
Deep Reinforcement Learning
Markov Decision Processes and Q-Learning

Samuel Cheng
University of Oklahoma

[These slides were modified from slides by Klein and Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning (RL)

 Learn how to response to the
environment with limited amount
of information
 Unlike supervised learning: no one

tell you what exactly what you
supposed to do
 Unlike unsupervised learning: RL

has a clear objective. Bottom line,
You don’t want to crash your car

Agent and Environment

 At each step t the agent:
 Receives state st

 Receives scalar reward rt

 Executes action at

 The environment:
 Receives action at

 Emits state st

 Emits scalar reward rt

From David Silver, DeepMind

rt

atst

reward

actionstate

Examples of RL

 Control physical systems: walk, fly, drive, swim, ...
 Interact with users: retain customers, personalise channel,

optimise user experience, ...
 Solve logistical problems: scheduling, bandwidth allocation,

elevator control, cognitive radio, power optimisation, ..
 Play games: chess, checkers, Go, Atari games, ...
 Learn sequential algorithms: attention, memory, conditional

computation, activations, ...

From David Silver, DeepMind

Today’s Plan

 Learn how to response assuming that we DO know what the
environment is like (we have a map): non-deterministic search
and Markov decision process
 Learn how to response even when we DON’T know what the

environment is like (we don’t have a map): Q-learning
 Learn how to response when we DON’T know what the

environment is like and without being drowned in information:
approximate Q-learning, deep Q-learning

Non-Deterministic Search

Example: Grid World
 A maze-like problem

 The agent lives in a grid
 Walls block the agent’s path

 Noisy movement: actions do not always go as planned
 80% of the time, the action North takes the agent North

(if there is no wall there)
 10% of the time, North takes the agent West; 10% East
 If there is a wall in the direction the agent would have been taken, the

agent stays put

 The agent receives rewards each time step
 Small “living” reward each step (can be negative)
 Big rewards come at the end (good or bad)

 Goal: maximize sum of rewards

Grid World Actions
Deterministic Grid World Stochastic Grid World

Markov Decision Processes

 An MDP is defined by:
 A set of states s ∈ S
 A set of actions a ∈ A
 A transition function T(s, a, s’)

 Probability that a from s leads to s’, i.e., P(s’| s, a)
 Also called the model or the dynamics

 A reward function R(s, a, s’)
 Sometimes just R(s) or R(s’)

 A start state
 Maybe a terminal state

 MDPs are non-deterministic search problems
 One way to solve them is with expectimax search
 We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]

What is Markov about MDPs?

 “Markov” generally means that given the present state, the
future and the past are independent

 For Markov decision processes, “Markov” means action
outcomes depend only on the current state

 This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

 In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

 For MDPs, we want an optimal policy π*: S → A
 A policy π gives an action for each state
 An optimal policy is one that maximizes

expected utility if followed
 An explicit policy defines a reflex agent

 Expectimax didn’t compute entire policies
 It computed the action for a single state only

Immediate Rewards Affect Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

MDP Search Trees
 Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Utilities of Sequences

Utilities of Sequences

 What preferences should an agent have over reward sequences?

 More or less?

 Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

 It’s reasonable to maximize the sum of rewards
 It’s also reasonable to prefer rewards now to rewards later
 One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

 How to discount?
 Each time we descend a level, we

multiply in the discount once

 Why discount?
 Sooner rewards probably do have

higher utility than later rewards
 Also helps our algorithms converge

 Example: discount of 0.5
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 U([1,2,3]) < U([3,2,1])

Stationary Preferences

 Theorem: if we assume stationary preferences:

 Then: there are only two ways to define utilities

 Additive utility:

 Discounted utility:

Infinite Utilities?!

 Problem: What if the game lasts forever? Do we get infinite rewards?

