Deep Reinforcement Learning
Markov Decision Processes and Q-Learning

Samuel Cheng
University of Oklahoma

[These slides were modified from slides by Klein and Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning (RL)

= Learn how to response to the
environment with limited amount
of information

= Unlike supervised learning: no one
tell you what exactly what you
supposed to do

= Unlike unsupervised learning: RL
has a clear objective. Bottom line,
You don’t want to crash your car

Agent and Environment

Xy = At each step t the agent:

state 7" " [[%') action

= Receives state s,
" Receives scalar reward r,

" Executes action a,

" The environment:
= Receives action a,

" Emits state s,

= Emits scalar reward r,

From David Silver, DeepMind

Examples of RL

= Control physical systems: walk, fly, drive, swim, ...

" |nteract with users: retain customers, personalise channel,
optimise user experience, ...

= Solve logistical problems: scheduling, bandwidth allocation,
elevator control, cognitive radio, power optimisation, ..

= Play games: chess, checkers, Go, Atari games, ...

" Learn sequential algorithms: attention, memory, conditional
computation, activations, ...

From David Silver, DeepMind

Today’s Plan

= |earn how to response assuming that we DO know what the
environment is like (we have a map): non-deterministic search
and Markov decision process

" |earn how to response even when we DON’T know what the
environment is like (we don’t have a map): Q-learning

" Learn how to response when we DON’T know what the
environment is like and without being drowned in information:

approximate Q-learning, deep Q-learning

Non-Deterministic Search

Example: Grid World

= A maze-like problem
= The agentlivesin a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as planned 2
= 80% of the time, the action North takes the agent North
(if there is no wall there) 1

= 10% of the time, North takes the agent West; 10% East

= |f thereis a wall in the direction the agent would have been taken, the
agent stays put

= The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

= Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:

m Asetofstatess €S
m AsetofactionsacA
= A transition function T(s, a, s’)

= Probability that a from s leads to s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems

= One way to solve them is with expectimax search
= We'll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = 3”575 — StaAt — Ay, St—1 = 8t—1,At—1, ...50 = So)

Andrey Markov
P(St_|_1 — S”St = Sy, A, = CLt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy t*: S - A
= A policy m gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t compute entire policies
= |t computed the action for a single state only

Immediate Rewards Affect Optimal Policies

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s’) called a transition

T(s,a,s’) =P(s |s,a)

: N/
R(s,a,s) v\

Utilities of Sequences

Utilities of Sequences
= What preferences should an agent have over reward sequences?
= More orless? [1, 2, 2] or [2,3, 4]

= Now orlater? [0,0,1] or [1,0,0]

Discounting

" |t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5*2+0.25*3
= U([1,2,3]) < U([3,2,1])

Stationary Preferences

©
2@

= Theorem: if we assume stationary preferences:

[a,l,a,g, ..] — [bljbg, ..]

0

[Tﬂa’laa’Qa ..] - [7", bl,bQ, . o]

"= Then: there are only two ways to define utilities
= Additive utility: U([ro,71,72,...]) =m0 +r1+rm+---

= Discounted utility: U([rg,r1,72,...]) =rg4+~vr1 +~v2ro- -

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Discounting:use0<y<1

Ulros--.rse]) = S 4're < Rmax/(1)
t=0

= Smaller vy means smaller “horizon” — shorter term focus
Y

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

= Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
* Transitions P(s’|s,a) (or T(s,a,s’)))
= Rewards R(s,a,s’) (and discount 7) 78,88

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

" The value (utility) of a state s:

V*(s) = expected utility starting in s and A i
acting optimally state

a7 (s, a)is a
* The value (utility) of a g-state (s,a): ¥ g-state
Q’(s,a) = expected utility starting out A\ T N
having taken action a from state s and %83 (s,a,8") is a
(thereafter) acting optimally / g transition

" The optimal policy:
n (s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

M%I

WWWW "

How to Find Values of States? Bellman Equations

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
* Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value (Bellman eqns): ,
V*(S) —_ ma/ax Q*(S, a) ‘,N,

