Convolutional Neural Networks Deep Learning Lecture 5

Samuel Cheng

School of ECE University of Oklahoma

Spring, 2017

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 1 / 164

Table of Contents

- Computer vision tasks
- 2 Visualizing conv-nets
- 3 CNN for arts
- 4 Fooling conv-net

5 Conclusions

Data	Ctudant	Dealeara
Date	Student	Package
2/24	Aakash	Tensorflow
	Amed	Tensorflow
3/3	Soubhi	Tensorflow
3/10	Ahmad A	Theano
	Tamer	Theano
3/24	Ahmad M	Keras
	Obada	Keras
4/3	Muhanad	Caffe
	Siraj	Caffe
4/10	Dong	Torch
	Varun	Lasagne
4/17	Naim	MatConvNet

S. Cheng (OU-Tulsa)

Feb 2017 3 / 164

	student	packages
0	aakash	tensorflow
1	amed	tensorflow
2	soubhi	tensorflow
3	ahmad_a	theano
4	tamer	theano
5	ahmad_m	keras
6	obada	keras
7	muhanad	caffe
8	siraj	caffe
9	dong	torch
10	varun	lasagne
11	naim	matconvnet

Rate your classmates' presentation according to

- How much did you learn from the presentation
- How much effort does the speaker put into
- A simple 1-5 rating, 5 is the best. For example,
 - If you think you have learned a lot (assuming that you know nothing at first but only materials from previous presentations) and you think the speaker has put lots of effort, then give a 5
 - If you think it is just average to you but you feel the speaker has put lots of effort on that, give a 4
 - If you think the presentation is quite useless but you still think the speaker put some (but not a lot) effort on that, give a 2

	student	packages
0	aakash	tensorflow
1	amed	tensorflow
2	soubhi	tensorflow
3	ahmad_a	theano
4	tamer	theano
5	ahmad_m	keras
6	obada	keras
7	muhanad	caffe
8	siraj	caffe
9	dong	torch
10	varun	lasagne
11	naim	matconvnet

Rate your classmates' presentation according to

- How much did you learn from the presentation
- How much effort does the speaker put into
- A simple 1-5 rating, 5 is the best. For example,
 - If you think you have learned a lot (assuming that you know nothing at first but only materials from previous presentations) and you think the speaker has put lots of effort, then give a 5
 - If you think it is just average to you but you feel the speaker has put lots of effort on that, give a 4
 - If you think the presentation is quite useless but you still think the speaker put some (but not a lot) effort on that, give a 2

	student	packages
0	aakash	tensorflow
1	amed	tensorflow
2	soubhi	tensorflow
3	ahmad_a	theano
4	tamer	theano
5	ahmad_m	keras
6	obada	keras
7	muhanad	caffe
8	siraj	caffe
9	dong	torch
10	varun	lasagne
11	naim	matconvnet

Rate your classmates' presentation according to

- How much did you learn from the presentation
- How much effort does the speaker put into
- A simple 1-5 rating, 5 is the best. For example,
 - If you think you have learned a lot (assuming that you know nothing at first but only materials from previous presentations) and you think the speaker has put lots of effort, then give a 5
 - If you think it is just average to you but you feel the speaker has put lots of effort on that, give a 4
 - If you think the presentation is quite useless but you still think the speaker put some (but not a lot) effort on that, give a 2

	student	packages
0	aakash	tensorflow
1	amed	tensorflow
2	soubhi	tensorflow
3	ahmad_a	theano
4	tamer	theano
5	ahmad_m	keras
6	obada	keras
7	muhanad	caffe
8	siraj	caffe
9	dong	torch
10	varun	lasagne
11	naim	matconvnet

• You will be asked to give the rating right after the presentation (don't worry though, the speaker won't see your vote)

- Vote seriously, "outlier" vote will be counted
 - Your vote is considered outlier if it is farthest from the mean (you are okay if at least three other votes are the same as you tho)
 - Absent vote will be counted as outlier as well
 - For every 4 outlier votes, your rating will be deducted by 0.5

 Your final score will be curved. With 75% as the mean and 20% as standard deviation. (max 100% and min 0% tho)

 If you don't show up for presentation, you will score nothing. If you absolutely cannot make it, please be ready with a very good excuse

	student	packages
0	aakash	tensorflow
1	amed	tensorflow
2	soubhi	tensorflow
3	ahmad_a	theano
4	tamer	theano
5	ahmad_m	keras
6	obada	keras
7	muhanad	caffe
8	siraj	caffe
9	dong	torch
10	varun	lasagne
11	naim	matconvnet

- You will be asked to give the rating right after the presentation (don't worry though, the speaker won't see your vote)
- Vote seriously, "outlier" vote will be counted
 - Your vote is considered outlier if it is farthest from the mean (you are okay if at least three other votes are the same as you tho)
 - Absent vote will be counted as outlier as well
 - For every 4 outlier votes, your rating will be deducted by 0.5

 Your final score will be curved. With 75% as the mean and 20% as standard deviation. (max 100% and min 0% tho)

 If you don't show up for presentation, you will score nothing. If you absolutely cannot make it, please be ready with a very good excuse

	student	packages
0	aakash	tensorflow
1	amed	tensorflow
2	soubhi	tensorflow
3	ahmad_a	theano
4	tamer	theano
5	ahmad_m	keras
6	obada	keras
7	muhanad	caffe
8	siraj	caffe
9	dong	torch
10	varun	lasagne
11	naim	matconvnet

- You will be asked to give the rating right after the presentation (don't worry though, the speaker won't see your vote)
- Vote seriously, "outlier" vote will be counted
 - Your vote is considered outlier if it is farthest from the mean (you are okay if at least three other votes are the same as you tho)
 - Absent vote will be counted as outlier as well
 - For every 4 outlier votes, your rating will be deducted by 0.5
- Your final score will be curved. With 75% as the mean and 20% as standard deviation. (max 100% and min 0% tho)

 If you don't show up for presentation, you will score nothing. If you absolutely cannot make it, please be ready with a very good excuse

	student	packages
0	aakash	tensorflow
1	amed	tensorflow
2	soubhi	tensorflow
3	ahmad_a	theano
4	tamer	theano
5	ahmad_m	keras
6	obada	keras
7	muhanad	caffe
8	siraj	caffe
9	dong	torch
10	varun	lasagne
11	naim	matconvnet

- You will be asked to give the rating right after the presentation (don't worry though, the speaker won't see your vote)
- Vote seriously, "outlier" vote will be counted
 - Your vote is considered outlier if it is farthest from the mean (you are okay if at least three other votes are the same as you tho)
 - Absent vote will be counted as outlier as well
 - For every 4 outlier votes, your rating will be deducted by 0.5
- Your final score will be curved. With 75% as the mean and 20% as standard deviation. (max 100% and min 0% tho)
- If you don't show up for presentation, you will score nothing. If you absolutely cannot make it, please be ready with a very good excuse

- Instructor vote counts double tentatively
- Auditor votes (Niki and Nishaal)?
- First prize: 5% of the whole course
- Second prize: 3% of the whole course

Logistics

• Quiz 1 is due today

- 5% per day penalty (of Quiz 1) starting tomorrow. Assignment won't be accepted after next Friday
- HW 2 was posted and will be due in two weeks
 - 3% bonus for the first correct submitter
 - As the winner of HW 1, Naim is out for this round
- More about grading

Overall percentage	Grade
> 80	А
60 - 80	В
40-60	С
< 40	D

Very unlikely to get below B provided that you finish all assignments (reasonably) on time

Logistics

Quiz 1 is due today

- 5% per day penalty (of Quiz 1) starting tomorrow. Assignment won't be accepted after next Friday
- HW 2 was posted and will be due in two weeks
 - 3% bonus for the first correct submitter
 - As the winner of HW 1, Naim is out for this round
- More about grading

Overall percentage	Grade
> 80	А
60 - 80	В
40-60	С
< 40	D

Very unlikely to get below B provided that you finish all assignments (reasonably) on time

Feb 2017 7 / 164

Logistics

• Quiz 1 is due today

- 5% per day penalty (of Quiz 1) starting tomorrow. Assignment won't be accepted after next Friday
- HW 2 was posted and will be due in two weeks
 - 3% bonus for the first correct submitter
 - As the winner of HW 1, Naim is out for this round
- More about grading

Overall percentage	Grade
> 80	A
60 - 80	В
40-60	С
< 40	D

Very unlikely to get below B provided that you finish all assignments (reasonably) on time

- Tensorflow 1.0 is now available in the OU supercomputer schooner
- Request account at http://www.ou.edu/content/oscer/ support/accounts/new_account.html
- Use the group name **ouecedeepIrn**
- Try "module load TensorFlow" to access it
- Presenters: please try it out :)

We talked about the basics of CNNs last week

- We will look into several applications of CNNs besides image recognition
 - Object localization
 - Object detection
- How to visualize a CNN
- CNNs and arts
- Fooling a CNN

- We talked about the basics of CNNs last week
- We will look into several applications of CNNs besides image recognition
 - Object localization
 - Object detection
- How to visualize a CNN
- CNNs and arts
- Fooling a CNN

- We talked about the basics of CNNs last week
- We will look into several applications of CNNs besides image recognition
 - Object localization
 - Object detection
- How to visualize a CNN
- CNNs and arts
- Fooling a CNN

