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Logistics

Need your presentation preference by the end of this class. Again,
please give me three package names with order of preference. The
finally decision will be computed by minimizing the following cost
function :)∑

student student cost +
∑

package package cost

student cost =


0, first priority

2.5, second priority

5, third priority

package cost = 2(num presentations covered)

Most popular package (in terms of first priority pick) will be
presented first. If there is a tie, I will break it with popularity
based all choices regardless of priority. If there is a tie, I will break
it by random

Students presenting the same packages will be ordered according
to their first names
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Logistics

HW1 due next week
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Review

Review

In the last class, we discussed

Basic concepts of regression and classification

Examples of regularization such as ridge (l2) regression and lasso
(l1)

Linear classifiers including logistic regression and softmax classifier

We introduced loss functions and the concept of training a classifier
through minimizing the loss function
We described stochastic gradient descent and momentum trick for
classification
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Review Perceptron

Perceptron

Perceptron is an artificial neuron with
step function as activation function

It is impossible to extend perceptron
to multilayer. Multilayer perceptron
(MLP) is a misnomer. Step activation
function is never used multilayer
neural networks (not trainable)

Perceptrons are still used in systems
with large number (millions) of
features. Other than that, it has
relatively limited use since most
problems are not linearly separable
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Review Perceptron

Perceptron

In most cases, perceptron would be
useful if only one manages to
handcode inputs into separable
features

That was the main area of research in
many machine learning
applications—finding efficient ways to
generate good features

One attractive characteristic of deep
learning (neural networks) is that we
not only can train the classifier but
also can learn the appropriate features
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Review Network architectures

Nomenclature of basic network architectures

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201677

Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”
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Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters

For neural networks, it is thus necessary to find ∂L(w;x)
∂w for a

weight in each layer

Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain
rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph

Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example
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Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201610

e.g. x = -2, y = 5, z = -4
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Back-propagation

A simple BP example
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Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201622

f

activations
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Back-propagation
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f

activations

“local gradient”
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Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201624

f

activations

“local gradient”

gradients
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Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201628

Another example:
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Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201637

Another example:

(-1) * (-0.20) = 0.20
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Back-propagation

Yet another BP example
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Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201639

Another example:

[local gradient] x [its gradient]
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2  (both inputs!)
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Back-propagation

Yet another BP example
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Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201641

Another example:

[local gradient] x [its gradient]
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2
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Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201642

sigmoid function

sigmoid gate
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Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201643

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2
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Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today
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Activation functions

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201628

Activation Functions
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Activation functions

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201629

Activation Functions

Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

ELU
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201630

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201631

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201632

sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201633

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not zero-
centered
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201634

Consider what happens when the input to a neuron (x) 
is always positive:

What can we say about the gradients on w?
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201635

Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201636

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not zero-
centered

3. exp() is a bit compute expensive
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Activation functions Tanh function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201637

Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201638

Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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Activation functions
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 56 / 157



Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201640

ReLU 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201641

DATA CLOUD
active ReLU

dead ReLU
will never activate 
=> never update
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201642

DATA CLOUD
active ReLU

dead ReLU
will never activate 
=> never update

=> people like to initialize 
ReLU neurons with slightly 
positive biases (e.g. 0.01)
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201643

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]
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Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201644

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201645

Activation Functions

Exponential Linear Units (ELU)

- All benefits of ReLU
- Does not die
- Closer to zero mean outputs

- Computation requires exp()

[Clevert et al., 2015]
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Activation functions Maxout neurons

Activation functions

Maxout ”Neurons” [Goodfellow et al., 2013]

Try to generalize ReLU and leaky ReLU

max(wT
1 x+ b1,w

T
2 x+ b2)

Pros

Linear regime

Does not saturate

Does not die

Cons

Double amount of parameters
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Activation functions Lesson Learned

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201647

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don’t expect much
- Don’t use sigmoid
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Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201649

Step 1: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)
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Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201650

Step 1: Preprocess the data

In practice, you may also see PCA and Whitening of the data

(data has diagonal 
covariance matrix)

(covariance matrix is the 
identity matrix)
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Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201651

TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize 
variance, to do PCA or 
whitening
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201653

- Q: what happens when W=0 init is used?
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201654

- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201655

- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but can lead to 
non-homogeneous distributions of activations 
across the layers of a network.
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201656

Lets look at 
some 
activation 
statistics

E.g. 10-layer net with 
500 neurons on each 
layer, using tanh non-
linearities, and 
initializing as 
described in last slide.
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201657
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201658

All activations 
become zero!

Q: think about the 
backward pass. 
What do the 
gradients look like?

Hint: think about backward 
pass for a W*X gate.
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201659

Almost all neurons 
completely 
saturated, either -1 
and 1. Gradients 
will be all zero.

