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Reinforcement Learning (RL)

= Learn how to response to the
environment with limited amount
of information

= Unlike supervised learning: no one
tell you what exactly what you
supposed to do

= Unlike unsupervised learning: RL
has a clear objective. Bottom line,
You don’t want to crash your car




Agent and Environment

Xy = At each step t the agent:

state 7" " [[%') action

= Receives state s,
" Receives scalar reward r,

" Executes action a,

" The environment:
= Receives action a,

" Emits state s,

= Emits scalar reward r,

From David Silver, DeepMind




Examples of RL

= Control physical systems: walk, fly, drive, swim, ...

" |nteract with users: retain customers, personalise channel,
optimise user experience, ...

= Solve logistical problems: scheduling, bandwidth allocation,
elevator control, cognitive radio, power optimisation, ..

= Play games: chess, checkers, Go, Atari games, ...

" Learn sequential algorithms: attention, memory, conditional
computation, activations, ...

From David Silver, DeepMind



Today’s Plan

= |earn how to response assuming that we DO know what the
environment is like (we have a map): non-deterministic search
and Markov decision process

" |earn how to response even when we DON’T know what the
environment is like (we don’t have a map): Q-learning

" Learn how to response when we DON’T know what the
environment is like and without being drowned in information:

approximate Q-learning, deep Q-learning



Non-Deterministic Search




Example: Grid World

= A maze-like problem
= The agentlivesin a grid
=  Walls block the agent’s path

= Noisy movement: actions do not always go as planned 2
= 80% of the time, the action North takes the agent North
(if there is no wall there) 1

= 10% of the time, North takes the agent West; 10% East

= |f thereis a wall in the direction the agent would have been taken, the
agent stays put

= The agent receives rewards each time step
=  Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

= Goal: maximize sum of rewards



Grid World Actions

Deterministic Grid World Stochastic Grid World




Markov Decision Processes

An MDP is defined by:

m Asetofstatess €S
m AsetofactionsacA
= A transition function T(s, a, s’)

= Probability that a from s leads to s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems

= One way to solve them is with expectimax search
= We'll have a new tool soon

[Demo — gridworld manual intro (L8D1)]



What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = 3”575 — StaAt — Ay, St—1 = 8t—1,At—1, ...50 = So)

Andrey Markov
P(St_|_1 — S”St = Sy, A, = CLt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)



Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy t*: S - A
= A policy m gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t compute entire policies
= |t computed the action for a single state only



Immediate Rewards Affect Optimal Policies




MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s’ ) called a transition

T(s,a,s’ ) =P(s |s,a)

: N/
R(s,a,s ) v\




Utilities of Sequences




Utilities of Sequences
= What preferences should an agent have over reward sequences?
= More orless? [1, 2, 2] or [2,3, 4]

= Now orlater? [0,0,1] or [1,0,0]




Discounting

" |t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5*2+0.25*3
= U([1,2,3]) < U([3,2,1])




Stationary Preferences

©
2@

= Theorem: if we assume stationary preferences:

[a,l,a,g, .. ] — [bljbg, .. ]

0

[Tﬂa’laa’Qa .. ] - [7", bl,bQ, . o ]

"= Then: there are only two ways to define utilities
= Additive utility: U([ro,71,72,...]) =m0 +r1+rm+---

= Discounted utility: U([rg,r1,72,...]) =rg4+~vr1 +~v2ro- -



Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Discounting:use0<y<1

Ulros--.rse]) = S 4're < Rmax/(1 )
t=0

= Smaller vy means smaller “horizon” — shorter term focus
Y

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)



Recap: Defining MDPs

= Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
* Transitions P(s’|s,a) (or T(s,a,s’)) )
= Rewards R(s,a,s’) (and discount 7) 78,88

= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards



Solving MDPs




Optimal Quantities

" The value (utility) of a state s:

V*(s) = expected utility starting in s and A i
acting optimally state

a7 (s, a)is a
* The value (utility) of a g-state (s,a): ¥ g-state
Q’(s,a) = expected utility starting out A\ T N
having taken action a from state s and %83 (s,a,8") is a
(thereafter) acting optimally / g transition

" The optimal policy:
n (s) = optimal action from state s

[Demo — gridworld values (L8D4)]



Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Snapshot of Demo — Gridworld Q Values

M%I

WWWW "




How to Find Values of States? Bellman Equations

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
* Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value (Bellman eqns): ,
V*(S) —_ ma/ax Q*(S, a) ‘,N,

Q*(s,a) => T(s,a, s {R(S, a,s’) + *yV*(s’)]

V*i(s) = macijT(s, a,s’) {R(S,a, s + ’)/V*(S/)}

S



Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vit1(s) maaxZT(s, a,s’) {R(s,a, s + ’YV]{(S,)}