- We talked about the basics of CNNs last week
- We will look into several applications of CNNs besides image recognition
 - Object localization
 - Object detection
- How to visualize a CNN
- CNNs and arts
- Fooling a CNN

- We talked about the basics of CNNs last week
- We will look into several applications of CNNs besides image recognition
 - Object localization
 - Object detection
- How to visualize a CNN
- CNNs and arts
- Fooling a CNN

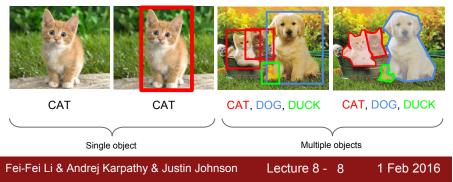
Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation



Feb 2017 10 / 164

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Computer Vision Tasks

Classification

+ Localization

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 8 - 9

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

1 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 11/164

Classification + Localization: Task

Classification: C classes Input: Image Output: Class label Evaluation metric: Accuracy

Localization:

Input: Image Output: Box in the image (x, y, w, h) Evaluation metric: Intersection over Union

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

► (x, y, w, h)

Classification + Localization: Do both

 Fei-Fei Li & Andrej Karpathy & Justin Johnson
 Lecture 8 - 10
 1 Feb 2016

Feb 2017 12 / 164

ImageNet localization challenge

Classification + Localization: ImageNet

1000 classes (same as classification)

Each image has 1 class, at least one bounding box

~800 training images per class

Algorithm produces 5 (class, box) guesses

Example is correct if at least one one guess has correct class AND bounding box at least 0.5 intersection over union (IoU)

Krizhevsky et. al. 2012

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 8 - 11 1

1 Feb 2016

Feb 2017 13 / 164

IoU explain

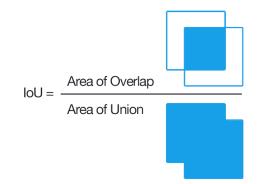
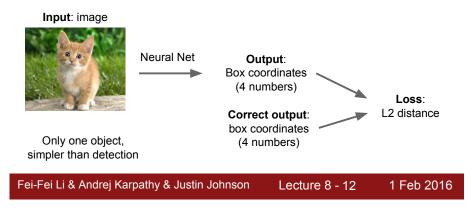


Image from http://www.pyimagesearch.com/2016/11/07/ intersection-over-union-iou-for-object-detection/

- ∢ ∃ ▶

Idea #1: Localization as Regression



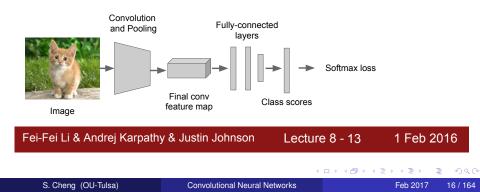
Convolutional Neural Networks

Feb 2017 15 / 164

- 3 →

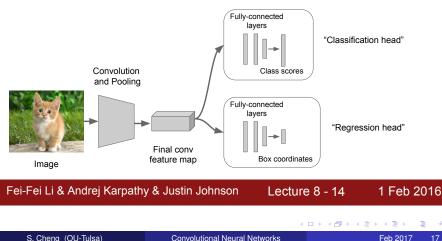
Simple Recipe for Classification + Localization

Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)



Simple Recipe for Classification + Localization

Step 2: Attach new fully-connected "regression head" to the network

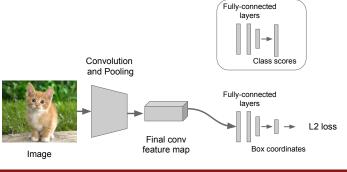


Feb 2017

17/164

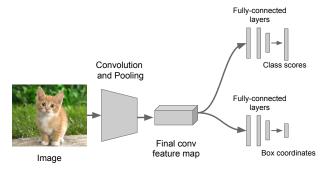
Simple Recipe for Classification + Localization

Step 3: Train the regression head only with SGD and L2 loss

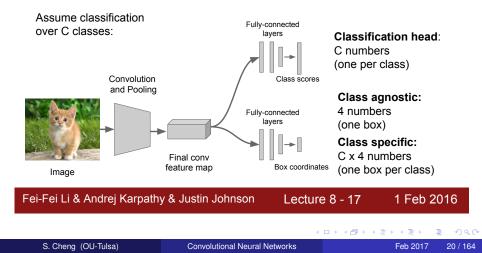


Simple Recipe for Classification + Localization

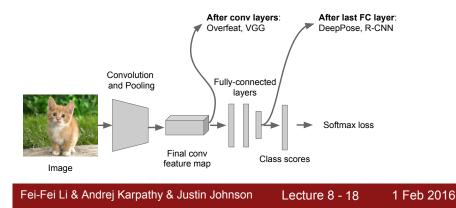
Step 4: At test time use both heads



Per-class vs class agnostic regression



Where to attach the regression head?



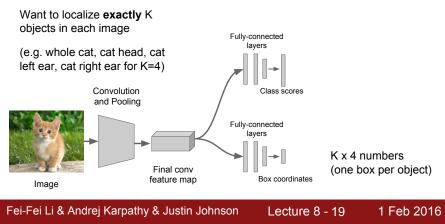
S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 21 / 164

< ロ > < 同 > < 回 > < 回 >

Aside: Localizing multiple objects



Feb 2017 22 / 164

220 x 220

Localization as regression

Aside: Human Pose Estimation

Represent a person by K joints

Regress (x, y) for each joint from last fully-connected layer of AlexNet

(Details: Normalized coordinates, iterative refinement)

Toshev and Szegedy, "DeepPose: Human Pose Estimation via Deep Neural Networks", CVPR 2014

Fei-Fei Li & Andrej Karpathy & Justin Johnson

n Lecture 8 - 20

1 Feb 2016

< ロ > < 同 > < 回 > < 回 >

Localization as Regression

Very simple

Think if you can use this for projects

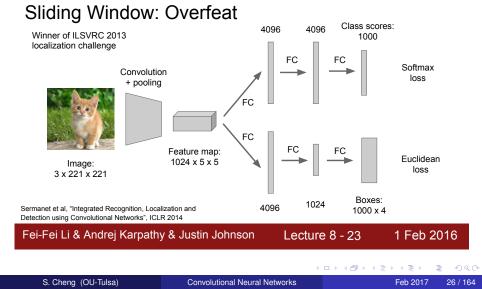
Fei-Fei Li & Andrej Karpat	hy & Justin Johnson	Lecture 8 - 21	1 Feb 2	2016
		< <>>	◆ 豊 ▶ ◆ 豊 ▶	≣ •) < (~
S. Cheng (OU-Tulsa)	Convolutional Neural Netw	orks	Feb 2017	24 / 164

Sliding windows

Idea #2: Sliding Window

- Run classification + regression network at multiple locations on a highresolution image
- Convert fully-connected layers into convolutional layers for efficient computation
- Combine classifier and regressor predictions across all scales for final prediction

Fei-Fei Li & Andrej Karpathy & Justin Johnson		Lecture 8 - 22	1 Feb 2016	
		< <p>> < <p>> < <p>> <</p></p></p>		E
S. Cheng (OU-Tulsa)	Convolutional Neural Net	works	Feb 2017	25 / 164



Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	0.8

Sliding Window: Overfeat

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	0.8

Sliding Window: Overfeat

Greedily merge boxes and scores (details in paper)

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.8

Sliding Window: Overfeat

In practice use many sliding window locations and multiple scales

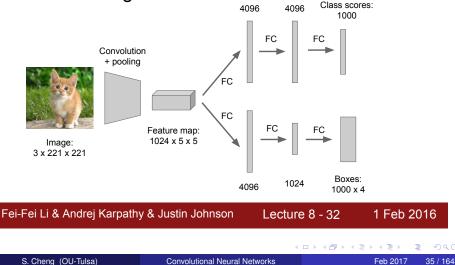
Window positions + score maps

Box regression outputs

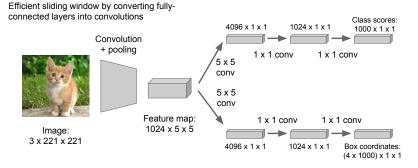
Final Predictions

Sermanet et al, "Integrated Recognition, Localization and Detection using Convolutional Networks", ICLR 2014

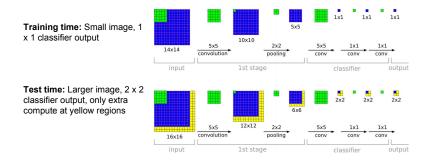
Efficient Sliding Window: Overfeat



Efficient Sliding Window: Overfeat

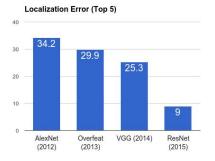


Efficient Sliding Window: Overfeat



Sermanet et al, "Integrated Recognition, Localization and Detection using Convolutional Networks", ICLR 2014

ImageNet Classification + Localization



AlexNet: Localization method not published

Overfeat: Multiscale convolutional regression with box merging

VGG: Same as Overfeat, but fewer scales and locations; simpler method, gains all due to deeper features

ResNet: Different localization method (RPN) and much deeper features

Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 8 - 37

1 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 39 / 164

Detection as regression?

Detection as Regression?

