
Neural Networks
Deep Learning Lecture 3

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2017

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 1 / 157

Table of Contents

1 Review

2 Back-propagation

3 Activation functions

4 Initialization

5 Regularization

6 Optimization

7 Conclusions

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 2 / 157

Logistics

Need your presentation preference by the end of this class. Again,
please give me three package names with order of preference. The
finally decision will be computed by minimizing the following cost
function :)∑

student student cost +
∑

package package cost

student cost =


0, first priority

2.5, second priority

5, third priority

package cost = 2(num presentations covered)

Most popular package (in terms of first priority pick) will be
presented first. If there is a tie, I will break it with popularity
based all choices regardless of priority. If there is a tie, I will break
it by random

Students presenting the same packages will be ordered according
to their first names

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 3 / 157

Logistics

Need your presentation preference by the end of this class. Again,
please give me three package names with order of preference. The
finally decision will be computed by minimizing the following cost
function :)∑

student student cost +
∑

package package cost

student cost =


0, first priority

2.5, second priority

5, third priority

package cost = 2(num presentations covered)

Most popular package (in terms of first priority pick) will be
presented first. If there is a tie, I will break it with popularity
based all choices regardless of priority. If there is a tie, I will break
it by random

Students presenting the same packages will be ordered according
to their first names

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 3 / 157

Logistics

Need your presentation preference by the end of this class. Again,
please give me three package names with order of preference. The
finally decision will be computed by minimizing the following cost
function :)∑

student student cost +
∑

package package cost

student cost =


0, first priority

2.5, second priority

5, third priority

package cost = 2(num presentations covered)

Most popular package (in terms of first priority pick) will be
presented first. If there is a tie, I will break it with popularity
based all choices regardless of priority. If there is a tie, I will break
it by random

Students presenting the same packages will be ordered according
to their first names

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 3 / 157

Logistics

HW1 due next week

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 4 / 157

Review

Review

In the last class, we discussed

Basic concepts of regression and classification

Examples of regularization such as ridge (l2) regression and lasso
(l1)

Linear classifiers including logistic regression and softmax classifier

We introduced loss functions and the concept of training a classifier
through minimizing the loss function
We described stochastic gradient descent and momentum trick for
classification

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 5 / 157

Review

Review

In the last class, we discussed

Basic concepts of regression and classification

Examples of regularization such as ridge (l2) regression and lasso
(l1)

Linear classifiers including logistic regression and softmax classifier

We introduced loss functions and the concept of training a classifier
through minimizing the loss function

We described stochastic gradient descent and momentum trick for
classification

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 5 / 157

Review

Review

In the last class, we discussed

Basic concepts of regression and classification

Examples of regularization such as ridge (l2) regression and lasso
(l1)

Linear classifiers including logistic regression and softmax classifier

We introduced loss functions and the concept of training a classifier
through minimizing the loss function
We described stochastic gradient descent and momentum trick for
classification

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 5 / 157

Review Perceptron

Perceptron

Perceptron is an artificial neuron with
step function as activation function

It is impossible to extend perceptron
to multilayer. Multilayer perceptron
(MLP) is a misnomer. Step activation
function is never used multilayer
neural networks (not trainable)

Perceptrons are still used in systems
with large number (millions) of
features. Other than that, it has
relatively limited use since most
problems are not linearly separable

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 6 / 157

Review Perceptron

Perceptron

Perceptron is an artificial neuron with
step function as activation function

It is impossible to extend perceptron
to multilayer. Multilayer perceptron
(MLP) is a misnomer. Step activation
function is never used multilayer
neural networks (not trainable)

Perceptrons are still used in systems
with large number (millions) of
features. Other than that, it has
relatively limited use since most
problems are not linearly separable

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 6 / 157

Review Perceptron

Perceptron

Perceptron is an artificial neuron with
step function as activation function

It is impossible to extend perceptron
to multilayer. Multilayer perceptron
(MLP) is a misnomer. Step activation
function is never used multilayer
neural networks (not trainable)

Perceptrons are still used in systems
with large number (millions) of
features. Other than that, it has
relatively limited use since most
problems are not linearly separable

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 6 / 157

Review Perceptron

Perceptron

In most cases, perceptron would be
useful if only one manages to
handcode inputs into separable
features

That was the main area of research in
many machine learning
applications—finding efficient ways to
generate good features

One attractive characteristic of deep
learning (neural networks) is that we
not only can train the classifier but
also can learn the appropriate features

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 7 / 157

Review Perceptron

Perceptron

In most cases, perceptron would be
useful if only one manages to
handcode inputs into separable
features