Q*(s,a) => T(s,a, s {R(S, a,s’) + *yV*(s’)]

V*i(s) = macijT(s, a,s’) {R(S,a, s + ’)/V*(S/)}

S

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vit1(s) maaxZT(s, a,s’) {R(s,a, s + ’YV]{(S,)}

S

Repeat until convergence

Complexity of each iteration: O(S%A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

VALUES AFTER O ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.72 » 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.78)» 1.00

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

Y
.H

Y
“u

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS N_Oise =0.2
Discount =0.9

Living reward =0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Summary of Value lteration

= Bellman equations characterize the optimal values:

V*(s) = mC?XZT(S, a,s’) [R(s,a, s") + f}/V*(s')}

= Value iteration computes them:

Vit1(s) maf;lXZT(s, a,s’) {R(s,a,, s + ’YV]{(S,)}

= Value iteration is just a fixed point solution method
= ...though the V, vectors are also interpretable as time-limited values

Policy Evaluation

Fixed Policies

Do the optimal action Do what 1 says to do

s,a,s

\\
\\
\\
’ '
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy t(s), then the tree would be simpler — only one action per state

= .. though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy n:

V™(s) = expected total discounted rewards starting in s and following &t

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V(5]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

= How do we calculate the V’s for a fixed policy ©t?

= |dea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vg (s) =0 s7ls)
Vi1 (s) & 3 T(s,m(s), $)[R(s, 7(5), 8') + 1V ()]

S

Efficiency: O(S?) per iteration

= |dea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?
= |t’s not too bad...

We need to do a mini-expectimax (one step)

7*(s) = arg Q’laXZT(S, a,s')[R(s,a,s) +~vV*(s)]

S

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

= Let’s imagine we have the optimal g-values:

" How should we act?
= Completely trivial to decide!

7m*(s) = argmaxQ*(s,a)

" |mportant lesson: actions are easier to select from g-values than values!

Policy Iteration

Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Viet1(8) + maaXZT(s,a, s [R(s,a,, s + ')/Vk(s’)]

S

» Problem 1: It’s slow — O(S?A) per iteration

" Problem 2: The “max” at each state rarely changes

" Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.72 » 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.78)» 1.00

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

Y
.H

Y
“u

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS N_Oise =0.2
Discount =0.9

Living reward =0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

“Policy” Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimall!) utilities as future values

= Repeat steps until policy converges

= This is called policy iteration
" |t’s still optimal!

= Can converge (much) faster under some conditions

Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:

= |terate until values converge:

ka_zl'_l(s) — > T(s,m(s),s") [R(s, mi(s),s") + Vkm(sl)}

= |mprovement: For fixed values, get a better policy using policy extraction

= One-step look-ahead:

mi4+1(s) = arg maXZT(s, a,s’) [R(s, a,s’) + nyWi(sl)}

S

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
"= The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

= S0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
* They basically are — they are all variations of Bellman updates
" They all use one-step lookahead expectimax fragments
* They differ only in whether we plug in a fixed policy or max over actions

Reinforcement Learning

Reinforcement Learning

Agent \\T\\

State: s Actions: a
Reward: r /

Environment

(&

= Basic idea:
= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

Example: Learning to Walk

!1} v
~ 2

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]

Example: Learning to Walk

o’

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]

Example: Learning to Walk

|| —

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

= Model-Based Idea:

" Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate of 7'(s, a, s)
= Discover each R(s,a,s’) when we experience (s, a, s’)

= Step 2: Solve the learned MDP

= For example, use value iteration, as before

Example: Model-Based Learning

Input Policy &t

Assume:y=1

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

' +
L D, exit, X, 10)

Episode 3

4)
E, north, C, -1
C, east, D, -1

[+
\D, exit, X, 10)

Episode 2

-
B, east, C, -1
C, east, D, -1

' +
L D, exit, X, 10)

Episode 4

4)
E, north, C, -1
C, east, A, -1

% A, exit, X, '1())

Learned Model

T(s,a,s")

_

(

T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) = 0.25

\

J

R(s,a,s")

(

_

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

\

J

Model-Free Learning

Example: Expected Age

Goal: Compute expected age of a group of students

Known P(A) A
E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... a,]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this 13(0,) _ num(a) Why does this
work? Because N E[A] ~ i Z 0 work? Because
eventually you A N &~ samples appear
learn the right ElA] ~ Z P(a)-a ‘ with the right

model. e / k frequencies.

