Recurrent Neural Networks
Deep Learning Lecture 6

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2017
(Slides credit to Stanford CS231n and Hinton et al.)

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 1/120

Table of Contents

0 Motivation

@ Basic RNN

© Ls™

e Example: simple character-level language model
e Example: image captioning

e Overview of echo state networks

e Conclusions

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 2/120

Logistics

@ A new pbworks wiki. Please share whatever you found with others!

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 3/120

http://oudeeplearning.pbworks.com

@ A new pbworks wiki. Please share whatever you found with others!
@ HW 2 will be due in one week

@ 3% bonus for the first correct submitter
@ As the winner of HW 1, Naim is out for this round

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 3/120

http://oudeeplearning.pbworks.com

Schooner

@ Tensorflow 1.0 is now available in the OU supercomputer
schooner

@ Request accountat http://www.ou.edu/content/oscer/
support/accounts/new_account.html

@ Use the group name ouecedeeplrn
@ Try “module load TensorFlow” to access it

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 4/120

http://www.ou.edu/content/oscer/support/accounts/new_account.html
http://www.ou.edu/content/oscer/support/accounts/new_account.html

Schooner

@ Tensorflow 1.0 is now available in the OU supercomputer
schooner

@ Request accountat http://www.ou.edu/content/oscer/
support/accounts/new_account.html

@ Use the group name ouecedeeplrn
@ Try “module load TensorFlow” to access it

@ Presenters: please try take advantage of it and let us know if they
work :)

@ For presenters of other packages, please ask the Norman side to
install whatever packages you are presenting as well. They
appear to be rather responsive

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 4/120

http://www.ou.edu/content/oscer/support/accounts/new_account.html
http://www.ou.edu/content/oscer/support/accounts/new_account.html

Schooner

@ Tensorflow 1.0 is now available in the OU supercomputer
schooner

@ Request accountat http://www.ou.edu/content/oscer/
support/accounts/new_account.html

@ Use the group name ouecedeeplrn
@ Try “module load TensorFlow” to access it

@ Presenters: please try take advantage of it and let us know if they
work :)

@ For presenters of other packages, please ask the Norman side to
install whatever packages you are presenting as well. They
appear to be rather responsive

@ Obada will present a small tutorial of how to use schooner after
the break

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 4/120

http://www.ou.edu/content/oscer/support/accounts/new_account.html
http://www.ou.edu/content/oscer/support/accounts/new_account.html

Presentation starting next week!

Date | Student Package

3/3 Aakash Tensorflow
Soubhi Tensorflow
Ahmad A | Theano

310 Tamer Theano
Ahmad M | Keras

3/24 Obada Keras
Muhanad | Caffe

Y31 Sirgj Caffe

4/10 Dong Torch
Varun Lasagne

4/17 | Naim MatConvNet

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 5/120

Review and Overview

@ We looked into couple use cases of CNNs last week

e Recognition and localization
@ Object detection
@ Some use of CNNs for arts

@ Up to now, the network models we have studied are all
memoryless

@ We will discuss a non-memoryless model—recurrent neural
networks today

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 6/120

Motivation Why non-memoryless models

Why non-memoryless models

@ Almost all natural signals are sequential if we take time into
account (we just cannot escape time)

@ Memory is needed to remember the past

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 7/120

Motivation Why non-memoryless models

Why non-memoryless models

@ Almost all natural signals are sequential if we take time into
account (we just cannot escape time)

@ Memory is needed to remember the past

@ They also offer a simplified solution for some problems (for
example, number addition)

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 7/120

Motivation Why non-memoryless models

Why non-memoryless models

@ Almost all natural signals are sequential if we take time into
account (we just cannot escape time)

@ Memory is needed to remember the past
@ They also offer a simplified solution for some problems (for
example, number addition)

@ They can treat some unsupervised problems as supervised
problems

o Consider prediction of a stock: unsupervised? Supervised?

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 7/120

Motivation Why non-memoryless models

[Hinton 2012, week 7]

Memoryless models for sequences

* Autoregressive models Wy
Predict the next term in a) -
sequence from a fixed number of [- ;
previous terms using “delay taps”. | input(t-2) | | input(t-1) | | input(t) |

» Feed-forward neural nets -
These generalize autoregressive hidden
models by using one or more
layers of non-linear hidden units. X - -
e.g. Bengio’s first language | input(t-2) | | input(t-1) | | input(t) |
model.