That was the main area of research in
many machine learning
applications—finding efficient ways to
generate good features

One attractive characteristic of deep
learning (neural networks) is that we
not only can train the classifier but
also can learn the appropriate features

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 7 / 157

Review Perceptron

Perceptron

In most cases, perceptron would be
useful if only one manages to
handcode inputs into separable
features

That was the main area of research in
many machine learning
applications—finding efficient ways to
generate good features

One attractive characteristic of deep
learning (neural networks) is that we
not only can train the classifier but
also can learn the appropriate features

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 7 / 157

Review Network architectures

Nomenclature of basic network architectures

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201677

Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 8 / 157

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters

For neural networks, it is thus necessary to find ∂L(w;x)
∂w for a

weight in each layer

Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain
rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph

Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 9 / 157

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters

For neural networks, it is thus necessary to find ∂L(w;x)
∂w for a

weight in each layer

Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain
rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph

Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 9 / 157

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters

For neural networks, it is thus necessary to find ∂L(w;x)
∂w for a

weight in each layer

Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain
rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph

Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 9 / 157

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters

For neural networks, it is thus necessary to find ∂L(w;x)
∂w for a

weight in each layer

Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain
rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph

Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 9 / 157

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters

For neural networks, it is thus necessary to find ∂L(w;x)
∂w for a

weight in each layer

Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain
rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph

Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 9 / 157

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters

For neural networks, it is thus necessary to find ∂L(w;x)
∂w for a

weight in each layer

Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain
rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph

Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 9 / 157

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201610

e.g. x = -2, y = 5, z = -4

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 10 / 157

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201611

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 11 / 157

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201612

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 12 / 157

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201613

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 13 / 157

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201614

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 14 / 157

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201615

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 15 / 157

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201616

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 16 / 157

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201617

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 17 / 157

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201618

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 18 / 157

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201619

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 19 / 157

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201620

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 20 / 157

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201621

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 21 / 157

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201622

f

activations

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 22 / 157

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201623

f

activations

“local gradient”

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 23 / 157

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201624

f

activations

“local gradient”

gradients

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 24 / 157

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201625

f

activations

gradients

“local gradient”

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 25 / 157

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201626

f

activations

gradients

“local gradient”

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 26 / 157

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201627

f

activations

gradients

“local gradient”

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 27 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201628

Another example:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 28 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201629

Another example:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 29 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201630

Another example:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 30 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201631

Another example:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 31 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201632

Another example:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 32 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201633

Another example:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 33 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201634

Another example:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 34 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201635

Another example:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 35 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201636

Another example:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 36 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201637

Another example:

(-1) * (-0.20) = 0.20

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 37 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201638

Another example:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 38 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201639

Another example:

[local gradient] x [its gradient]
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2 (both inputs!)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 39 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201640

Another example:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 40 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201641

Another example:

[local gradient] x [its gradient]
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 41 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201642

sigmoid function

sigmoid gate

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 42 / 157

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201643

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 43 / 157

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 44 / 157

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 44 / 157

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 44 / 157

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 44 / 157

Activation functions

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201628

Activation Functions

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 45 / 157

Activation functions

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201629

Activation Functions

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

ELU

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 46 / 157

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201630

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 47 / 157

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201631

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 48 / 157

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201632

sigmoid
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 49 / 157

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201633

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not zero-
centered

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 50 / 157

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201634

Consider what happens when the input to a neuron (x)
is always positive:

What can we say about the gradients on w?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 51 / 157

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201635

Consider what happens when the input to a neuron is
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical
optimal w
vector

zig zag path

allowed
gradient
update
directions

allowed
gradient
update
directions

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 52 / 157

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201636

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not zero-
centered

3. exp() is a bit compute expensive

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 53 / 157

Activation functions Tanh function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201637

Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 54 / 157

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201638

Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 55 / 157

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201639

Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 56 / 157

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201640

ReLU
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 57 / 157

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201641

DATA CLOUD
active ReLU

dead ReLU
will never activate
=> never update

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 58 / 157

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201642

DATA CLOUD
active ReLU

dead ReLU
will never activate
=> never update

=> people like to initialize
ReLU neurons with slightly
positive biases (e.g. 0.01)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 59 / 157

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201643

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 60 / 157

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201644

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 61 / 157

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201645

Activation Functions

Exponential Linear Units (ELU)

- All benefits of ReLU
- Does not die
- Closer to zero mean outputs

- Computation requires exp()

[Clevert et al., 2015]

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 62 / 157

Activation functions Maxout neurons

Activation functions

Maxout ”Neurons” [Goodfellow et al., 2013]