—

Detour: Q-Value Iteration

= Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
= GivenV,, calculate the depth k+1 values for all states:

Vip1(s) < max > T(s,a,s") |R(s,a,8") + V()

= But Q-values are more useful, so compute them instead
= Start with Qg(s,a) = 0, which we know is right
= Given Q,, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)

Q-Learning

= Q-Learning: sample-based Q-value iteration

Qt1(s,a) « S T(s,a,8) |R(s,a,8) +7 maxQu(s',a')

" Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) + max Q(s',a")

a

" |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

" This is called off-policy learning

= (Caveats:

= You have to explore enough

®= You have to eventually make the learning rate

small enough

= .. but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

How to Explore?

= Several schemes for forcing exploration

= Simplest: random actions (e-greedy)
" Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

" Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) <—a R(s,a,s") +ymaxQ(s',a’)
Modified Q-Update: Q(s,a) <+« R(s,a,s’) 4+~ max f(Q(,d), N(, d))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Regret

= Even if you learn the optimal policy,
you still make mistakes along the way

= Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

= Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

= Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Approximate Q-Learning

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

= Too many states to visit them all in training

= Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) =wi1f1(s) +wafa(s) + ...+ wnfn(s)
Q(87 CI,) — wlfl(sa (l)—l—’waQ(S, CL)"- . °+wnf’n(87 a’)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

QGs,0) = wifi(s @ twafals,)+ Aunfals,a)

" Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,CL)
Q(s,a) «+— Q(s,a) + o [difference] Exact Q's

difference = [7" + v max Q(s',a")
a

w; «— w; + « [difference] f;(s,a) Approximate Q's

" |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

" Formal justification: online least squares

Example:

Q-Pacman

Q(S,CL) — 4'OfDOT(Saa) — 1'OfGST(Saa)

fpor(s, NORTH) = 0.5

fasT(s, NORTH) = 1.0

) 4
a = NORTH 8,
r = —500
J _

Q(s,NORTH) = +1

r + vy max Q(s',a’) = -500+0
a

Q(Slv) =0

{difference — —501 >

wpor — 4.0 + a[-501]0.5
was — —1.0 + a [-501] 1.0

Q(s,a) = 3.0fpor(s,a) —3.0fgsT(s,a) pemo:approximate a

learning pacman (L11D10)]

Deep Q-Learning

" The approximate Q-learning was great
if we picked the right features

= As throughout the whole course, why
(deep) neural networks are great is that
we can train end-to-end and do not
need to handcraft features

= Simple way out: let just train a neural
network to spit out the g values for a
given state and action

LETTER

dod1 10,10 38/ natare 143 36

Human -level control through deep reinforcement

learning

Veolodymyr Mnih'*, Komy Kavulcuoglu™, David Silver'® | AndreiA. Rusy', Joel Veness!, Mare G. Bellemare’, Al Graves',
Martin Riedmiller', Andres K. Fdjeland’, -..emgc»smvsm‘ sugmusenl Charles Beattie', Amir Sadid, loanmsa.ummghu‘
Helen King!, Dha:s.hanKnnumn‘ Daan “'hﬁtlsl S.hanel.eg‘&benusl—hs.ﬂ:.ls

Thett i reind 1 ds —“, agent is Lo sek jons ina fshion that maod mives cum Wlative future
deeply roted in paychol *anl. entific* p r!md.Mcmimm.llr wu:!:dmamwﬂuhudm:lnﬂmnkw
mwam.mmmmman app i e function
3 dworld compleity, however. & 1 Q'[s.ﬂ,'l:mu}i Fetvrag Hrga+ oo |g=s5 g=a 7],
with adifficult task: they N £ afthe it ot o di edbyy steach
whichis 1 discount Pt me-
mrtummﬂ&unhd#rdﬁnmﬂmd-mrpmn lndl.eﬂtue step £, :dumbhhabdumwhcrn—ﬂab} after making an
o texperience tonew stustions Remarkably, humats o1y ion (s) and taking an action (a) (see Methods) .