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 8/120

Motivation Why non-memoryless models

nd memoryless models

@ If we provide some memories (hidden states) to our models, it will
significantly increase the expressive power of the model

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 9/120

Motivation Why non-memoryless models

Beyond memoryless models

@ If we provide some memories (hidden states) to our models, it will
significantly increase the expressive power of the model

@ We could store information for a long period of time in the hidden
states

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 9/120

Motivation Why non-memoryless models

Beyond memoryless models

@ If we provide some memories (hidden states) to our models, it will
significantly increase the expressive power of the model

@ We could store information for a long period of time in the hidden
states

@ Typically we do not know the exact values of the hidden states
(that is why “hidden”). In many cases, the best we could do is just
to infer a probability distribution over the hidden states

@ Let’s look at two classic examples

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 9/120

Motivation Classic non-memoryless models

Linear dynamical systems (Engineers love them!)

time >

@ These are generative models with real
continuous values as hidden states that
cannot be observed directly

e The hidden state has linear dynamics with
Gaussian noise and produces the
observations subjected to linear Gaussian

3 g2l[5e(|[52 noise
== 20| = 2
&l &]e &
= =
Q@ Q@ Q@

[Hinton 2012, Week 7]

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 10/120

Motivation Classic non-memoryless models

Linear dynamical systems (Engineers love them!)

time >
@ These are generative models with real
continuous values as hidden states that
cannot be observed directly
e The hidden state has linear dynamics with

Gaussian noise and produces the
observations subjected to linear Gaussian

jndino

o
=
—_
©
C
=3

s52|(s2||52 noise
I EHEE iving i
=223 ||*3 e There can also be driving inputs

@ To predict next output, we need to infer the
hidden state

[Hinton 2012, Week 7]

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 10/120

Motivation Classic non-memoryless models

Hidden Markov Models (Computer scientists love

them!)

indino
ndino
indjno

I @ Hidden Markov Models (HMMs) have a
discrete one-of-N hidden state. Transitions

between states are stochastic and

Ol O @ controlled by a transition matrix. The output
® O O produced by a state are also stochastic
Ol O] 10
O| @ O
time >

[Hinton 2012, Week 7]

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 11/120

Motivation Classic non-memoryless models

Hidden Markov Models (Computer scientists love

them!)

@ Hidden Markov Models (HMMs) have a
discrete one-of-N hidden state. Transitions

between states are stochastic and

Ol O @ controlled by a transition matrix. The output
® O O produced by a state are also stochastic
= O | O 1 O e We don’t know which state produced a
given output. So the state is "hidden”
O] @ O o We can represent the probability
time > distribution across N states with N numbers

@ To predict next output, we need to infer the
probability distribution over the hidden state

[Hinton 2012, Week 7]

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 11/120

Basic RNN What is RNN

A fundamental limitation of HMMs

@ Consider what happens when a hidden Markov model generates
data
@ At each time step it must select one of its hidden states. So with N
hidden states it can only remember log(N) bits about what it
generated so far

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 12/120

Basic RNN What is RNN

A fundamental limitation of HMMs

@ Consider what happens when a hidden Markov model generates
data
@ At each time step it must select one of its hidden states. So with N
hidden states it can only remember log(N) bits about what it
generated so far
@ Consider the information that the first half of an utterance contains
about the second half:
@ The syntax needs to fit (e.g. number and tense agreement)
e The semantics needs to fit. The intonation needs to fit
e The accent, rate, volume, and vocal tract characteristics must all fit

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 12/120

Basic RNN What is RNN

A fundamental limitation of HMMs

@ Consider what happens when a hidden Markov model generates
data

@ At each time step it must select one of its hidden states. So with N
hidden states it can only remember log(N) bits about what it
generated so far

@ Consider the information that the first half of an utterance contains
about the second half:

@ The syntax needs to fit (e.g. number and tense agreement)
@ The semantics needs to fit. The intonation needs to fit
e The accent, rate, volume, and vocal tract characteristics must all fit