DOG, (x, y, w, h) CAT, (x, y, w, h) CAT, (x, y, w, h) DUCK (x, y, w, h)

= 16 numbers

Fei-Fei Li & Andrej Karpathy & Justin Johnson		ecture 8 - 38	1 Feb 2	016
		• • • • • • • • •	(콜) (콜) :	<u>ا</u> ا
S. Cheng (OU-Tulsa)	Convolutional Neural Network	s	Feb 2017	40 / 164

Detection as regression?

Detection as Regression?

Fei-Fei Li & Andrej Karpathy & Justin Johnson		ecture	e 8 - 39	1 Feb 2	2016
		4	□▶∢舂▶∢	≣▶ ≮ ≣▶	E nac
S. Cheng (OU-Tulsa)	Convolutional Neural Networks	;		Feb 2017	41 / 164

Detection as regression?

Detection as Regression?

Need variable sized outputs

Fei-Fei Li & Andrej Karpathy & Justin Johnson		_ecture	e 8 - 40	1 Feb 2	016
		4	□᠈《ᠿ᠈《	■ → ★ ■ → □	1 9 9
S. Cheng (OU-Tulsa)	Convolutional Neural Netwo	rks		Feb 2017	42 / 164

Detection as classification

Detection as Classification

CAT? NO DOG? NO

Detection as classification

Detection as Classification

CAT? YES!

DOG? NO

Detection as classification

Detection as Classification

CAT? NO DOG? NO

Detection as classification

Detection as Classification

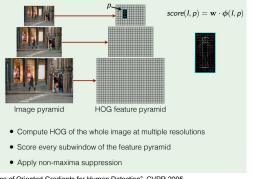
Problem: Need to test many positions and scales

Solution: If your classifier is fast enough, just do it

Fei-Fei Li & Andrej Karpath	y & Justin Johnson Le	ecture 8 - 44	1 Feb 2	016
		< < >> <	■ → ★ ■ → □	1 9 9
S. Cheng (OU-Tulsa)	Convolutional Neural Networks		Feb 2017	46 / 164

Detection as classification

Histogram of Oriented Gradients



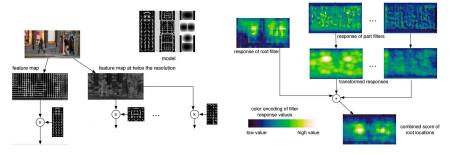
Dalal and Triggs, "Histograms of Oriented Gradients for Human Detection", CVPR 2005 Slide credit: Ross Girshick

 Fei-Fei Li & Andrej Karpathy & Justin Johnson
 Lecture 8 - 45
 1 Feb 2016

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Detection as classification

Deformable Parts Model (DPM)

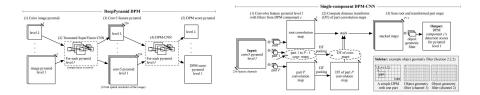


Felzenszwalb et al, "Object Detection with Discriminatively Trained Part Based Models", PAMI 2010

Fei-Fei Li & Andrej Karpath	y & Justin Johnson L	ecture 8 - 46.		1 Feb 2	016
		< • > < #	► < Ξ	▶ ★夏▶ □	≣ ୬୯୯
S. Cheng (OU-Tulsa)	Convolutional Neural Network	ks		Feb 2017	48 / 164

Detection as classification

Aside: Deformable Parts Models are CNNs?



Girschick et al, "Deformable Part Models are Convolutional Neural Networks", CVPR 2015

Detection as classification

Detection as Classification

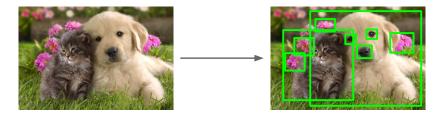
Problem: Need to test many positions and scales, and use a computationally demanding classifier (CNN)

Solution: Only look at a tiny subset of possible positions

Fei-Fei Li & Andrej Karpatł	ny & Justin Johnson Le	ecture 8 - 48	1 Feb 2	016
		• • • • • • • •	≣ > ≺ ≣ >	E ୬.୯
S. Cheng (OU-Tulsa)	Convolutional Neural Networks	;	Feb 2017	50 / 164

Region Proposals

- Find "blobby" image regions that are likely to contain objects
- "Class-agnostic" object detector
- Look for "blob-like" regions

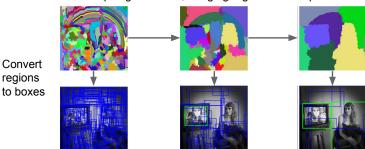


Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 49 1 Feb 2016

Feb 2017 51 / 164

-∢ ∃ ▶

Region Proposals: Selective Search



Bottom-up segmentation, merging regions at multiple scales

Uijlings et al, "Selective Search for Object Recognition", IJCV 2013

Region Proposals: Many other choices

Method	Approach	Outputs Segments	Outputs Score	Control #proposals	Time (sec.)	Repea- tability	Recall Results	Detection Results
Bing [18]	Window scoring		1	1	0.2	* * *	*	
CPMC [19]	Grouping	~	~	\checkmark	250	-	**	*
EdgeBoxes [20]	Window scoring		~	~	0.3	**	* * *	* * *
Endres [21]	Grouping	~	~	~	100	-	* * *	**
Geodesic [22]	Grouping	~		\checkmark	1	*	***	**
MCG [23]	Grouping	~	~	\checkmark	30	*	***	***
Objectness [24]	Window scoring		~	~	3		*	
Rahtu [25]	Window scoring		1	~	3			*
RandomizedPrim's [26]	Grouping	~		~	1	*	*	**
Rantalankila [27]	Grouping	1		\checkmark	10	**		**
Rigor [28]	Grouping	~		\checkmark	10	*	**	**
SelectiveSearch [29]	Grouping	~	1	\checkmark	10	**	* * *	* * *
Gaussian				~	0	•		*
SlidingWindow				~	0	* * *		
Superpixels		~			1	*		
Uniform				~	0			

Hosang et al, "What makes for effective detection proposals?", PAMI 2015

Fei-Fei Li & Andrej Karpathy & Justin Johnson		ecture	e 8 - 51	1 Feb 2	2016
				(≣) (≣)	₹ 940
S. Cheng (OU-Tulsa)	Convolutional Neural Network	s		Feb 2017	53 / 164

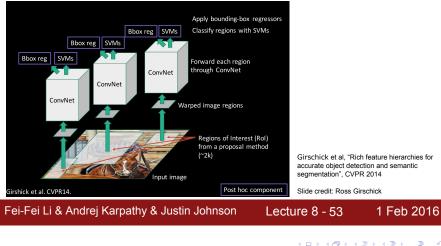
Region Proposals: Many other choices

Method	Approach	Outputs Segments	Outputs Score	Control #proposals	Time (sec.)	Repea- tability	Recall Results	Detection Results
Bing [18]	Window scoring		~	~	0.2	* * *	*	
CPMC [19]	Grouping	✓	1	\checkmark	250	-	**	*
EdgeBoxes [20]	Window scoring		~	√	0.3	**	***	***
Endres [21]	Grouping	√	~	√	100	-	***	**
Geodesic [22]	Grouping	~		\checkmark	1	*	***	**
MCG [23]	Grouping	~	~	\checkmark	30	*	***	***
Objectness [24]	Window scoring		~	~	3		*	,
Rahtu [25]	Window scoring		1	~	3			*
RandomizedPrim's [26]	Grouping	~		~	1	*	*	**
Rantalankila [27]	Grouping	1		1	10	**		**
Rigor [28]	Grouping	~		~	10	*	**	**
SelectiveSearch [29]	Grouping	~	~	\checkmark	10	**	* * *	* * *
Gaussian				~	0			*
SlidingWindow				~	0	* * *		
Superpixels		~			1	*		
Uniform				~	0			

Hosang et al, "What makes for effective detection proposals?", PAMI 2015

Fei-Fei Li & Andrej Karpath	y & Justin Johnson Lee	cture 8 - 52	1 Feb 2016		
		< □ > < @ > < 3	È≻≺≣≻ I	. ૧૮૯	
S. Cheng (OU-Tulsa)	Convolutional Neural Networks		Feb 2017	54 / 164	

Putting it together: R-CNN



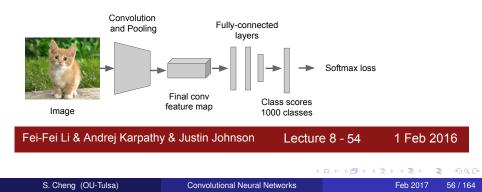
S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 55 / 164

R-CNN Training

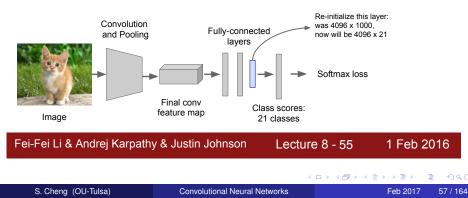
Step 1: Train (or download) a classification model for ImageNet (AlexNet)



R-CNN Training

Step 2: Fine-tune model for detection

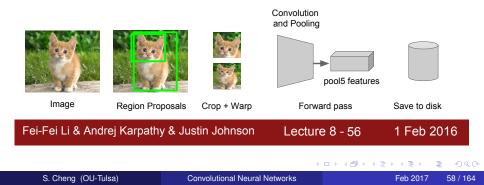
- Instead of 1000 ImageNet classes, want 20 object classes + background
- Throw away final fully-connected layer, reinitialize from scratch
- Keep training model using positive / negative regions from detection images



R-CNN Training

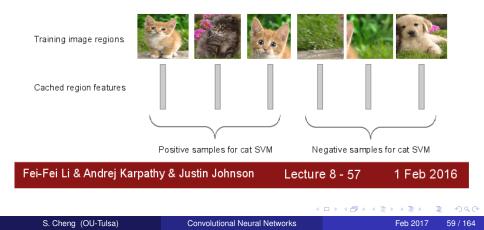
Step 3: Extract features

- Extract region proposals for all images
- For each region: warp to CNN input size, run forward through CNN, save pool5 features to disk
- Have a big hard drive: features are ~200GB for PASCAL dataset!