P g
" Frei S 1 m il

pro-
oudqml:unl“ the fommer evienced by a wealth of neusal data
P

ment kamning is known i be unstable or even io diverge
when a nonliner fiunction approximator sudh as a neural network is
mdmmpsm'ldwmm-wlmf:hohmu) function™. This

ons an d d dLiffe rd:ﬁcrm.ﬂ:lhnﬂ.\g
2. Whil e peindy 1
scoEsses in avariety of domains**, M-pwuumrh-pum.h
been limited to domains inwhidh useful f
cmdmdmudlhﬂrdumd,lom-dhm-mﬁn
Here n

has several causes: ﬂro‘mrhmu]nmlmﬂwm&r
ol dhservations,th & o
iwwh:rmdlmdarduaedrdahd.ﬂ:lnun,mdlwun&hm
bﬂmﬂwachmwalm{muddwuaﬂwdwr+rm:xg[x’ a'l
‘Wi adkdress these instabilities witha novel variantof O keamning, which
wses two key ideas. First, we used a hicdogically inspired mechanism
termed experience replay™™ that mndomises over the data, thereby
mmn;mnhummllwulnmauqummdmdlm;m

levelop A artificinl agent, dq,q-nmhhm
L ol obicien direetly oo b b

using end to-end reinforement learning, We tested this agent o
the challenging domain of classic Atari 2600 games'. We deman-

1 u“dwq 4

g only the pixels and
ofall

thedats distrib details). Secomd, weuad
an ilerative update that adjusts the action-values {({J) towards targed
vahues that are anly periodically updted, fhereby reducing corrdations

as inputs,
pmdm-iyﬂll:mnd-dxhu-lndmpmikloﬂdohpm—
femsional hurman games tester scrossa setof 49 games, using the sime
algorithm, network ardiitecture and hy perparameters. This work
beridges the divide between high-dimensional sensory inputs and
actions, resulting in the first artificial agent thatis capable ofleam-
ing tor excel at a diverse amray of challenging tasks.

Wesel oullo createa single algorithm that would be able to develop
awide mageof competend s ona varied rnge of challeng ing tisks—a
central gond of general antificial intelligence'* that has ehuded previous
diforts™ % Toachieve this, we deveoped a novl agenta deep Q-netwark
(DN}, which iz able 1 combine ranfrcement keaming with a chiss
af artificial newral network'* known as deep neunal networks Notshly,
recent advances in deep newral networks™", in which several byers of
nodes are used to build up progressively moreabstract tations
al the data, have madeit possible for artificial neuralnetworks tolearn
msldluulgmalq‘md.nalrfnmnw:cuu-p data We
s ane y sucaes sl architedure, the deep convalutional
network”, whidh uses hirarchical hyers of tilal comvalutional filters
o mimi ¢ the dfects of receptive fidds —inspired by Hube and Wiesel's
seminal wark an i'd.imd]‘lm)‘ ineardyvisuloar

doiting the bocals patial inimages, and building
mnhmhrnahu:lhminma‘huumd\udwdwnl
ar scale.