S

Repeat until convergence

Complexity of each iteration: O(S%A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do
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k=8
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Summary of Value lteration

= Bellman equations characterize the optimal values:

V*(s) = mC?XZT(S, a,s’) [R(s,a, s") + f}/V*(s')}

= Value iteration computes them:

Vit1(s) maf;lXZT(s, a,s’) {R(s,a,, s + ’YV]{(S,)}

= Value iteration is just a fixed point solution method
= ...though the V, vectors are also interpretable as time-limited values



Policy Evaluation




Fixed Policies

Do the optimal action Do what 1 says to do

s,a,s

\\
\\
\\
’ '
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy t(s), then the tree would be simpler — only one action per state

= .. though the tree’s value would depend on which policy we fixed



Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy n:

V™(s) = expected total discounted rewards starting in s and following &t

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V(5]



Example: Policy Evaluation

Always Go Right Always Go Forward




Example: Policy Evaluation

Always Go Right Always Go Forward




Policy Evaluation

= How do we calculate the V’s for a fixed policy ©t?

= |dea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vg (s) =0 s7ls)
Vi1 (s) & 3 T(s,m(s), $)[R(s, 7(5), 8') + 1V ()]

S

Efficiency: O(S?) per iteration

= |dea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)



Policy Extraction




Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?
= |t’s not too bad...

We need to do a mini-expectimax (one step)

7*(s) = arg Q’laXZT(S, a,s')[R(s,a,s) +~vV*(s)]

S

This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

= Let’s imagine we have the optimal g-values:

" How should we act?
= Completely trivial to decide!

7m*(s) = argmaxQ*(s,a)

" |mportant lesson: actions are easier to select from g-values than values!



Policy Iteration




Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Viet1(8) + maaXZT(s,a, s [R(s,a,, s + ')/Vk(s’)]

S

» Problem 1: It’s slow — O(S?A) per iteration

" Problem 2: The “max” at each state rarely changes

" Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]
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“Policy” Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimall!) utilities as future values

= Repeat steps until policy converges

= This is called policy iteration
" |t’s still optimal!

= Can converge (much) faster under some conditions



Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:

= |terate until values converge:

ka_zl'_l(s) — > T(s,m(s),s") [R(s, mi(s),s") + Vkm(sl)}

= |mprovement: For fixed values, get a better policy using policy extraction

= One-step look-ahead:

mi4+1(s) = arg maXZT(s, a,s’) [R(s, a,s’) + nyWi(sl)}

S



Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
"= The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs



Summary: MDP Algorithms

= S0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
* They basically are — they are all variations of Bellman updates
" They all use one-step lookahead expectimax fragments
* They differ only in whether we plug in a fixed policy or max over actions



Reinforcement Learning




Reinforcement Learning

Agent \\T\\

State: s Actions: a
Reward: r /

Environment

(&

= Basic idea:
= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!



Example: Learning to Walk

!1} v
~ 2

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]



Example: Learning to Walk

o’

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]



Example: Learning to Walk

|| —

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]



The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]



Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning



Model-Based Learning




Model-Based Learning

= Model-Based Idea:

" Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate of 7'(s, a, s)
= Discover each R(s,a,s’) when we experience (s, a, s’)

= Step 2: Solve the learned MDP

= For example, use value iteration, as before




Example: Model-Based Learning

Input Policy &t

Assume:y=1

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

' +
L D, exit, X, 10)

Episode 3

4 )
E, north, C, -1
C, east, D, -1

[ +
\D, exit, X, 10)

Episode 2

-
B, east, C, -1
C, east, D, -1

' +
L D, exit, X, 10)

Episode 4

4 )
E, north, C, -1
C, east, A, -1

% A, exit, X, '1())

Learned Model

T(s,a,s")

\_

(

T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) = 0.25

\

J

R(s,a,s")

(

\_

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

\

J




Model-Free Learning




Example: Expected Age

Goal: Compute expected age of a group of students

Known P(A) A
E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... a,]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this 13(0,) _ num(a) Why does this
work? Because N E[A] ~ i Z 0 work? Because
eventually you A N &~ samples appear
learn the right ElA] ~ Z P(a)-a ‘ with the right

model. e / k frequencies.

—




Detour: Q-Value Iteration

= Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
= GivenV,, calculate the depth k+1 values for all states:

Vip1(s) < max > T(s,a,s") |R(s,a,8") + V()

= But Q-values are more useful, so compute them instead
= Start with Qg(s,a) = 0, which we know is right
= Given Q,, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)



Q-Learning

= Q-Learning: sample-based Q-value iteration

Qt1(s,a) « S T(s,a,8) |R(s,a,8) +7 maxQu(s',a')

" Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) + max Q(s',a")

a

" |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]



Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

" This is called off-policy learning

= (Caveats:

= You have to explore enough

®= You have to eventually make the learning rate

small enough

= .. but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)



Exploration vs. Exploitation




How to Explore?