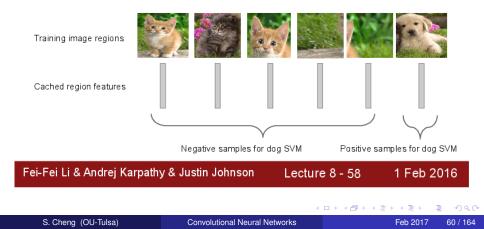
R-CNN Training

Step 4: Train one binary SVM per class to classify region features



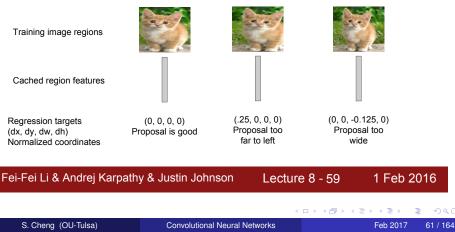
R-CNN Training

Step 4: Train one binary SVM per class to classify region features



R-CNN Training

Step 5 (bbox regression): For each class, train a linear regression model to map from cached features to offsets to GT boxes to make up for "slightly wrong" proposals



Object Detection: Datasets

	PASCAL VOC (2010)	ImageNet Detection (ILSVRC 2014)	MS-COCO (2014)
Number of classes	20	200	80
Number of images (train + val)	~20k	~470k	~120k
Mean objects per image	2.4	1.1	7.2

Object Detection: Evaluation

We use a metric called "mean average precision" (mAP)

Compute average precision (AP) separately for each class, then average over classes

A detection is a true positive if it has IoU with a ground-truth box greater than some threshold (usually 0.5) (mAP@0.5)

Combine all detections from all test images to draw a precision / recall curve for each class; AP is area under the curve

TL;DR mAP is a number from 0 to 100; high is good

More on AP

• *AP* is computed as the *average precision* of the precision-recall curve *p*(*r*). That is

$$AP = \int_{r=0}^{1} p(r) dr,$$

which essentially is also the area under p(r)

 Assume that there is n matches and P(k) is the precision of the first k matches, we can write AP as

$$AP = \sum_{k=1}^{n} P(k)\Delta r(k) = \frac{\sum_{k=1}^{n} P(k)rel(k)}{\#relevant matches},$$

where $\Delta r(k)$ is the change of recall after considering the *k*-th match, and rel(k) is 1 if *k*-th match is relevant or 0 otherwise

More on AP

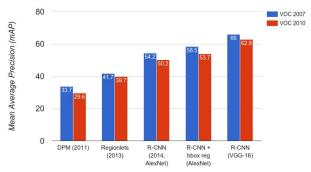
 It is common to reduce the "wiggles" of the precision-recall curve by using interpolation and approximate AP as below instead

$$AP = \frac{1}{11} \sum_{r \in \{0, 0.1, 0.2, \cdots, 1\}} p_{interp}(r),$$

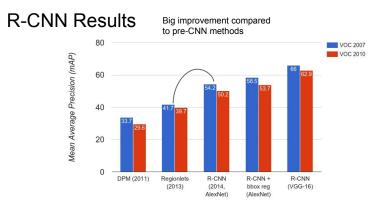
where
$$p_{interp}(r) = max_{\tilde{r}:\tilde{r} \ge r}p(\tilde{r})$$

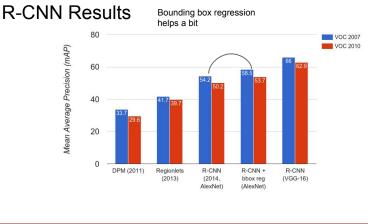
See https://en.wikipedia.org/wiki/Information_retrieval#
Average_precision and http:
//homepages.inf.ed.ac.uk/ckiw/postscript/ijcv voc09.pdf

R-CNN Results

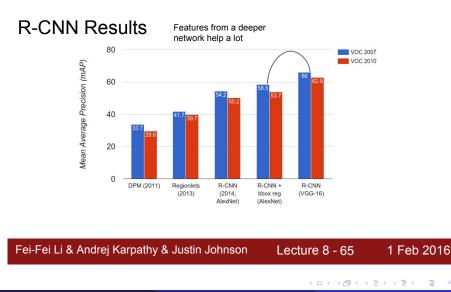


Wang et al, "Regionlets for Generic Object Detection", ICCV 2013





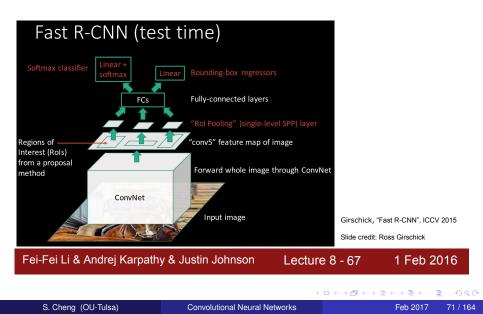
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 64 1 Feb 2016

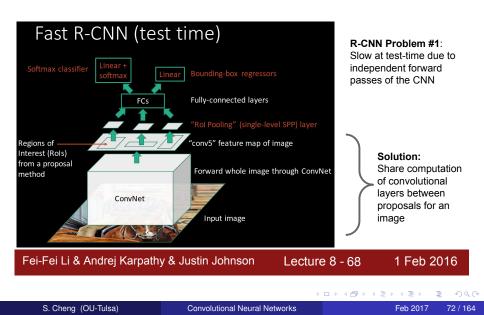


Feb 2017 69 / 164

R-CNN Problems

- 1. Slow at test-time: need to run full forward pass of CNN for each region proposal
- 2. SVMs and regressors are post-hoc: CNN features not updated in response to SVMs and regressors
- 3. Complex multistage training pipeline



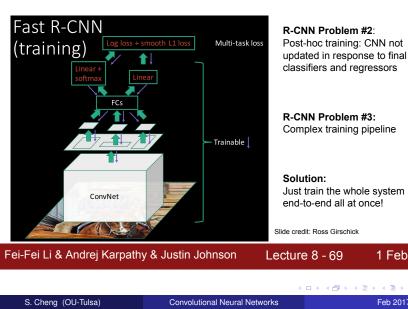


1 Feb 2016

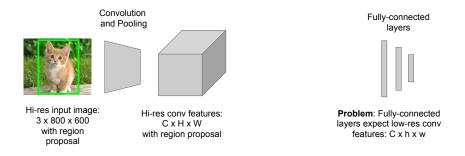
73/164

Feb 2017

Fast R-CNN

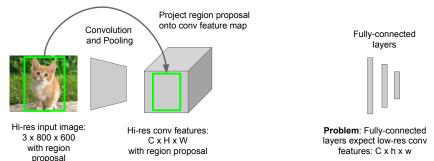


Fast R-CNN: Region of Interest Pooling



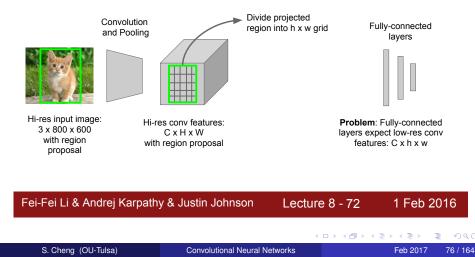
Fei-Fei Li & Andrej Karpat	hy & Justin Johnson	Lecture 8 - 70	1 Feb 20	016
		• • • • • • • •	E > < E > - 3	≣ ઝ૧૯
S. Cheng (OU-Tulsa)	Convolutional Neural Netwo	orks	Feb 2017	74 / 164

Fast R-CNN: Region of Interest Pooling

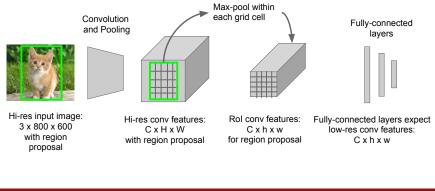


Fei-Fei Li & Andrej Karpath	y & Justin Johnson	Lecture	e 8 - 71	1 Feb	2016
		•	□→∢舂→	< ≅ > ≺ ≅ >	王 り へ(
S. Cheng (OU-Tulsa)	Convolutional Neural N	etworks		Feb 2017	75 / 164

Fast R-CNN: Region of Interest Pooling



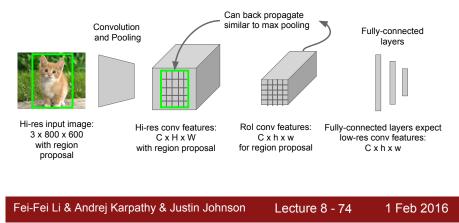
Fast R-CNN: Region of Interest Pooling



 Fei-Fei Li & Andrej Karpathy & Justin Johnson
 Lecture 8 - 73
 1 Feb 2016

 S. Cheng (OU-Tulsa)
 Convolutional Neural Networks
 Feb 2017
 77 / 164

Fast R-CNN: Region of Interest Pooling



Convolutional Neural Networks

Feb 2017 78 / 164

Fast R-CNN Results

		R-CNN	Fast R-CNN
Fastarl	Training Time:	84 hours	9.5 hours
Faster!	(Speedup)	1x	8.8x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fei-Fei Li & Andrej Karpath	y & Justin Johnson	_ecture	e 8 - 75	1 Feb 2	2016
		4		(≣) < ≣)	₹ 9 .0
S. Cheng (OU-Tulsa)	Convolutional Neural Netwo	rks		Feb 2017	79 / 164