 Solutions:
 Finite horizon: (similar to depth-limited search)

 Terminate episodes after a fixed T steps (e.g. life)
 Gives nonstationary policies (π depends on time left)

 Discounting: use 0 < γ < 1

 Smaller γ means smaller “horizon” – shorter term focus

 Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

 Markov decision processes:
 Set of states S
 Start state s0
 Set of actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)

 MDP quantities so far:
 Policy = Choice of action for each state
 Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Solving MDPs

Optimal Quantities

 The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

 The optimal policy:
π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo – gridworld values (L8D4)]

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

How to Find Values of States? Bellman Equations

 Fundamental operation: compute the (expectimax) value of a state
 Expected utility under optimal action
 Average sum of (discounted) rewards
 This is just what expectimax computed!

 Recursive definition of value (Bellman eqns):

a

s

s, a

s,a,s’

s’

Value Iteration

 Start with V0(s) = 0: no time steps left means an expected reward sum of zero

 Given vector of Vk(s) values, do one ply of expectimax from each state:

 Repeat until convergence

 Complexity of each iteration: O(S2A)

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Summary of Value Iteration

 Bellman equations characterize the optimal values:

 Value iteration computes them:

 Value iteration is just a fixed point solution method
 … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

Policy Evaluation

Fixed Policies

 Expectimax trees max over all actions to compute the optimal values

 If we fixed some policy π(s), then the tree would be simpler – only one action per state
 … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

π(s)

s

s, π(s)

s, π(s),s’
s’

Do the optimal action Do what π says to do

Utilities for a Fixed Policy

 Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

 Define the utility of a state s, under a fixed policy π:
Vπ(s) = expected total discounted rewards starting in s and following π

 Recursive relation (one-step look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’
s’

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

 How do we calculate the V’s for a fixed policy π?

 Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Efficiency: O(S2) per iteration

 Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)

π(s)

s

s, π(s)

s, π(s),s’
s’

Policy Extraction

Computing Actions from Values

 Let’s imagine we have the optimal values V*(s)

 How should we act?
 It’s not too bad…

 We need to do a mini-expectimax (one step)

 This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

 Let’s imagine we have the optimal q-values:

 How should we act?
 Completely trivial to decide!

 Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration

 Value iteration repeats the Bellman updates:

 Problem 1: It’s slow – O(S2A) per iteration

 Problem 2: The “max” at each state rarely changes

 Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

[Demo: value iteration (L9D2)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

“Policy” Iteration

 Alternative approach for optimal values:
 Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
 Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values
 Repeat steps until policy converges

 This is called policy iteration
 It’s still optimal!
 Can converge (much) faster under some conditions

Policy Iteration

 Evaluation: For fixed current policy π, find values with policy evaluation:
 Iterate until values converge:

 Improvement: For fixed values, get a better policy using policy extraction
 One-step look-ahead:

Comparison

 Both value iteration and policy iteration compute the same thing (all optimal values)

 In value iteration:
 Every iteration updates both the values and (implicitly) the policy
 We don’t track the policy, but taking the max over actions implicitly recomputes it

 In policy iteration:
 We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)
 After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 The new policy will be better (or we’re done)

 Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

 So you want to….
 Compute optimal values: use value iteration or policy iteration
 Compute values for a particular policy: use policy evaluation
 Turn your values into a policy: use policy extraction (one-step lookahead)

 These all look the same!
 They basically are – they are all variations of Bellman updates
 They all use one-step lookahead expectimax fragments
 They differ only in whether we plug in a fixed policy or max over actions

Reinforcement Learning

Reinforcement Learning

 Basic idea:
 Receive feedback in the form of rewards
 Agent’s utility is defined by the reward function
 Must (learn to) act so as to maximize expected rewards
 All learning is based on observed samples of outcomes!