Try to generalize ReLU and leaky ReLU

max(wT
1 x+ b1,w

T
2 x+ b2)

Pros

Linear regime

Does not saturate

Does not die

Cons

Double amount of parameters

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 63 / 157

Activation functions Maxout neurons

Activation functions

Maxout ”Neurons” [Goodfellow et al., 2013]

Try to generalize ReLU and leaky ReLU

max(wT
1 x+ b1,w

T
2 x+ b2)

Pros

Linear regime

Does not saturate

Does not die

Cons

Double amount of parameters

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 63 / 157

Activation functions Maxout neurons

Activation functions

Maxout ”Neurons” [Goodfellow et al., 2013]

Try to generalize ReLU and leaky ReLU

max(wT
1 x+ b1,w

T
2 x+ b2)

Pros

Linear regime

Does not saturate

Does not die

Cons

Double amount of parameters

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 63 / 157

Activation functions Lesson Learned

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201647

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don’t expect much
- Don’t use sigmoid

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 64 / 157

Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201649

Step 1: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 65 / 157

Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201650

Step 1: Preprocess the data

In practice, you may also see PCA and Whitening of the data

(data has diagonal
covariance matrix)

(covariance matrix is the
identity matrix)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 66 / 157

Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201651

TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize
variance, to do PCA or
whitening

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 67 / 157

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201653

- Q: what happens when W=0 init is used?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 68 / 157

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201654

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 69 / 157

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201655

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 70 / 157

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201656

Lets look at
some
activation
statistics

E.g. 10-layer net with
500 neurons on each
layer, using tanh non-
linearities, and
initializing as
described in last slide.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 71 / 157

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201657

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 72 / 157

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201658

All activations
become zero!

Q: think about the
backward pass.
What do the
gradients look like?

Hint: think about backward
pass for a W*X gate.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 73 / 157

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201659

Almost all neurons
completely
saturated, either -1
and 1. Gradients
will be all zero.

*1.0 instead of *0.01

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 74 / 157

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=
n∑
i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
n∑
i

Var(xi)Var(wi)

= (nVar(w))Var(x)

Thus, output will have same variance as input if nVar(w) = 1

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 75 / 157

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=

n∑
i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
n∑
i

Var(xi)Var(wi)

= (nVar(w))Var(x)

Thus, output will have same variance as input if nVar(w) = 1

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 75 / 157

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=

n∑
i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=

n∑
i

Var(xi)Var(wi)

= (nVar(w))Var(x)

Thus, output will have same variance as input if nVar(w) = 1

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 75 / 157

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=

n∑
i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=

n∑
i

Var(xi)Var(wi)

= (nVar(w))Var(x)

Thus, output will have same variance as input if nVar(w) = 1

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 75 / 157

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201660

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 76 / 157

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201661

but when using the ReLU
nonlinearity it breaks.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 77 / 157

Initialization Weight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w
(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE(w(l))2Var(x(l)) + nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE((x(l))2)Var(w(l))

= n[Var(y(l−1))/2]Var(w(l)) =
[n
2
Var(w(l))

]
Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 78 / 157

Initialization Weight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w
(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE(w(l))2Var(x(l)) + nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE((x(l))2)Var(w(l))

= n[Var(y(l−1))/2]Var(w(l)) =
[n
2
Var(w(l))

]
Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 78 / 157

Initialization Weight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w
(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE(w(l))2Var(x(l)) + nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE((x(l))2)Var(w(l))

= n[Var(y(l−1))/2]Var(w(l)) =
[n
2
Var(w(l))

]
Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 78 / 157

Initialization Weight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w
(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE(w(l))2Var(x(l)) + nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE((x(l))2)Var(w(l))

= n[Var(y(l−1))/2]Var(w(l)) =
[n
2
Var(w(l))

]
Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 78 / 157

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201662

He et al., 2015
(note additional /2)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 79 / 157

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201663

He et al., 2015
(note additional /2)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 80 / 157

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201664

Proper initialization is an active area of research…

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015
…

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 81 / 157

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201665

Batch Normalization

“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

this is a vanilla
differentiable function...

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 82 / 157

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201666

Batch Normalization

“you want unit gaussian activations?
just make them so.”

[Ioffe and Szegedy, 2015]

XN

D

1. compute the empirical mean and
variance independently for each
dimension.

2. Normalize

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 83 / 157

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201667

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully
Connected / (or Convolutional, as
we’ll see soon) layers, and before
nonlinearity.

Problem: do we
necessarily want a unit
gaussian input to a
tanh layer?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 84 / 157

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201668

Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash
the range if it wants to:

Note, the network can learn:

to recover the identity
mapping.