Fast R-CNN Results

		R-CNN	Fast R-CNN
Feeterl	Training Time:	84 hours	9.5 hours
Faster!	(Speedup)	1x	8.8x
FASTER!	Test time per image	47 seconds	0.32 seconds
FASTER!	(Speedup)	1x	146x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

		R-CNN	Fast R-CNN
Fastarl	Training Time:	84 hours	9.5 hours
Faster!	(Speedup)	1x	8.8x
FASTER!	Test time per image	47 seconds	0.32 seconds
FASTER!	(Speedup)	1x	146x
Better!	mAP (VOC 2007)	66.0	66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fei-Fei Li & Andrej Karpath	y & Justin Johnson	Lecture	e 8 - 77	1 Feb 2	2016
		4		■ > → ■ >	E 990
S. Cheng (OU-Tulsa)	Convolutional Neural N	letworks		Feb 2017	81 / 164

Fast R-CNN Problem:

Test-time speeds don't include region proposals

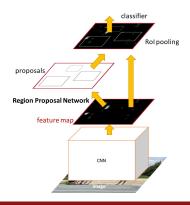
	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Fast R-CNN Problem Solution:

Test-time speeds don't include region proposals Just make the CNN do region proposals too!

	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Faster R-CNN:



Insert a **Region Proposal Network (RPN)** after the last convolutional layer

RPN trained to produce region proposals directly; no need for external region proposals!

After RPN, use Rol Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

< ロ > < 同 > < 回 > < 回 >

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

Slide credit: Ross Girschick

Lecture 8 - 80

Fei-Fei Li & Andrej Karpathy & Justin Johnson

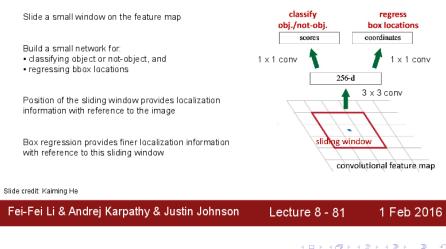
1 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 84 / 164

Faster R-CNN: Region Proposal Network



Convolutional Neural Networks

Faster R-CNN: Region Proposal Network

Use N anchor boxes at each location

Anchors are translation invariant: use the same ones at every location Regression gives offsets from anchor boxes Classification gives the probability that each (regressed) anchor shows an object

n anchors

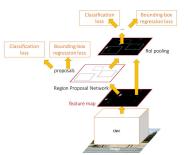
Faster R-CNN: Training

In the paper: Ugly pipeline

- Use alternating optimization to train RPN, then Fast R-CNN with RPN proposals, etc.
- More complex than it has to be

Since publication: Joint training! One network, four losses

- RPN classification (anchor good / bad)
- RPN regression (anchor -> proposal)
- Fast R-CNN classification (over classes)
- Fast R-CNN regression (proposal -> box)



Slide credit: Ross Girschick

Faster R-CNN: Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

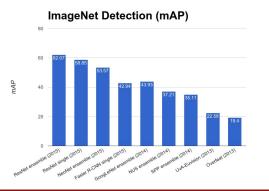
Object Detection State-of-the-art: ResNet 101 + Faster R-CNN + some extras

training data	COCO train		COCO	trainval		
test data	COCO val		COCO val		COCO	test-dev
mAP	@.5 @[.5, .95]		@.5	@[.5, .95]		
baseline Faster R-CNN (VGG-16)	41.5	21.2				
baseline Faster R-CNN (ResNet-101)	48.4	27.2				
+box refinement	49.9	29.9				
+context	51.1	30.0	53.3	32.2		
+multi-scale testing	53.8	32.5	55.7	34.9		
ensemble			59.0	37.4		

He et. al, "Deep Residual Learning for Image Recognition", arXiv 2015

Fei-Fei Li & Andrej Karpathy & Justin Johnson		Lecture 8 - 85	1 Feb 2	016
		< □ > < 🗗 > <		છે ગ
S. Cheng (OU-Tulsa)	Convolutional Neural N	letworks	Feb 2017	89 / 164

ImageNet Detection 2013 - 2015



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 86 1 Feb 2016 < < >> < <</p> ъ S. Cheng (OU-Tulsa) Convolutional Neural Networks Feb 2017 90/164

YOLO

YOLO: You Only Look Once Detection as Regression

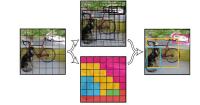
Divide image into S x S grid

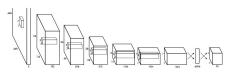
Within each grid cell predict: B Boxes: 4 coordinates + confidence Class scores: C numbers

Regression from image to $7 \times 7 \times (5 * B + C)$ tensor

Direct prediction using a CNN

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", arXiv 2015





onnied, real-rine object beteaton , arxiv zon	5				
Fei-Fei Li & Andrej Karpathy & Justin Johnson		Lecture	_ecture 8 - 87		2016
		4		<	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S. Cheng (OU-Tulsa)	Convolutional Neural Ne	etworks		Feb 2017	91 / 164

Ξ

YOLO

YOLO: You Only Look Once Detection as Regression

Faster than Faster R-CNN, but not as good

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [30]	2007	16.0	100
30Hz DPM [30]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [37]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[27]	2007+2012	73.2	7
Faster R-CNN ZF [27]	2007+2012	62.1	18

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", arXiv 2015

Fei-Fei Li & Andrej Karpathy & Justin Johnson		cture 8 - 88	88	1 Feb 2	2016)16	
		< • • • • •	× ×≣	> ∢≣ >	₹ <i>1</i>) Q (?	
S Cheng (OU-Tulsa)	Convolutional Neural Networks			Feb 2017	92 /	164	

Summary

Object Detection code links:

R-CNN

(Cafffe + MATLAB): <u>https://github.com/rbgirshick/rcnn</u> Probably don't use this; too slow

Fast R-CNN

(Caffe + MATLAB): https://github.com/rbgirshick/fast-rcnn

Faster R-CNN

(Caffe + MATLAB): <u>https://github.com/ShaoqingRen/faster_rcnn</u> (Caffe + Python): <u>https://github.com/rbgirshick/py-faster-rcnn</u>

YOLO

http://pjreddie.com/darknet/yolo/ Maybe try this for projects?

Fei-Fei Li & Andrej Karpathy & Justin Johnson		ecture 8 -	89	1 Feb 2	016
				() < ≣ > 1	E ∽ < @
S. Cheng (OU-Tulsa)	Convolutional Neural Network	s		Feb 2017	93 / 164

Recap

Localization:

- Find a fixed number of objects (one or many)
- L2 regression from CNN features to box coordinates
- Much simpler than detection; consider it for your projects!
- Overfeat: Regression + efficient sliding window with FC -> conv conversion
- Deeper networks do better

Object Detection:

- Find a variable number of objects by classifying image regions
- Before CNNs: dense multiscale sliding window (HoG, DPM)
- Avoid dense sliding window with region proposals
- R-CNN: Selective Search + CNN classification / regression
- Fast R-CNN: Swap order of convolutions and region extraction
- Faster R-CNN: Compute region proposals within the network
- Deeper networks do better

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 90 1 Feb 2016

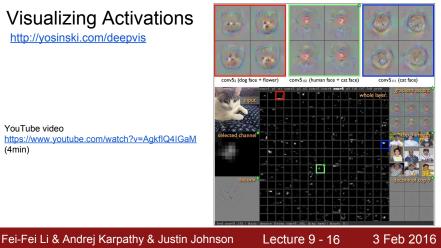
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

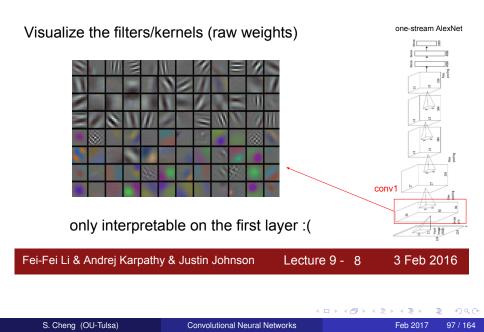
Visualizing and understanding conv-nets

- Study weights directly
- Occlusion experiment
- Visualizing representation
 - t-SNE
 - through deconvolution
 - through optimization

Visualizing Activations

http://yosinski.com/deepvis



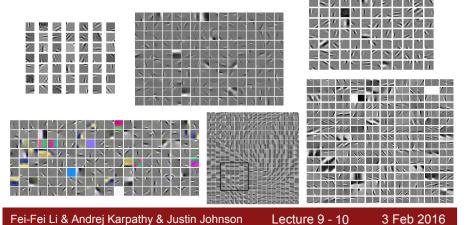


Visualize the filters/kernels (raw weights)