Environment

Agent

Actions: aState: s
Reward: r

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

 Model-Based Idea:
 Learn an approximate model based on experiences
 Solve for values as if the learned model were correct

 Step 1: Learn empirical MDP model
 Count outcomes s’ for each s, a
 Normalize to give an estimate of
 Discover each when we experience (s, a, s’)

 Step 2: Solve the learned MDP
 For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π

Assume: γ = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Model-Free Learning

Example: Expected Age
Goal: Compute expected age of a group of students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Detour: Q-Value Iteration

 Value iteration: find successive (depth-limited) values
 Start with V0(s) = 0, which we know is right
 Given Vk, calculate the depth k+1 values for all states:

 But Q-values are more useful, so compute them instead
 Start with Q0(s,a) = 0, which we know is right
 Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning
 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go
 Receive a sample (s,a,s’,r)
 Consider your old estimate:
 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

 This is called off-policy learning

 Caveats:
 You have to explore enough
 You have to eventually make the learning rate

small enough
 … but not decrease it too quickly
 Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

How to Explore?

 Several schemes for forcing exploration
 Simplest: random actions (ε-greedy)
 Every time step, flip a coin
 With (small) probability ε, act randomly
 With (large) probability 1-ε, act on current policy

 Problems with random actions?
 You do eventually explore the space, but keep

thrashing around once learning is done
 One solution: lower ε over time
 Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Exploration Functions
 When to explore?
 Random actions: explore a fixed amount
 Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

 Exploration function
 Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

 Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Regret

 Even if you learn the optimal policy,
you still make mistakes along the way!

 Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

 Minimizing regret goes beyond
learning to be optimal – it requires
optimally learning to be optimal

 Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Approximate Q-Learning

Generalizing Across States

 Basic Q-Learning keeps a table of all q-values

 In realistic situations, we cannot possibly learn
about every single state!
 Too many states to visit them all in training
 Too many states to hold the q-tables in memory

 Instead, we want to generalize:
 Learn about some small number of training states from

experience
 Generalize that experience to new, similar situations
 This is a fundamental idea in machine learning, and we’ll

see it over and over again

[demo – RL pacman]

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

 Solution: describe a state using a vector of
features (properties)
 Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.
 Is it the exact state on this slide?

 Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

 Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

 Advantage: our experience is summed up in a few powerful numbers

 Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

 Q-learning with linear Q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

 Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

Deep Q-Learning

 The approximate Q-learning was great
if we picked the right features
 As throughout the whole course, why

(deep) neural networks are great is that
we can train end-to-end and do not
need to handcraft features
 Simple way out: let just train a neural

network to spit out the q values for a
given state and action

A small trick

Left: Naive formulation of deep Q-network. Right: More optimized architecture of deep Q-network, used in DeepMind

Network Architecture for Atari Game

Loss function:

Stability Issues with Deep Q-Learning

Naïve Q-learning oscillates or diverges with neural nets
1. Data is sequential
 Successive samples are correlated, non-iid

2. Policy changes rapidly with slight changes to Q-values
 Policy may oscillate
 Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values
 Naïve Q-learning gradients can be large, unstable when backprop

From David Silver, DeepMind

Stabilize Deep Q-Learning

1. Use experience replay
 Break correlations in data, bring us back to iid setting
 Learn from all past policies

2. Freeze target Q-network
 Avoid oscillations
 Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
 Robust gradients

From David Silver, DeepMind

Experience Replay

 To remove correlations, build data-set from agent’s own
experience
 Take action at according to ϵ-greedy policy
 Store transition (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡+1, 𝑠𝑠𝑡𝑡+1) in replay memory 𝐷𝐷
 Sample random mini-batch of transitions 𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′ from 𝐷𝐷
 Optimize MSE between Q-network and Q-learning targets, e.g.,

𝐿𝐿 𝑤𝑤 = 𝐸𝐸𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑠𝑠′~𝐷𝐷 𝑟𝑟 + 𝛾𝛾 max𝑎𝑎′𝑄𝑄 𝑠𝑠′,𝑎𝑎′,𝑤𝑤 − 𝑄𝑄 𝑠𝑠, 𝑎𝑎,𝑤𝑤
2

