator is the one who unrolls, generator is in the outer
loop and discriminator is in the inner loop
We ensure that we have solution approximating a minmax rather
than maxmin problem

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 38 / 48



GANs Design tricks

Unrolled Gans
Metz et al. 2016

A more direct approach was proposed by Google brain
Trying to ensure that the generated sample is a solution of the
minmax rather than the maxmin problem
Have the generator to unroll k future steps and predict what
discriminator will think of the current sample

Since generator is the one who unrolls, generator is in the outer
loop and discriminator is in the inner loop
We ensure that we have solution approximating a minmax rather
than maxmin problem

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 38 / 48



GANs Design tricks

Unrolled Gans
Metz et al. 2016

A more direct approach was proposed by Google brain
Trying to ensure that the generated sample is a solution of the
minmax rather than the maxmin problem
Have the generator to unroll k future steps and predict what
discriminator will think of the current sample

Since generator is the one who unrolls, generator is in the outer
loop and discriminator is in the inner loop
We ensure that we have solution approximating a minmax rather
than maxmin problem

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 38 / 48



GANs DCGAN

Deep convolutional GAN (DCGAN)
Radford et al. 2016
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GANs More applications

Generated bedroom after 5 epochs (LSUN dataset)
Radford et al. 2016
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GANs More applications

Vector arithmetics
Radford et al. 2016
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GANs More applications

StackGAN
Zhang et al. 2016

S. Cheng (OU-Tulsa) Autoencoders and GANs Feb 2017 43 / 48
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GANs More applications

iGAN
Zhu et al. 2016
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GANs More applications

iGAN
Zhu et al. 2016

Demo
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Conclusions

Conclusions

Conventional autoencoders are important tools for dimension
reduction and data representation in general
Generative models are some very exciting hot topics in deep
learning

Especially useful for datasets with few or no labels
Many other possible applications to be discovered

We discuss two state-of-the-art generative models
Variational autoencoders: autoencoders + variational inference
Generative adversarial networks (GANs): more recent and gaining
lots of interests
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