Visualize the	Weights:		layer 1 weights
filters/kernels (raw weights) you can still do it for higher layers, it's just not that			layer 2 weights
interesting (these are taken from ConvNetJS CIFAR-10 demo)		「「「「「「」」」」。 「「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」。 「」」」、 「」」」。 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」」、 「」」、 「」」、 「」」」、 「」、 「	layer 3 weights
Fei-Fei Li & Andrej Ka	rpathy & Justin John	son Lecture 9 - 9	3 Feb 2016

Feb 2017 98/164

The gabor-like filters fatigue



Feb 2017 99 / 164

Occlusion experiments [Zeiler & Fergus 2013]

(d) Classifier, probability of correct class

> (as a function of the position of the square of zeros in the original image)

Fei-Fei Li & Andrej Karpathy & Justin Johnson	Lecture 9 - 14	3 Feb 2016
---	----------------	------------

Feb 2017 100 / 164

(a) Input Image

(d) Classifier, probability

of correct class

Occlusion experiments [Zeiler & Fergus 2013]

True Label: Pomeranian True Label: Car Wheel

(as a function of the position of the square of zeros in the original image)

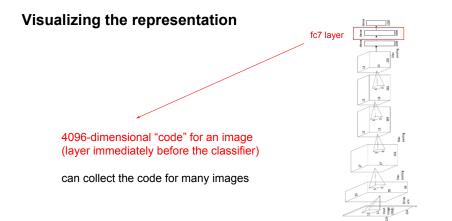
rue Labe

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 101 / 164

イロト イヨト イヨト イヨト



Feb 2017 102 / 164

Visualizing the representation

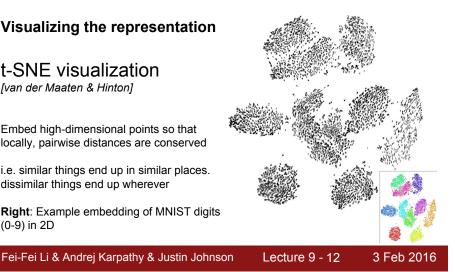
t-SNF visualization

[van der Maaten & Hinton]

Embed high-dimensional points so that locally, pairwise distances are conserved

i.e. similar things end up in similar places. dissimilar things end up wherever

Right: Example embedding of MNIST digits (0-9) in 2D



A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

t-SNE visualization:

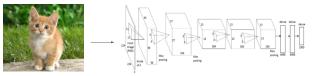
two images are placed nearby if their CNN codes are close. See more:

http://cs.stanford. edu/people/karpathy/cnnembed/

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 13 3 Feb 2016

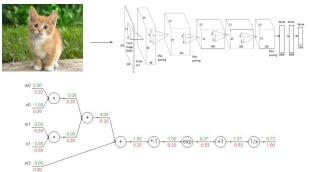
Feb 2017 104 / 164

1. Feed image into net



Q: how can we compute the gradient of any arbitrary neuron in the network w.r.t. the image?

1. Feed image into net



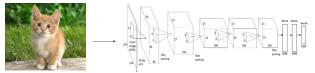
Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 18

3 Feb 2016

Feb 2017 106 / 164

1. Feed image into net



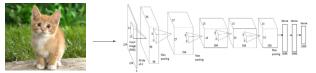
2. Pick a layer, set the gradient there to be all zero except for one 1 for

some neuron of interest 3. Backprop to image:

Fei-Fei Li & Andrej Karpathy & Justin JohnsonLecture 9 - 193 Feb 2016

Feb 2017 107 / 164

1. Feed image into net



2. Pick a layer, set the gradient there to be all zero except for one 1 for

some neuron of interest 3. Backprop to image:

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

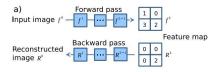
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 20 3 Feb 2016

Feb 2017 108 / 164

Guided backprop

Deconv approaches

[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013] [Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014] [Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]



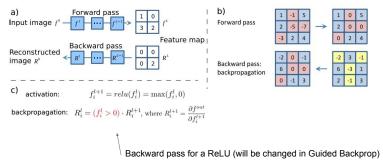
Fei-Fei Li & Andrej Karpath	y & Justin Johnson Le	ecture	e 9 - 21	3 Feb	2016
		•			≣ <i>∙</i> ୨∢୧
S. Cheng (OU-Tulsa)	Convolutional Neural Network	s		Feb 2017	109 / 164

Guided backprop

Deconv approaches

[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013]

[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014] [Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]



 Fei-Fei Li & Andrej Karpathy & Justin Johnson
 Lecture 9 - 22
 3 Feb 2016

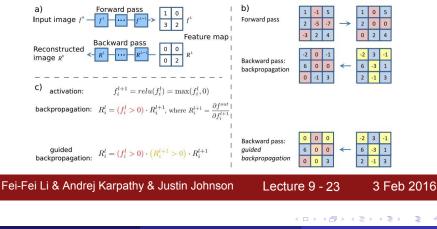
 S. Cheng (OU-Tulsa)
 Convolutional Neural Networks
 Feb 2017
 110/164

Guided backprop

Deconv approaches

[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013]

[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014] [Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]



Feb 2017

111/164

Deconvolution approach

Guided backprop

Visualization of patterns learned by the layer **conv6** (top) and layer **conv9** (bottom) of the network trained on ImageNet.

Each row corresponds to one filter.

The visualization using "guided backpropagation" is based on the top 10 image patches activating this filter taken from the ImageNet dataset. guided backpropagation

guided backpropagation

corresponding image crops

corresponding image crops

[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 24

3 Feb 2016

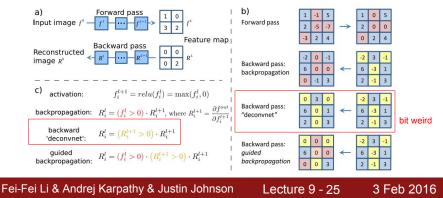
Feb 2017 112 / 164

Backward deconvolution

Deconv approaches

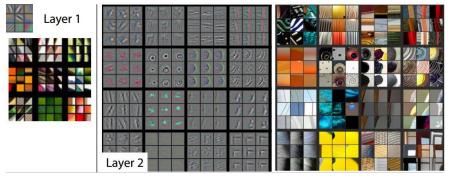
[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013]

[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014] [Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]



Visualizing and Understanding Convolutional Networks Zeiler & Fergus, 2013

Visualizing arbitrary neurons along the way to the top...



Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 26

3 Feb 2016

Feb 2017 114 / 164

Visualizing arbitrary neurons along the way to the top...

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 27

3 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 115 / 164

Visualizing arbitrary neurons along the way to the top...

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 28

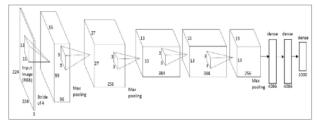
3 Feb 2016

Feb 2017 116 / 164

Visualizing conv-nets Decor

Deconvolution approach

Finding salient map of an object



Repeat:

- 1. Forward an image
- 2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest
- 3. Backprop to image
- 4. Do an "image update"

Finding salient map of an object

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

- Use grabcut for segmentation



Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 37

3 Feb 2016

Feb 2017 118 / 164

Patches maximally activate a neuron

Visualize patches that maximally activate neurons

Figure 4: Top regions for six pool₅ units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts, such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).

one-stream AlexNet

Rich feature hierarchies for accurate object detection and semantic segmentation [Girshick, Donahue, Darrell, Malik]

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 7 3 Feb 2016

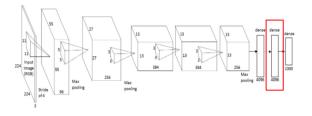
A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 119 / 164

Question: Given a CNN code, is it possible to reconstruct the original image?



Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 44 3

3 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 120 / 164

Find an image such that:

- Its code is similar to a given code
- It "looks natural" (image prior regularization)

$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^{H \times W \times C}} \ell(\Phi(\mathbf{x}), \Phi_0) + \lambda \mathcal{R}(\mathbf{x})$$

$$\ell(\Phi(\mathbf{x}), \Phi_0) = \|\Phi(\mathbf{x}) - \Phi_0\|^2$$

Understanding Deep Image Representations by Inverting Them [Mahendran and Vedaldi, 2014]

original image

reconstructions from the 1000 log probabilities for ImageNet (ILSVRC) classes

 Fei-Fei Li & Andrej Karpathy & Justin Johnson
 Lecture 9 - 46
 3 Feb 2016

 (미> (리> (리> (리> (리> (리> (1))))
 2000 (10))
 2000 (10)

 S. Cheng (OU-Tulsa)
 Convolutional Neural Networks
 Feb 2017
 122/164

Optimization to Image

Recovering original image

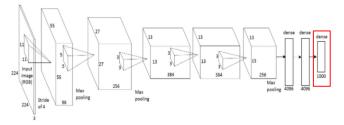
Reconstructions from the representation after last last pooling layer (immediately before the first Fully Connected layer)

 Fei-Fei Li & Andrej Karpathy & Justin Johnson
 Lecture 9 - 47
 3 Feb 2016

 <</td>
 <</td>

Reconstructions from intermediate layers

Optimization to Image



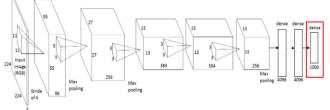
Q: can we find an image that maximizes some class score?