From David Silver, DeepMind

Fixed Target Q-Network

 To avoid oscillations, fix parameters used in Q-learning target
 Compute Q-learning targets w.r.t. old, fixed parameters 𝑤𝑤−

𝑟𝑟 + γmax
𝑎𝑎𝑎

𝑄𝑄(𝑠𝑠′,𝑎𝑎′,𝑤𝑤−)

 Optimize MSE between Q-network and Q-learning targets

𝐿𝐿 𝑤𝑤 = 𝐸𝐸𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑠𝑠′~𝐷𝐷 𝑟𝑟 + 𝛾𝛾 max𝑎𝑎′𝑄𝑄 𝑠𝑠′,𝑎𝑎′,𝑤𝑤− − 𝑄𝑄 𝑠𝑠, 𝑎𝑎,𝑤𝑤
2

 Periodically update fixed parameters

From David Silver, DeepMind

Reward/Value Range

 DQN clips the rewards to [−1, +1]
 This prevents Q-values from becoming too large
 Ensures gradients are well-conditioned
 Can’t tell difference between small and large rewards

From David Silver, DeepMind

Improvements since Nature DQN
 Double DQN: Remove upward bias caused by max

𝑎𝑎
𝑄𝑄(𝑠𝑠, 𝑎𝑎,𝑤𝑤)

 Current Q-network 𝑤𝑤 is used to select actions
 Older Q-network 𝑤𝑤− is used to evaluate actions

𝐼𝐼 = 𝑟𝑟 + γ Q s′, argmax
a′

𝑄𝑄 𝑠𝑠′,𝑎𝑎′,𝑤𝑤 , w− − Q s, a, w 2

 Priortized replay: Weight experience according to surprise
 Store experience in priority queue according to DQN error

𝑟𝑟 + γmax
𝑎𝑎

𝑄𝑄(𝑠𝑠′,𝑎𝑎′,𝑤𝑤−) − 𝑄𝑄(𝑠𝑠,𝑎𝑎,𝑤𝑤)

 Deulling network: Split Q-network into two channels
 Action-independent value function 𝑉𝑉 𝑠𝑠, 𝑣𝑣
 Action-dependent advantage function 𝐴𝐴(𝑠𝑠,𝑎𝑎,𝑤𝑤)

From David Silver, DeepMind

𝑄𝑄 𝑠𝑠, 𝑎𝑎 = 𝑉𝑉 𝑠𝑠, 𝑣𝑣 + 𝐴𝐴(𝑠𝑠, 𝑎𝑎,𝑤𝑤)

Playing Breakout

Playing Invaders

Policy Learning

Policy Learning

 Problem: often the feature-based policies that work well (win
games, maximize utilities) aren’t the ones that approximate V / Q
best
 Q-learning’s priority: get Q-values close (modeling)
 Action selection priority: get ordering of Q-values right (prediction)

 Solution: learn policies that maximize rewards, not the values
that predict them
 Policy search: start with an ok solution (e.g. Q-learning) then fine-

tune by hill climbing on feature weights
 Alternative: Build a policy network

Simple Policy Network

From http://karpathy.github.io/2016/05/31/rl/

Reinforcement Learning vs Supervised Learning

From http://karpathy.github.io/2016/05/31/rl/

Backprop Example

With Policy Gradients we would take the two games we won and slightly encourage every single
action we made in that episode and vice versa

From http://karpathy.github.io/2016/05/31/rl/

AlphaGo Revisit

 Why Go is so difficult?
 Number of combinations ≈ 250180
≈ 10430

 Comparatively, number of
configurations for chess (Shannon
number) ≈ 3580 ≈ 10120