*1.0 instead of *0.01
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Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=
n∑
i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
n∑
i

Var(xi)Var(wi)

= (nVar(w))Var(x)

Thus, output will have same variance as input if nVar(w) = 1
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201660

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation 
assumes linear activations)
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201661

but when using the ReLU 
nonlinearity it breaks.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 77 / 157



Initialization Weight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w
(l)
i x

(l)
i ) = nVar(w(l)x(l))

= nE(w(l))2Var(x(l)) + nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE((x(l))2)Var(w(l))

= n[Var(y(l−1))/2]Var(w(l)) =
[n
2
Var(w(l))

]
Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201662

He et al., 2015
(note additional /2)
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Weight initialization
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He et al., 2015
(note additional /2)
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201664

Proper initialization is an active area of research…

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by 
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and 
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet 
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015
…
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Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201665

Batch Normalization

“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer. 
To make each dimension unit gaussian, apply:

this is a vanilla 
differentiable function...
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Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201666

Batch Normalization

“you want unit gaussian activations? 
just make them so.”

[Ioffe and Szegedy, 2015]

XN

D

1. compute the empirical mean and 
variance independently for each 
dimension.

2. Normalize
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Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201667

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected / (or Convolutional, as 
we’ll see soon) layers, and before 
nonlinearity.

Problem: do we 
necessarily want a unit 
gaussian input to a 
tanh layer?
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Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201668

Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash 
the range if it wants to:

Note, the network can learn:

to recover the identity 
mapping.

Normalize:
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Regularization Batch normalization

Batch normalization
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Batch Normalization [Ioffe and Szegedy, 2015]

- Improves gradient flow through 
the network

- Allows higher learning rates
- Reduces the strong dependence 

on initialization
- Acts as a form of regularization 

in a funny way, and slightly 
reduces the need for dropout, 
maybe
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Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201670

Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer 
functions differently:

The mean/std are not computed 
based on the batch. Instead, a single 
fixed empirical mean of activations 
during training is used.

(e.g. can be estimated during training 
with running averages)
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Regularization Dropout

Ensemble trick

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201646

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance
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Regularization Dropout

Ensemble trick

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Fun Tips/Tricks:

- can also get a small boost from averaging multiple 
model checkpoints of a single model.

47
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Regularization Dropout

Ensemble trick

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Fun Tips/Tricks:

- can also get a small boost from averaging multiple 
model checkpoints of a single model.

- keep track of (and use at test time) a running average
parameter vector:

48
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201650

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201651

Example forward 
pass with a 3-
layer network 
using dropout
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201652

Waaaait a second… 
How could this possibly be a good idea?
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201653

Forces the network to have a redundant representation.

has an ear

has a tail

is furry

has claws

mischievous 
look

cat 
score

X

X

X

Waaaait a second… 
How could this possibly be a good idea?
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201654

Another interpretation:

Dropout is training a large ensemble 
of models (that share parameters).

Each binary mask is one model, gets 
trained on only ~one datapoint.

Waaaait a second… 
How could this possibly be a good idea?
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201655

At test time….

Ideally: 
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with 
different dropout masks, average all 
predictions

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 96 / 157



Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201656

At test time….
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

(this can be shown to be an 
approximation to evaluating the 
whole ensemble)
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201657

At test time….
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at 
test time the output of this neuron is x.

What would its output be during training 
time, in expectation? (e.g. if p = 0.5)
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201658

At test time….
Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

during test: a = w0*x + w1*y
during train:
E[a] = ¼ * (w0*0 + w1*0

  w0*0 + w1*y
  w0*x + w1*0
  w0*x + w1*y)

       = ¼ * (2 w0*x + 2 w1*y)
  = ½ * (w0*x + w1*y)

a

w0 w1
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201659

At test time….
Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

during test: a = w0*x + w1*y
during train:
E[a] = ¼ * (w0*0 + w1*0

  w0*0 + w1*y
  w0*x + w1*0
  w0*x + w1*y)

       = ¼ * (2 w0*x + 2 w1*y)
  = ½ * (w0*x + w1*y)

a

With p=0.5, using all inputs 
in the forward pass would 
inflate the activations by 2x 
from what the network was 
“used to” during training!
=> Have to compensate by 
scaling the activations back 
down by ½ w0 w1
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201660

We can do something approximate analytically

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 101 / 157



Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201661

Dropout Summary

drop in forward pass

scale at test time
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201662

More common: “Inverted dropout”

test time is unchanged!
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201611

Training a neural network, main loop:
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201612

simple gradient descent update
now: complicate.