Normalize:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 85 / 157

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201669

Batch Normalization [Ioffe and Szegedy, 2015]

- Improves gradient flow through
the network

- Allows higher learning rates
- Reduces the strong dependence

on initialization
- Acts as a form of regularization

in a funny way, and slightly
reduces the need for dropout,
maybe

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 86 / 157

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201670

Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g. can be estimated during training
with running averages)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 87 / 157

Regularization Dropout

Ensemble trick

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201646

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 88 / 157

Regularization Dropout

Ensemble trick

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Fun Tips/Tricks:

- can also get a small boost from averaging multiple
model checkpoints of a single model.

47

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 89 / 157

Regularization Dropout

Ensemble trick

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Fun Tips/Tricks:

- can also get a small boost from averaging multiple
model checkpoints of a single model.

- keep track of (and use at test time) a running average
parameter vector:

48

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 90 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201650

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 91 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201651

Example forward
pass with a 3-
layer network
using dropout

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 92 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201652

Waaaait a second…
How could this possibly be a good idea?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 93 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201653

Forces the network to have a redundant representation.

has an ear

has a tail

is furry

has claws

mischievous
look

cat
score

X

X

X

Waaaait a second…
How could this possibly be a good idea?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 94 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201654

Another interpretation:

Dropout is training a large ensemble
of models (that share parameters).

Each binary mask is one model, gets
trained on only ~one datapoint.

Waaaait a second…
How could this possibly be a good idea?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 95 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201655

At test time….

Ideally:
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with
different dropout masks, average all
predictions

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 96 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201656

At test time….
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

(this can be shown to be an
approximation to evaluating the
whole ensemble)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 97 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201657

At test time….
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at
test time the output of this neuron is x.

What would its output be during training
time, in expectation? (e.g. if p = 0.5)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 98 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201658

At test time….
Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

during test: a = w0*x + w1*y
during train:
E[a] = ¼ * (w0*0 + w1*0

 w0*0 + w1*y
 w0*x + w1*0
 w0*x + w1*y)

 = ¼ * (2 w0*x + 2 w1*y)
 = ½ * (w0*x + w1*y)

a

w0 w1

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 99 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201659

At test time….
Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

during test: a = w0*x + w1*y
during train:
E[a] = ¼ * (w0*0 + w1*0

 w0*0 + w1*y
 w0*x + w1*0
 w0*x + w1*y)

 = ¼ * (2 w0*x + 2 w1*y)
 = ½ * (w0*x + w1*y)

a

With p=0.5, using all inputs
in the forward pass would
inflate the activations by 2x
from what the network was
“used to” during training!
=> Have to compensate by
scaling the activations back
down by ½ w0 w1

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 100 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201660

We can do something approximate analytically

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 101 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201661

Dropout Summary

drop in forward pass

scale at test time

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 102 / 157

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201662

More common: “Inverted dropout”

test time is unchanged!

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 103 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201611

Training a neural network, main loop:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 104 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201612

simple gradient descent update
now: complicate.

Training a neural network, main loop:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 105 / 157

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

sgd

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 106 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201614

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with SGD?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 107 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201615

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with SGD?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 108 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201616

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with SGD? very slow progress
along flat direction, jitter along steep one

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 109 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201617

Momentum update

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 110 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201618

Momentum update

- Allows a velocity to “build up” along shallow directions
- Velocity becomes damped in steep direction due to quickly changing sign

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 111 / 157

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

sgd
momentum

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 112 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201620

Nesterov Momentum update

gradient
step

momentum
step

actual step

Ordinary momentum update:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 113 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201621

Nesterov Momentum update

gradient
step

momentum
step

actual step

momentum
step

“lookahead” gradient
step (bit different than
original)

actual step

Momentum update Nesterov momentum update

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 114 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201622

Nesterov Momentum update

gradient
step

momentum
step

actual step

momentum
step

“lookahead” gradient
step (bit different than
original)

actual step

Momentum update Nesterov momentum update

Nesterov: the only difference...

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 115 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201623

Nesterov Momentum update
Slightly inconvenient…
usually we have :

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 116 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201624

Nesterov Momentum update
Slightly inconvenient…
usually we have :

Variable transform and rearranging saves the day:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 117 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201625

Nesterov Momentum update
Slightly inconvenient…
usually we have :

Variable transform and rearranging saves the day:

Replace all thetas with phis, rearrange and obtain:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 118 / 157

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

sgd
momentum
nag

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 119 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201627

AdaGrad update

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

[Duchi et al., 2011]

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 120 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201628

Q: What happens with AdaGrad?