= Several schemes for forcing exploration

= Simplest: random actions (e-greedy)
" Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

" Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]



Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update:  Q(s,a) <—a R(s,a,s") +ymaxQ(s',a’)
Modified Q-Update: Q(s,a) <+« R(s,a,s’) 4+~ max f(Q(,d), N(, d))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]



Regret

= Even if you learn the optimal policy,
you still make mistakes along the way

= Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

= Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

= Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret




Approximate Q-Learning




Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

= Too many states to visit them all in training

= Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]



Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]



Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)




Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) =wi1f1(s) +wafa(s) + ...+ wnfn(s)
Q(87 CI,) — wlfl(sa (l)—l—’waQ(S, CL)"- . °+wnf’n(87 a’)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

QGs,0) = wifi(s @ twafals, )+ Aunfals,a)

" Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,CL)
Q(s,a) «+— Q(s,a) + o [difference] Exact Q's

difference = [7" + v max Q(s',a")
a

w; «— w; + « [difference] f;(s,a)  Approximate Q's

" |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

" Formal justification: online least squares



Example:

Q-Pacman

Q(S,CL) — 4'OfDOT(Saa) — 1'OfGST(Saa)

fpor(s, NORTH) = 0.5

fasT(s, NORTH) = 1.0

) 4
a = NORTH 8,
r = —500
J \_

Q(s,NORTH) = +1

r + vy max Q(s',a’) = -500+0
a

Q(Slv ) =0

{difference — —501 >

wpor — 4.0 + a[-501]0.5
was — —1.0 + a [-501] 1.0

Q(s,a) = 3.0fpor(s,a) —3.0fgsT(s,a)  pemo:approximate a

learning pacman (L11D10)]



Deep Q-Learning

" The approximate Q-learning was great
if we picked the right features

= As throughout the whole course, why
(deep) neural networks are great is that
we can train end-to-end and do not
need to handcraft features

= Simple way out: let just train a neural
network to spit out the g values for a
given state and action

LETTER

dod1 10,10 38/ natare 143 36

Human -level control through deep reinforcement

learning
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A small trick

Q-value Q-value 1 Q-value 2 Q-value n
Network Network
State Action State

Left: Naive formulation of deep Q-network. Right: More optimized architecture of deep Q-network, used in DeepMind



Network Architecture for Atari Game

Layer Input Filter size | Stride Num filters | Activation | Output
conv1 84x84x4 8x8 4 32 RelLU 20x20x32
conv2 20x20x32 | 4x4 2 64 RelLU Ox9x64
conv3 9x9x64 3x3 1 64 RelLU X7x64
fcd Tx7x64 512 RelLU 912

fcd 512 18 Linear 18

Loss function: L = [r
-

......... >y

+ mgg}ﬂ;@(s’?ﬂ’} o Q[S?ﬂ)]g

R
prediction




Stability Issues with Deep Q-Learning

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
= Successive samples are correlated, non-iid

2. Policy changes rapidly with slight changes to Q-values

= Policy may oscillate
= Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values
= Naive Q-learning gradients can be large, unstable when backprop

From David Silver, DeepMind



Stabilize Deep Q-Learning

1. Use experience replay
" Break correlations in data, bring us back to iid setting
" Learn from all past policies

2. Freeze target Q-network
" Avoid oscillations
" Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range

= Robust gradients

From David Silver, DeepMind



Experience Replay

" To remove correlations, build data-set from agent’s own
experience

* Take action a, according to e-greedy policy

= Store transition (S¢, a¢, 7441, S¢+1) in replay memory D

= Sample random mini-batch of transitions (s,a,r,s’) from D

= Optimize MSE between Q-network and Q-learning targets, e.g.,

Liw) = Eovsop [(r +ymax_Q(s’,a’,w) —Q(s,a,w ))2]

From David Silver, DeepMind



Fixed Target Q-Network

" To avoid oscillations, fix parameters used in Q-learning target

" Compute Q-learning targets w.r.t. old, fixed parameters w™

r+ymax Q(s',a’,w™)
al

= Optimize MSE between Q-network and Q-learning targets

L(w) = Egors'op [(r +ymax_Q(s’,a’,w™) —Q(s, a:W))zl

" Periodically update fixed parameters

From David Silver, DeepMind



Reward/Value Range

= DQN clips the rewards to [—1, +1]