Fei-Fei Li & Andrej Karpat	hy & Justin Johnson	_ecture 9 - 29	3 Feb	2016
		< • > < @ >	 ₹ ₹ ► < ₹ ► 	≣ ୬୯୯
S. Cheng (OU-Tulsa)	Convolutional Neural Netwo	′ks	Feb 2017	125 / 164

Optimization to Image

$$\arg\max_{I} S_c(I) - \lambda \|I\|_2^2$$

score for class c (before Softmax)

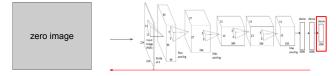


Q: can we find an image that maximizes some class score?

Optimization to Image

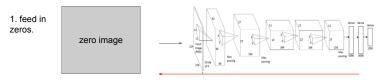
Class model visualization

Optimization to Image



2. set the gradient of the scores vector to be [0,0,....1,....,0], then backprop to image

Optimization to Image



2. set the gradient of the scores vector to be [0,0,....1,....,0], then backprop to image

- 3. do a small "image update"
- 4. forward the image through the network.
- 5. go back to 2.

$$\arg\max_{I} \frac{S_c(I)}{S_c(I)} - \lambda \|I\|_2^2$$

• • • • • • • • • • • •

score for class c (before Softmax)

Fei-Fei Li & Andrej Karpathy & Justin JohnsonLecture 9 - 323 Feb 2016

Feb 2017 128 / 164

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

1. Find images that maximize some class score:

lemon

bell pepper

husky

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 33

A D b 4 A b

3 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

129/164 Feb 2017

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

1. Find images that maximize some class score:

limousine

kit fox

Fei-Fei Li & Andrei Karpathy & Justin Johnson

Lecture 9 - 34

イロト イ押ト イヨト イヨト

3 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

ostrich

130/164Feb 2017

[Understanding Neural Networks Through Deep Visualization, Yosinski et al., 2015]

Proposed a different form of regularizing the image

$$\arg\max_{I} S_c(I) - \lambda \|I\|_2^2$$

More explicit scheme:

Repeat:

- Update the image x with gradient from some unit of interest
- Blur x a bit
- Take any pixel with small norm to zero (to encourage sparsity)

[Understanding Neural Networks Through Deep Visualization, Yosinski et al., 2015] http://yosinski.com/deepvis

Flamingo

Ground Beetle

Pelican

Indian Cobra

Station Wagon

Billiard Table

Black Swan

Fei-Fei Li & Andrej Karpathy & Justin Johnson

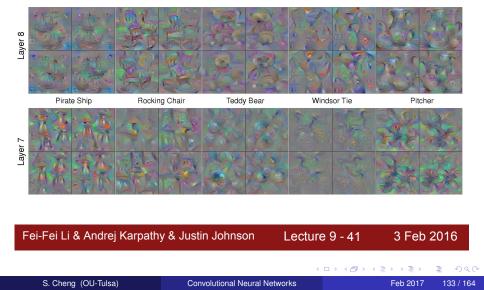
Lecture 9 - 40

3 Feb 2016

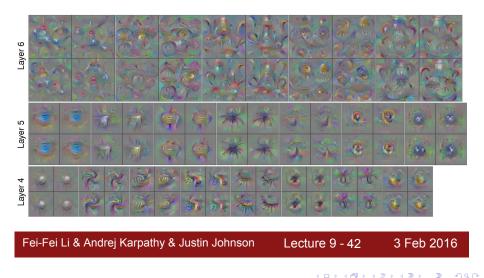
S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 132 / 164



Class model visualization



S. Cheng (OU-Tulsa)

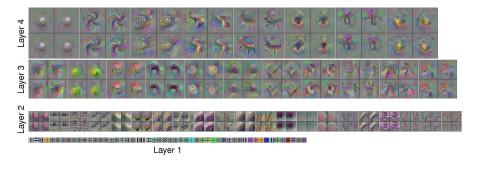
Convolutional Neural Networks

Feb 2017 134 / 164

Visualizing conv-nets

Optimization to Image

Class model visualization



DeepDream https://github.com/google/deepdream

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 50 3 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 136 / 164

イロト イヨト イヨト イヨト

```
def objective L2(dst):
    dst.diff[:] = dst.data
def make step(net, step size=1.5, end='inception 4c/output',
              jitter=32, clip=True, objective=objective L2):
    '''Basic gradient ascent step.'''
    src = net.blobs['data'] # input image is stored in Net's 'data' blob
    dst = net.blobs[end]
    ox. ov = np.random.randint(-jitter. jitter+1. 2)
    src.data[0] = np.roll(np.roll(src.data[0], ox, -1), oy, -2) # apply iitter shift
    net.forward(end=end)
    objective(dst) # specify the optimization objective
    net.backward(start=end)
    q = src.diff[0]
    # apply normalized ascent step to the input image
    src.data[:] += step size/np.abs(q).mean() * q
    src.data[0] = np.roll(np.roll(src.data[0], -ox, -1), -oy, -2) # unshift image
   if clip:
        bias = net.transformer.mean['data']
        src.data[:] = np.clip(src.data, -bias, 255-bias)
```

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 51

3 Feb 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 52 3 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 138 / 164

inception_4c/output

DeepDream modifies the image in a way that "boosts" all activations, at any layer

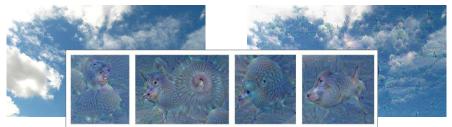
this creates a <u>feedback loop</u>: e.g. any slightly detected dog face will be made more and more dog like over time

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 53

3 Feb 2016

inception_4c/output



DeepDream mountes me image in a way mail boosts an activations, at any layer

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 54

3 Feb 2016

Feb 2017 140 / 164

inception_3b/5x5_reduce

DeepDream modifies the image in a way that "boosts" all activations, at any layer

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 55

3 Feb 2016

Bonus videos

Deep Dream Grocery Trip https://www.youtube.com/watch?v=DgPaCWJL7XI

Deep Dreaming Fear & Loathing in Las Vegas: the Great San Francisco Acid Wave <u>https://www.youtube.com/watch?v=oyxSerkkP4o</u>

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 56

3 Feb 2016

NeuralStyle

[A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, 2015] good implementation by Justin in Torch: https://github.com/jcjohnson/neural-style

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 57

3 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

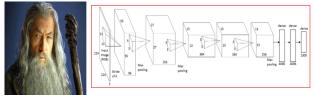
Feb 2017 143 / 164

make your own easily on deepart.io

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 58 3 Feb 2016

Feb 2017 144 / 164

Step 1: Extract **content targets** (ConvNet activations of all layers for the given content image)



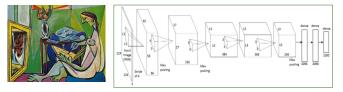
content activations

e.g. at CONV5_1 layer we would have a [14x14x512] array of target activations

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 59

3 Feb 2016

Step 2: Extract **style targets** (Gram matrices of ConvNet activations of all layers for the given style image)



style gram matrices

 $G = V^{\mathrm{T}}V$

e.g. G – at CONV1 layer (with [224x224x64] activations) would give a [64x64] Gram matrix of all pairwise activation covariances (summed across spatial locations)

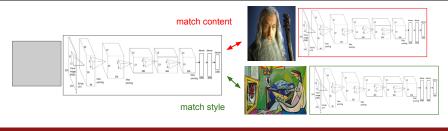
Step 3: Optimize over image to have:

- The content of the content image (activations match content)
- The style of the style image (Gram matrices of activations match style)

$$\mathcal{L}_{total}(\vec{p}, \vec{a}, \vec{x}) = \alpha \mathcal{L}_{content}(\vec{p}, \vec{x}) + \beta \mathcal{L}_{style}(\vec{a}, \vec{x})$$

(+Total Variation regularization (maybe))

< 17 ▶



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 61 3 Feb 2016

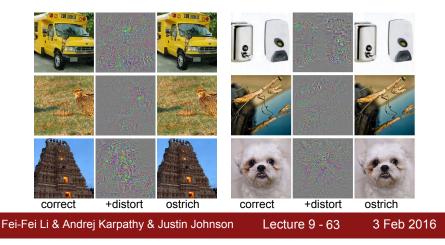
Feb 2017 147 / 164

We can pose an optimization over the input image to maximize any class score. That seems useful.

Question: Can we use this to "fool" ConvNets?

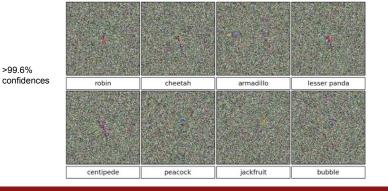
spoiler alert: yeah

[Intriguing properties of neural networks, Szegedy et al., 2013]



Feb 2017 149 / 164

[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images Nguyen, Yosinski, Clune, 2014]



Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 64

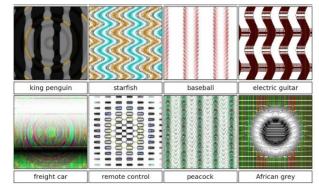
3 Feb 2016

 ►
 ■
 >

 </t

・ロト ・ 四ト ・ ヨト ・ ヨト

[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images Nguyen, Yosinski, Clune, 2014]



>99.6% confidences

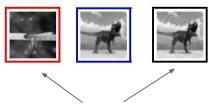
Fei-Fei Li & Andrej Karpathy & Justin Johnson

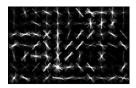
Lecture 9 - 65

3 Feb 2016

・ロト ・ 四ト ・ ヨト ・ ヨト

These kinds of results were around even before ConvNets... [Exploring the Representation Capabilities of the HOG Descriptor, Tatu et al., 2011]

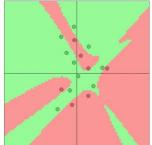




Identical HOG represention

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES [Goodfellow, Shlens & Szegedy, 2014]

"primary cause of neural networks' vulnerability to adversarial perturbation is their **linear nature**"



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 67 3 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 153 / 164

Lets fool a binary linear classifier: (logistic regression)

$$P(y=1 \mid x;w,b) = rac{1}{1+e^{-(w^Tx+b)}} = \sigma(w^Tx+b)$$



Since the probabilities of class 1 and 0 sum to one, the probability for class 0 is $P(y=0 \mid x; w, b) = 1 - P(y=1 \mid x; w, b)$. Hence, an example is classified as a positive example (y = 1) if $\sigma(w^T x + b) > 0.5$, or equivalently if the score $w^T x + b > 0$.