AdaGrad update

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 121 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201629

Q2: What happens to the step size over long time?

AdaGrad update

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 122 / 157

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

nag
adagrad

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 123 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201630

RMSProp update [Tieleman and Hinton, 2012]

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 124 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201631

Introduced in a slide in
Geoff Hinton’s Coursera
class, lecture 6

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 125 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201632

Introduced in a slide in
Geoff Hinton’s Coursera
class, lecture 6

Cited by several papers as:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 126 / 157

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

nag
adagrad
rmsprop

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 127 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201634

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 128 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201635

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 129 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201636

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 130 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201637

Adam update [Kingma and Ba, 2014]

RMSProp-like

bias correction
(only relevant in first few
iterations when t is small)

momentum

The bias correction compensates for the fact that m,v are
initialized at zero and need some time to “warm up”.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 131 / 157

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

nag
rmsprop
adam

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 132 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201638

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these
learning rates is best to use?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 133 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201639

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 134 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201640

Second order optimization methods

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: what is nice about this update?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 135 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201641

Second order optimization methods

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Q2: why is this impractical for training Deep Neural Nets?

notice:
no hyperparameters! (e.g. learning rate)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 136 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 137 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201643

L-BFGS

- Usually works very well in full batch, deterministic mode
i.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting L-BFGS to large-scale, stochastic
setting is an active area of research.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 138 / 157

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201644

- Adam is a good default choice in most cases

- If you can afford to do full batch updates then try out
L-BFGS (and don’t forget to disable all sources of noise)

In practice:

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 139 / 157

Optimization Optimizers

Demo

Jupter notebook demo

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 140 / 157

http://nbviewer.jupyter.org/gist/phsamuel/f1d00ade31b06fb741e75deba26cba8a/optimizer%20comparison.ipynb

Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201675

Double check that the loss is reasonable:

crank up regularization

loss went up, good. (sanity check)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 141 / 157

Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201676

Lets try to train now…

Tip: Make sure that
you can overfit very
small portion of the
training data The above code:

- take the first 20 examples from
CIFAR-10

- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 142 / 157

Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201677

Lets try to train now…

Tip: Make sure that
you can overfit very
small portion of the
training data

Very small loss,
train accuracy 1.00,
nice!

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 143 / 157

Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201678

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 144 / 157

Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201679

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

Loss barely changing

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 145 / 157

Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201680

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is
probably too low

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 146 / 157

Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201681

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is
probably too low

Notice train/val accuracy goes to 20%
though, what’s up with that? (remember
this is softmax)

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 147 / 157

Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201682

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Okay now lets try learning rate 1e6. What could
possibly go wrong?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 148 / 157

Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201683

cost: NaN almost
always means high
learning rate...

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 149 / 157

Optimization Debugging optimizer

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201684

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we
should be cross-validating is
somewhere [1e-3 … 1e-5]

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 150 / 157

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201686

Cross-validation strategy

I like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 151 / 157

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201687

For example: run coarse search for 5 epochs

nice

note it’s best to optimize
in log space!

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 152 / 157

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201688

Now run finer search...

adjust range

53% - relatively good
for a 2-layer neural net
with 50 hidden neurons.

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 153 / 157

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201689

Now run finer search...

adjust range

53% - relatively good
for a 2-layer neural net
with 50 hidden neurons.

But this best cross-
validation result is
worrying. Why?

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 154 / 157

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201690

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 155 / 157

Conclusions

Conclusions (What we know in 2017)

BP is just chain rule in calculus

Use ReLU. Never use Sigmoid (use Tanh instead)

Input preprocessing is no longer very important

Do subtract mean
Whitening and normalizing are not much needed

Weight initialization on the other hand is extremely important for
deep networks

Use batch normalization if you can

Use dropout

Use Adam (or maybe RMSprop) for optimizer. If you don’t have
much data, can consider LBFGS

Need to babysit your learning for real-world problems

Never use grid search for tuning your hyperparameters

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 156 / 157

Conclusions

Logistics

Give me your presentation preference and I’ll throw the “dice” now

S. Cheng (OU-Tulsa) Neural Networks Jan 2017 157 / 157

	Review
	Perceptron
	Network architectures

	Back-propagation
	Activation functions
	Sigmoid function
	Tanh function
	ReLU
	Maxout neurons
	Lesson Learned

	Initialization
	Input preprocessing
	Weight initialization

	Regularization
	Batch normalization
	Dropout

	Optimization
	Optimizers
	Debugging optimizer
	Hyperparameter optimization

	Conclusions