Weconsider tasks inwhich the agent interacts withan environment
througha sequence of sbservations, actions and rewards. The goal of the

will\iwu:nn_
it] thisds exiat for traind i} mmlh
1 ine such 1 fitted O st th
mdmdsmulwlwxq;nu{mnmgd‘mumh&mwmhmﬂds
af hads, unlike our algorithm, are

mmd"mlmlwud:ms:fulr with birge neural networks_ We
[rameterive an approximate value function (43,08} using the desp
eomcutional neurd networksownin Fig. 1, inwhich @ are the paran-
diers (that is, weighis) of the Q-ndwork at iteration i To pedform
experience replay we stare the agent’s experiences & = {5t 5 4 1)
at each time-step f in 2 dota set Dy~ [an... oo}, During leamning, we
agphy -l g tpdabes, on sanaplea (o it inbatches) of Experiend:
(gars') ~ U(D), drawn uniformly 2t andom fam the poal of stored
sarples. The (-learning update at iteration i uses the following loas
function:

L[3=J=T<a-.m~utm[(r+rm;1 Qt’,a’:&'}—ﬁ[u:&l)]

inwhich yis the discount factor determining theag ent’s horizn, §, are
the parameters of the Craetworkat iteration jand) are thenetwark
rameters used o compute the tirget at ilemtion i The target net-
wark perametersf]” are anlyupdated with the Q- network parametens
{4} every steps and are held fined between individual updates (see
Methods).

T evaluate our DOMN agent, we took advantage of the Atari 2600
platform, which affers a diverse array of tasks (n = 49) designed 1o be

Ao ghn D Mo, 5 Pl 30, S s, Lt irs ECAA 3T, LI
“Thecion o caonie b o ng iy b i w o

26 FEEBRUARY 2015 | VOL 514 | HATURE | 529

£2015 Macmillan Fub ishers Limiec. AN fights maseved

A small trick

Q-value Q-value 1 Q-value 2 Q-value n
Network Network
State Action State

Left: Naive formulation of deep Q-network. Right: More optimized architecture of deep Q-network, used in DeepMind

Network Architecture for Atari Game

Layer Input Filter size | Stride Num filters | Activation | Output
conv1 84x84x4 8x8 4 32 RelLU 20x20x32
conv2 20x20x32 | 4x4 2 64 RelLU Ox9x64
conv3 9x9x64 3x3 1 64 RelLU X7x64
fcd Tx7x64 512 RelLU 912

fcd 512 18 Linear 18

Loss function: L = [r
-

......... >y

+ mgg}ﬂ;@(s’?ﬂ’} o Q[S?ﬂ)]g

R
prediction

Stability Issues with Deep Q-Learning

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
= Successive samples are correlated, non-iid

2. Policy changes rapidly with slight changes to Q-values

= Policy may oscillate
= Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values
= Naive Q-learning gradients can be large, unstable when backprop

From David Silver, DeepMind

Stabilize Deep Q-Learning

1. Use experience replay
" Break correlations in data, bring us back to iid setting
" Learn from all past policies

2. Freeze target Q-network
" Avoid oscillations
" Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range

= Robust gradients

From David Silver, DeepMind

Experience Replay

" To remove correlations, build data-set from agent’s own
experience

* Take action a, according to e-greedy policy

= Store transition (S¢, a¢, 7441, S¢+1) in replay memory D

= Sample random mini-batch of transitions (s,a,r,s’) from D

= Optimize MSE between Q-network and Q-learning targets, e.g.,

Liw) = Eovsop [(r +ymax_Q(s’,a’,w) —Q(s,a,w))2]

From David Silver, DeepMind

Fixed Target Q-Network

" To avoid oscillations, fix parameters used in Q-learning target

" Compute Q-learning targets w.r.t. old, fixed parameters w™

r+ymax Q(s',a’,w™)
al

= Optimize MSE between Q-network and Q-learning targets

L(w) = Egors'op [(r +ymax_Q(s’,a’,w™) —Q(s, a:W))zl

" Periodically update fixed parameters

From David Silver, DeepMind

Reward/Value Range

= DQN clips the rewards to [—1, +1]

" This prevents Q-values from becoming too large

" Ensures gradients are well-conditioned

" Can’t tell difference between small and large rewards

From David Silver, DeepMind

Improvements since Nature DQN

= Double DQN: Remove upward bias caused by max Q (s, a, w)
a

= Current Q-network w is used to select actions
= Older Q-network w™ is used to evaluate actions