" This prevents Q-values from becoming too large

" Ensures gradients are well-conditioned

" Can’t tell difference between small and large rewards

From David Silver, DeepMind



Improvements since Nature DQN

= Double DQN: Remove upward bias caused by max Q (s, a, w)
a

= Current Q-network w is used to select actions
= Older Q-network w™ is used to evaluate actions

I = (r +vQ (s’, argmax 0(s',a’, W),W_) — Q(s, 3, W))Z

" Priortized replay: Weight experience according to surprise
= Store experience in priority queue according to DQN error

‘r +ymaxQ(s’',a’,w™) — Q(s,a,w)
a

= Deulling network: Split Q-network into two channels
= Action-independent value function V (s, v)
= Action-dependent advantage function A(s, a, w) Q(s,a) =V(s,v) + A(s,a,w)

From David Silver, DeepMind



Playing Breakout







Playing Invaders







Policy Learning




Policy Learning

Problem: often the feature-based policies that work well (win
games, maximize utilities) aren’t the ones that approximate V/ Q
best

= Q-learning’s priority: get Q-values close (modeling)

= Action selection priority: get ordering of Q-values right (prediction)
Solution: learn policies that maximize rewards, not the values
that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-
tune by hill climbing on feature weights

Alternative: Build a policy network



Simple Policy Network

raw pixels hidden layer

probability of
moving UP

From http://karpathy.github.io/2016/05/31/rl/



Reinforcement Learning vs Supervised Learning

forward pass _ Supervised Learning
> log probabilities (correct label is provided)

-1.2 | -0.36
. block of differentiable compute .
image (e.g. neural net) gradients
1.0 0
backward pass
forward pass Reinforcement Learning
» |og probabilities
-1.2 |-0.36 | — sample an action:
. block of differentiable compute :
image gradients
(e.g. neural net)
0 -1.0
< eventual reward -1.0

backward pass

From http://karpathy.github.io/2016/05/31/rl/



Backprop Example

PS UpP ’.DDWN-_. UP P UP -_.DOWN’. DOWN*. DOWN e ® WIN

o DOWN o UP -® UP -® DOWN.. UP o UP s LOSE

o UP o UP -® DDWI"»L. DOWN-.DDWN._. DOWN‘. UP @ LOSE
UP -® UP I".Dl:l‘».-"‘-.r"r‘tl._. UP e UP s WIN

With Policy Gradients we would take the two games we won and slightly encourage every single
action we made in that episode and vice versa

From http://karpathy.github.io/2016/05/31/rl/



AlphaGo Revisit

* Why Go is so difficult?

= Number of combinations =~ 250189
~ 10430

" Comparatively, number of

configurations for chess (Shannon
number) = 35%% ~ 10120

= Number of atoms in the observable
universex 10382




AlphaGo’s approach

= Use a deep (CNN) policy network to imitate expert players’
moves

" Use a value network to estimate the winning chance of each
configuration

" Look ahead” with Monte-Carlo tree search to do policy search



Current Board
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AlphaGo’s Value Network

Board position win/loss

. é‘ Expert Moves Imitator Model
; Loss

@, (W/ CNN)
—q) z=-1

Olog p,(a|s)
dp o

Training: Ap x



AlphaGo’s Value Network

Board position win/loss
x—(}—-. .
; - Expert Moves Imitator Model :
Win
(w/ CNN)
z=+1
logp,(a|s;)

Tralning: Apx oy



Selection

@@@ @.@ ®

Monte Carlo Tree Search

Node value: Wining rate

_ Evaluation
Expansion

a:1

Backpropagation




Monte Carlo Tree Search (MCTS)

Selection b Expansion c Evaluation d Backup

o

N\

Q+ uP) \
'+

Q +u(P) Aax

e () & () B

N\ 1 :
i I

a;=argmax(Q(s,a)+ u(sp,a))

a

bonus



AlphaGo in one Slide

a Selection b  Expansion c Evaluation d Backup
%N Q +u(P) H B ﬁ 1de H\
S T
Q+ulP) nax 1 . i
e R (HE) B e llEE 2
2 3
a;=argmax(Q(sya)+u(sy,a)) p: :
1 n . .i
Q(s,a)= NG IZ:I 1(s,a,i)V(s}) Winning rate estimate

V(SL) — (1 — )\)VQ(SL) \z; Winning rate predicted by fast rollout playout
Winning rate predicted by value network
P(s,a)

1+ N(s,a)

Disclaimer: not completely accurate. But close enough...

H(S, ﬂ) X Action probability predicted by policy network



Conclusion

= We're done with a quick introduction on
MDP, reinforcement learning, Q-learning
and deep Q-learning

= Acknowledgement: thanks Dan Klein and
Pieter Abbeel at UC Berkeley for making their
slides available online!
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