Fei-Fei Li & Andrej Karpathy & Justin JohnsonLecture 9 - 683 Feb 2016

 ▶ < ≣ >
 ≡

 <th</th>

 <th<</th>

 <th

S. Cheng (OU-Tulsa)

х	2	-1	3	-2	2	2	1	-4	5	1	input example
w	-1	-1	1	-1	1	-1	1	1	-1	1	- weights

$$P(y=1 \mid x;w,b) = rac{1}{1+e^{-(w^Tx+b)}} = \sigma(w^Tx+b)$$

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 69 3 Feb 2016

া ব ছ ব ছ ত ৭.০ Feb 2017 155 / 164

х	2	-1	3	-2	2	2	1	-4	5	1	input example
w	-1	-1	1	-1	1	-1	1	1	-1	1	- weights

class 1 score = dot product: = -2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3=> probability of class 1 is $1/(1+e^{-(-(-3))}) = 0.0474$ i.e. the classifier is **95%** certain that this is class 0 example.

$$P(y=1 \mid x;w,b) = rac{1}{1+e^{-(w^Tx+b)}} = \sigma(w^Tx+b)$$

・ロト ・ 同ト ・ ヨト ・ ヨ

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 70 3 Feb 2016

х	2	-1	3	-2	2	2	1	-4	5	1	input example
W	-1	-1	1	-1	1	-1	1	1	-1	1	 weights
adversarial x	?	?	?	?	?	?	?	?	?	?	

class 1 score = dot product:

=> probability of class 1 is $1/(1+e^{(-(-3))}) = 0.0474$

i.e. the classifier is 95% certain that this is class 0 example.

$$P(y=1 \mid x;w,b) = rac{1}{1+e^{-(w^Tx+b)}} = \sigma(w^Tx+b)$$

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 71

A D b 4 A b

3 Feb 2016

х	2	-1	3	-2	2	2	1	-4	5	1	input example
W	-1	-1	1	-1	1	-1	1	1	-1	1	- weights
adversarial x	1.5	-1.5	3.5	-2.5	2.5	1.5	1.5	-3.5	4.5	1.5	

class 1 score before:

-2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3

 $=> probability of class 1 is 1/(1+e^{(-(-3)))} = 0.0474$ -1.5+1.5+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2 $P(y=1 \mid x; w, b) = \frac{1}{1+e^{-(w^{T}x+b)}} = \sigma(w^{T}x+b)$

=> probability of class 1 is now $1/(1+e^{-(-2))}) = 0.88$

i.e. we improved the class 1 probability from 5% to 88%

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 72 3 Feb 2016

< ロ > < 同 > < 回 > < 回 >

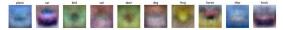
х	2	-1	3	-2	2	2	1	-4	5	1	- input example
W	-1	-1	1	-1	1	-1	1	1	-1	1	- weights
adversarial x	1.5	-1.5	3.5	-2.5	2.5	1.5	1.5	-3.5	4.5	1.5	
class 1 score before: -2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3 \Rightarrow probability of class 1 is $1/(1+e^{(-(-3))}) = 0.0474$ -1.5+1.5+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2 \Rightarrow probability of class 1 is now $1/(1+e^{(-(-2))}) = 0.88$ i.e. we improved the class 1 probability from 5% to 88%											
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 73 3 Feb 201											

S. Cheng (OU-Tulsa)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Blog post: Breaking Linear Classifiers on ImageNet

Recall CIFAR-10 linear classifiers:



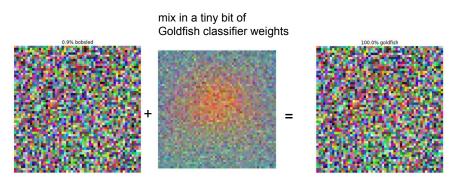
ImageNet classifiers:

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 74 3 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

▶ ৰ ≣ ▶ ≣ ৩৫০ Feb 2017 160 / 164



100% Goldfish



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 76 3 Feb 2016

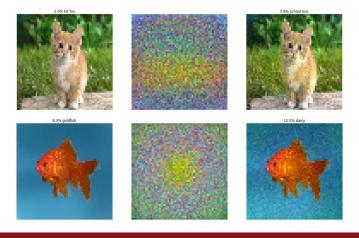
S. Cheng (OU-Tulsa)

Convolutional Neural Networks

Feb 2017 162 / 164

イロト イヨト イヨト イヨト

Fooling conv-net



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 77 3 Feb 2016

S. Cheng (OU-Tulsa)

Convolutional Neural Networks

► < Ē ► Ē ∽ < < Feb 2017 163 / 164

・ロト ・ 四ト ・ ヨト ・ ヨト

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES [Goodfellow, Shlens & Szegedy, 2014]

"primary cause of neural networks' vulnerability to adversarial perturbation is their **linear nature**" (and very high-dimensional, sparsely-populated input spaces)

In particular, this is not a problem with Deep Learning, and has little to do with ConvNets specifically. Same issue would come up with Neural Nets in any other modalities.

- Regression and classification can be combined with CNN to achieve object localization and detection
 - Localization: CNN + regression (e.g., overfeat)
 - Detection: CNN + classification + regression (e.g., R-CNN)
- Some common tricks to speed things up
 - Use 1x1 convolution instead of FC layers
 - Rearrange order of conv layers. Do everything (finding region proposal) with convolution
- Can use optimization and backprop (deconv) to visualize weight
 - Can be used to find salient map as well
 - Probably many other uses for this trick as well. Be imaginative!
- CNN for arts (how about not visual data, how about music?)
- Unfortunately, like any other "linear" based classifier, conv-net with softmax layer at the end can be easily fooled

< ロ > < 同 > < 回 > < 回 >

- Regression and classification can be combined with CNN to achieve object localization and detection
 - Localization: CNN + regression (e.g., overfeat)
 - Detection: CNN + classification + regression (e.g., R-CNN)
- Some common tricks to speed things up
 - Use 1x1 convolution instead of FC layers
 - Rearrange order of conv layers. Do everything (finding region proposal) with convolution
- Can use optimization and backprop (deconv) to visualize weight
 - Can be used to find salient map as well
 - Probably many other uses for this trick as well. Be imaginative!
- CNN for arts (how about not visual data, how about music?)
- Unfortunately, like any other "linear" based classifier, conv-net with softmax layer at the end can be easily fooled

- Regression and classification can be combined with CNN to achieve object localization and detection
 - Localization: CNN + regression (e.g., overfeat)
 - Detection: CNN + classification + regression (e.g., R-CNN)
- Some common tricks to speed things up
 - Use 1x1 convolution instead of FC layers
 - Rearrange order of conv layers. Do everything (finding region proposal) with convolution
- Can use optimization and backprop (deconv) to visualize weight
 - Can be used to find salient map as well
 - Probably many other uses for this trick as well. Be imaginative!
- CNN for arts (how about not visual data, how about music?)
- Unfortunately, like any other "linear" based classifier, conv-net with softmax layer at the end can be easily fooled

- Regression and classification can be combined with CNN to achieve object localization and detection
 - Localization: CNN + regression (e.g., overfeat)
 - Detection: CNN + classification + regression (e.g., R-CNN)
- Some common tricks to speed things up
 - Use 1x1 convolution instead of FC layers
 - Rearrange order of conv layers. Do everything (finding region proposal) with convolution
- Can use optimization and backprop (deconv) to visualize weight
 - Can be used to find salient map as well
 - Probably many other uses for this trick as well. Be imaginative!
- CNN for arts (how about not visual data, how about music?)
- Unfortunately, like any other "linear" based classifier, conv-net with softmax layer at the end can be easily fooled

- Regression and classification can be combined with CNN to achieve object localization and detection
 - Localization: CNN + regression (e.g., overfeat)
 - Detection: CNN + classification + regression (e.g., R-CNN)
- Some common tricks to speed things up
 - Use 1x1 convolution instead of FC layers
 - Rearrange order of conv layers. Do everything (finding region proposal) with convolution
- Can use optimization and backprop (deconv) to visualize weight
 - Can be used to find salient map as well
 - Probably many other uses for this trick as well. Be imaginative!
- CNN for arts (how about not visual data, how about music?)
- Unfortunately, like any other "linear" based classifier, conv-net with softmax layer at the end can be easily fooled

< ロ > < 同 > < 回 > < 回 >