I = (r +vQ (s’, argmax 0(s',a’, W),W_) — Q(s, 3, W))Z

" Priortized replay: Weight experience according to surprise
= Store experience in priority queue according to DQN error

‘r +ymaxQ(s’',a’,w™) — Q(s,a,w)
a

= Deulling network: Split Q-network into two channels
= Action-independent value function V (s, v)
= Action-dependent advantage function A(s, a, w) Q(s,a) =V(s,v) + A(s,a,w)

From David Silver, DeepMind

Playing Breakout

Playing Invaders

Policy Learning

Policy Learning

Problem: often the feature-based policies that work well (win
games, maximize utilities) aren’t the ones that approximate V/ Q
best

= Q-learning’s priority: get Q-values close (modeling)

= Action selection priority: get ordering of Q-values right (prediction)
Solution: learn policies that maximize rewards, not the values
that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-
tune by hill climbing on feature weights

Alternative: Build a policy network

Simple Policy Network

raw pixels hidden layer

probability of
moving UP

From http://karpathy.github.io/2016/05/31/rl/

Reinforcement Learning vs Supervised Learning

forward pass _ Supervised Learning
> log probabilities (correct label is provided)

-1.2 | -0.36
. block of differentiable compute .
image (e.g. neural net) gradients
1.0 0
backward pass
forward pass Reinforcement Learning
» |og probabilities
-1.2 |-0.36 | — sample an action:
. block of differentiable compute :
image gradients
(e.g. neural net)
0 -1.0
< eventual reward -1.0

backward pass

From http://karpathy.github.io/2016/05/31/rl/

Backprop Example

PS UpP ’.DDWN-_. UP P UP -_.DOWN’. DOWN*. DOWN e ® WIN

o DOWN o UP -® UP -® DOWN.. UP o UP s LOSE

o UP o UP -® DDWI"»L. DOWN-.DDWN._. DOWN‘. UP @ LOSE
UP -® UP I".Dl:l‘».-"‘-.r"r‘tl._. UP e UP s WIN

With Policy Gradients we would take the two games we won and slightly encourage every single
action we made in that episode and vice versa

From http://karpathy.github.io/2016/05/31/rl/

AlphaGo Revisit

* Why Go is so difficult?

= Number of combinations =~ 250189
~ 10430

" Comparatively, number of

configurations for chess (Shannon
number) = 35%% ~ 10120

= Number of atoms in the observable
universex 10382

AlphaGo’s approach

= Use a deep (CNN) policy network to imitate expert players’
moves

" Use a value network to estimate the winning chance of each
configuration

" Look ahead” with Monte-Carlo tree search to do policy search

Current Board

000000000 -

00000 1000
0-1001-1100
01001-1000
0000-10000
00000 00O0O
0-10000000

00000 0000

AlphaGo’s Policy Network

g:s -2 plals)

~000000 00O

000000 0O0O
000000 00O
000000.20.100
000000.40.200
0000001 00O
000000 0O0O

p(a|s)

~000000 0O0O0—

argmax

Next Action

000000000
000000000
000000000
000000000
000001000
000000000
000000000
000000000

a

AlphaGo’s Value Network

Board position win/loss

. é‘ Expert Moves Imitator Model
; Loss

@, (W/ CNN)
—q) z=-1

Olog p,(a|s)
dp o

Training: Ap x

AlphaGo’s Value Network

Board position win/loss
x—(}—-. .
; - Expert Moves Imitator Model :
Win
(w/ CNN)
z=+1
logp,(a|s;)

Tralning: Apx oy

Selection

@@@ @.@ ®

Monte Carlo Tree Search

Node value: Wining rate

_ Evaluation
Expansion

a:1

Backpropagation

Monte Carlo Tree Search (MCTS)