Training a neural network, main loop:
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Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

sgd
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201614

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with SGD?
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201615

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with SGD?
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201616

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with SGD? very slow progress 
along flat direction, jitter along steep one
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201617

Momentum update

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201618

Momentum update

- Allows a velocity to “build up” along shallow directions
- Velocity becomes damped in steep direction due to quickly changing sign
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Optimization Optimizers

Optimizers
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201620

Nesterov Momentum update

gradient
step

momentum
step

actual step

Ordinary momentum update:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 113 / 157



Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201621

Nesterov Momentum update

gradient
step

momentum
step

actual step

momentum
step

“lookahead” gradient 
step (bit different than 
original)

actual step

Momentum update Nesterov momentum update
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201622

Nesterov Momentum update

gradient
step

momentum
step

actual step

momentum
step

“lookahead” gradient 
step (bit different than 
original)

actual step

Momentum update Nesterov momentum update

Nesterov: the only difference...
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201623

Nesterov Momentum update
Slightly inconvenient… 
usually we have :
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201624

Nesterov Momentum update
Slightly inconvenient… 
usually we have :

Variable transform and rearranging saves the day:
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201625

Nesterov Momentum update
Slightly inconvenient… 
usually we have :

Variable transform and rearranging saves the day:

Replace all thetas with phis, rearrange and obtain:
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Optimization Optimizers

Optimizers
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201627

AdaGrad update

Added element-wise scaling of the gradient based on the 
historical sum of squares in each dimension

[Duchi et al., 2011]
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201628

Q: What happens with AdaGrad?

AdaGrad update
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201629

Q2: What happens to the step size over long time?

AdaGrad update
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Optimization Optimizers

Optimizers
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201630

RMSProp update [Tieleman and Hinton, 2012]
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201631

Introduced in a slide in 
Geoff Hinton’s Coursera 
class, lecture 6
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201632

Introduced in a slide in 
Geoff Hinton’s Coursera 
class, lecture 6

Cited by several papers as:
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Optimization Optimizers

Optimizers
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201634

Adam update [Kingma and Ba, 2014]

(incomplete, but close)
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201635

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201636

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201637

Adam update [Kingma and Ba, 2014]

RMSProp-like

bias correction
(only relevant in first few 
iterations when t is small)

momentum

The bias correction compensates for the fact that m,v are 
initialized at zero and need some time to “warm up”.
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Optimizers
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201638

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these 
learning rates is best to use?
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201639

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay: 
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201640

Second order optimization methods

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: what is nice about this update?
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201641

Second order optimization methods

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Q2: why is this impractical for training Deep Neural Nets?

notice: 
no hyperparameters! (e.g. learning rate)
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate 
inverse Hessian with rank 1 updates over time (O(n^2) 
each).

- L-BFGS (Limited memory BFGS): 
Does not form/store the full inverse Hessian.
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201643

L-BFGS

- Usually works very well in full batch, deterministic mode 
i.e. if you have a single, deterministic f(x) then L-BFGS will 
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives 
bad results. Adapting L-BFGS to large-scale, stochastic 
setting is an active area of research.
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201644

- Adam is a good default choice in most cases

- If you can afford to do full batch updates then try out 
L-BFGS (and don’t forget to disable all sources of noise)

In practice:
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Optimization Optimizers

Demo

Jupter notebook demo
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http://nbviewer.jupyter.org/gist/phsamuel/f1d00ade31b06fb741e75deba26cba8a/optimizer%20comparison.ipynb


Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201675

Double check that the loss is reasonable:

crank up regularization

loss went up, good. (sanity check)
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Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201676

Lets try to train now…  

Tip: Make sure that 
you can overfit very 
small portion of the 
training data The above code:

- take the first 20 examples from 
CIFAR-10

- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’
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Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201677

Lets try to train now…  

Tip: Make sure that 
you can overfit very 
small portion of the 
training data

Very small loss, 
train accuracy 1.00, 
nice!
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Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201678

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.
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Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201679

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

Loss barely changing 
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Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201680

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is 
probably too low
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Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201681

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is 
probably too low

Notice train/val accuracy goes to 20% 
though, what’s up with that? (remember 
this is softmax)
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Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201682

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low

Okay now lets try learning rate 1e6. What could 
possibly go wrong?
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Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201683

cost: NaN almost 
always means high 
learning rate...

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high
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Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201684

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we 
should be cross-validating is 
somewhere [1e-3 … 1e-5]
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Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201686

Cross-validation strategy

I like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

Tip for detecting explosions in the solver: 
If the cost is ever > 3 * original cost, break out early
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Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201687

For example: run coarse search  for 5 epochs

nice

note it’s best to optimize 
in log space!
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Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201688

Now run finer search...

adjust range

53% - relatively good 
for a 2-layer neural net 
with 50 hidden neurons.
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Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201689

Now run finer search...

adjust range

53% - relatively good 
for a 2-layer neural net 
with 50 hidden neurons.

But this best cross-
validation result is 
worrying. Why?
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Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201690

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012
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Conclusions

Conclusions (What we know in 2017)

BP is just chain rule in calculus

Use ReLU. Never use Sigmoid (use Tanh instead)

Input preprocessing is no longer very important

Do subtract mean
Whitening and normalizing are not much needed

Weight initialization on the other hand is extremely important for
deep networks

Use batch normalization if you can

Use dropout

Use Adam (or maybe RMSprop) for optimizer. If you don’t have
much data, can consider LBFGS

Need to babysit your learning for real-world problems

Never use grid search for tuning your hyperparameters
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Conclusions

Logistics

Give me your presentation preference and I’ll throw the “dice” now
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