 Number of atoms in the observable
universe≈ 1082

AlphaGo’s approach

 Use a deep (CNN) policy network to imitate expert players’
moves
 Use a value network to estimate the winning chance of each

configuration
 ``Look ahead” with Monte-Carlo tree search to do policy search

AlphaGo’s Policy Network

AlphaGo’s Value Network

AlphaGo’s Value Network

Monte Carlo Tree Search

Evaluation

Node value: Wining rate

Monte Carlo Tree Search (MCTS)

bonus

AlphaGo in one Slide

Winning rate estimate

Winning rate predicted by fast rollout playout

Winning rate predicted by value network

Action probability predicted by policy network

Disclaimer: not completely accurate. But close enough…

Conclusion

 We’re done with a quick introduction on
MDP, reinforcement learning, Q-learning
and deep Q-learning

 Acknowledgement: thanks Dan Klein and
Pieter Abbeel at UC Berkeley for making their
slides available online!

	Deep Reinforcement Learning�
	Reinforcement Learning (RL)
	Agent and Environment
	Examples of RL
	Today’s Plan
	Non-Deterministic Search
	Example: Grid World
	Grid World Actions
	Markov Decision Processes
	What is Markov about MDPs?
	Policies
	Immediate Rewards Affect Optimal Policies
	MDP Search Trees
	Utilities of Sequences
	Utilities of Sequences
	Discounting
	Discounting
	Stationary Preferences
	Infinite Utilities?!
	Recap: Defining MDPs
	Solving MDPs
	Optimal Quantities
	Snapshot of Demo – Gridworld V Values
	Snapshot of Demo – Gridworld Q Values
	How to Find Values of States? Bellman Equations
	Value Iteration
	k=0
	k=1
	k=2
	k=3
	k=4
	k=5
	k=6
	k=7
	k=8
	k=9
	k=10
	k=11
	k=12
	k=100
	Summary of Value Iteration
	Policy Evaluation
	Fixed Policies
	Utilities for a Fixed Policy
	Example: Policy Evaluation
	Example: Policy Evaluation
	Policy Evaluation
	Policy Extraction
	Computing Actions from Values
	Computing Actions from Q-Values
	Policy Iteration
	Problems with Value Iteration
	k=0
	k=1
	k=2
	k=3
	k=4
	k=5
	k=6
	k=7
	k=8
	k=9
	k=10
	k=11
	k=12
	k=100
	“Policy” Iteration
	Policy Iteration
	Comparison
	Summary: MDP Algorithms
	Reinforcement Learning
	Reinforcement Learning
	Example: Learning to Walk
	Example: Learning to Walk
	Example: Learning to Walk
	Example: Learning to Walk
	The Crawler!
	Offline (MDPs) vs. Online (RL)
	Model-Based Learning
	Model-Based Learning
	Example: Model-Based Learning
	Model-Free Learning
	Example: Expected Age
	Detour: Q-Value Iteration
	Q-Learning
	Q-Learning Properties
	Exploration vs. Exploitation
	How to Explore?
	Exploration Functions
	Regret
	Approximate Q-Learning
	Generalizing Across States
	Example: Pacman
	Feature-Based Representations
	Linear Value Functions
	Approximate Q-Learning
	Example: Q-Pacman
	Deep Q-Learning
	A small trick
	Network Architecture for Atari Game
	Stability Issues with Deep Q-Learning
	Stabilize Deep Q-Learning
	Experience Replay
	Fixed Target Q-Network
	Reward/Value Range
	Improvements since Nature DQN
	Playing Breakout
	Playing Invaders
	Policy Learning
	Policy Learning
	Simple Policy Network
	Reinforcement Learning vs Supervised Learning
	Backprop Example
	AlphaGo Revisit
	AlphaGo’s approach
	AlphaGo’s Policy Network
	AlphaGo’s Value Network
	AlphaGo’s Value Network
	Monte Carlo Tree Search
	Monte Carlo Tree Search (MCTS)
	AlphaGo in one Slide
	Conclusion