Selection b Expansion c Evaluation d Backup

o

N\

Q+ uP) \
'+

Q +u(P) Aax

e () & () B

N\ 1 :
i I

a;=argmax(Q(s,a)+ u(sp,a))

a

bonus

AlphaGo in one Slide

a Selection b Expansion c Evaluation d Backup
%N Q +u(P) H B ﬁ 1de H\
S T
Q+ulP) nax 1 . i
e R (HE) B e llEE 2
2 3
a;=argmax(Q(sya)+u(sy,a)) p: :
1 n . .i
Q(s,a)= NG IZ:I 1(s,a,i)V(s}) Winning rate estimate

V(SL) — (1 —)\)VQ(SL) \z; Winning rate predicted by fast rollout playout
Winning rate predicted by value network
P(s,a)

1+ N(s,a)

Disclaimer: not completely accurate. But close enough...

H(S, ﬂ) X Action probability predicted by policy network

Conclusion

= We're done with a quick introduction on
MDP, reinforcement learning, Q-learning
and deep Q-learning

= Acknowledgement: thanks Dan Klein and
Pieter Abbeel at UC Berkeley for making their
slides available online!

	Deep Reinforcement Learning�
	Reinforcement Learning (RL)
	Agent and Environment
	Examples of RL
	Today’s Plan
	Non-Deterministic Search
	Example: Grid World
	Grid World Actions
	Markov Decision Processes
	What is Markov about MDPs?
	Policies
	Immediate Rewards Affect Optimal Policies
	MDP Search Trees
	Utilities of Sequences
	Utilities of Sequences
	Discounting
	Discounting
	Stationary Preferences
	Infinite Utilities?!
	Recap: Defining MDPs
	Solving MDPs
	Optimal Quantities
	Snapshot of Demo – Gridworld V Values
	Snapshot of Demo – Gridworld Q Values
	How to Find Values of States? Bellman Equations
	Value Iteration
	k=0
	k=1
	k=2
	k=3
	k=4
	k=5
	k=6
	k=7
	k=8
	k=9
	k=10
	k=11
	k=12
	k=100
	Summary of Value Iteration
	Policy Evaluation
	Fixed Policies
	Utilities for a Fixed Policy
	Example: Policy Evaluation
	Example: Policy Evaluation
	Policy Evaluation
	Policy Extraction
	Computing Actions from Values
	Computing Actions from Q-Values
	Policy Iteration
	Problems with Value Iteration
	k=0
	k=1
	k=2
	k=3
	k=4
	k=5
	k=6
	k=7
	k=8
	k=9
	k=10
	k=11
	k=12
	k=100
	“Policy” Iteration
	Policy Iteration
	Comparison
	Summary: MDP Algorithms
	Reinforcement Learning
	Reinforcement Learning
	Example: Learning to Walk
	Example: Learning to Walk
	Example: Learning to Walk
	Example: Learning to Walk
	The Crawler!
	Offline (MDPs) vs. Online (RL)
	Model-Based Learning
	Model-Based Learning
	Example: Model-Based Learning
	Model-Free Learning
	Example: Expected Age
	Detour: Q-Value Iteration
	Q-Learning
	Q-Learning Properties
	Exploration vs. Exploitation
	How to Explore?
	Exploration Functions
	Regret
	Approximate Q-Learning
	Generalizing Across States
	Example: Pacman
	Feature-Based Representations
	Linear Value Functions
	Approximate Q-Learning
	Example: Q-Pacman
	Deep Q-Learning
	A small trick
	Network Architecture for Atari Game
	Stability Issues with Deep Q-Learning
	Stabilize Deep Q-Learning
	Experience Replay
	Fixed Target Q-Network
	Reward/Value Range
	Improvements since Nature DQN
	Playing Breakout
	Playing Invaders
	Policy Learning
	Policy Learning
	Simple Policy Network
	Reinforcement Learning vs Supervised Learning
	Backprop Example
	AlphaGo Revisit
	AlphaGo’s approach
	AlphaGo’s Policy Network
	AlphaGo’s Value Network
	AlphaGo’s Value Network
	Monte Carlo Tree Search
	Monte Carlo Tree Search (MCTS)
	AlphaGo in one Slide
	Conclusion