@ All these aspects combined could be 100 bits of information that
the first half of an utterance needs to convey to the second half
2100 states

[Hinton 2012, week 7]

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 12/120

Basic RNN What is RNN

Recurrent neural networks (RNNSs)

Recurrent Neural Network

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 13 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 13/120

Basic RNN What is RNN

Recurrent neural networks (RNNSs)

Recurrent Neural Network

usually want to
predict a vector at
some time steps

=

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 14

S. Cheng (OU-Tulsa) Recurrent Neural Networks

8 Feb 2016

Feb 2017

14/120

Basic RNN What is RNN

Recurrent neural networks (RNNSs)

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

h’t — fW(ht—b wt) RNN

new state / old state input vector at

_ some time step
some function X

with parameters W

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 15 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 15/120

Basic RNN What is RNN

Recurrent neural networks (RNNSs)

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

h’t — fW(ht—b wt) RNN

Notice: the same function and the same set x
of parameters are used at every time step.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 16 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 16/120

Basic RNN What is RNN

Recurrent neural networks (RNNSs)

(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

hy = fW(ht—l, xt)
- *
h, = tanh(Whhht_l -+ Wmhxt)

Y = Why hy

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 17 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 17/120

Basic RNN What is RNN

Recurrent neural networks (RNNSs)

time >
o] [e] [e] @ RNNs are very powerful, because they
sl 8| g combine two properties:
e o Distributed hidden state that allows them to
=1 =] [=] store a lot of information about the past
-8 |85 efficiently
IE S

[Hinton 2012, week 7]

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 18/120

Basic RNN What is RNN

Recurrent neural networks (RNNSs)

time >
1 51 [o] @ RNNs are very powerful, because they
5| 8| |§ combine two properties:
Sal B Gk P et o Distributed hidden state that allows them to
=1 =] [store a lot of information about the past
- % | % s % efficiently
> > > @ Non-linear dynamics that allows them to
I I I update their hidden state in complicated

@ With enough neurons and time, RNNs can
compute anything that can be computed by
your computer

[Hinton 2012, week 7]

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 18/120

Basic RNN What is RNN

RNNSs vs finite state machines

@ An RNN can emulate a finite state machine but it is exponentially
more powerful

e An RNN with N hidden neurons has 2N hidden activities (“states”)

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 19/120

Basic RNN What is RNN

RNNSs vs finite state machines

@ An RNN can emulate a finite state machine but it is exponentially
more powerful

e An RNN with N hidden neurons has 2N hidden activities (“states”)
@ In contrast, the RNN only has O(N?) weights. Some wild analogy,
if our brains are actually like RNNs

e We are structurally quite similar (weights with maximally O(N?)
different)

e But we could behave significantly different based on experience (2V
different experiences)

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 19/120

Basic RNN What is RNN

RNNSs vs finite state machines

@ An RNN can emulate a finite state machine but it is exponentially
more powerful

e An RNN with N hidden neurons has 2N hidden activities (“states”)
@ In contrast, the RNN only has O(N?) weights. Some wild analogy,
if our brains are actually like RNNs

e We are structurally quite similar (weights with maximally O(N?)
different)

e But we could behave significantly different based on experience (2V
different experiences)

@ For a concrete comparison, if we have to remember an additional
thing with information content close to the memory limit of an RNN

o We just need to double the neurons of the RNN

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 19/120

Basic RNN What is RNN

RNNSs vs finite state machines

@ An RNN can emulate a finite state machine but it is exponentially
more powerful
e An RNN with N hidden neurons has 2N hidden activities (“states”)
@ In contrast, the RNN only has O(N?) weights. Some wild analogy,
if our brains are actually like RNNs
e We are structurally quite similar (weights with maximally O(N?)
different)
e But we could behave significantly different based on experience (2V
different experiences)

@ For a concrete comparison, if we have to remember an additional
thing with information content close to the memory limit of an RNN

o We just need to double the neurons of the RNN
e But we need to square the number of states for finite state
machines

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 19/120

Basic RNN What is RNN

Recurrent neural networks (RNNSs)

@ What kinds of behaviour can RNNs exhibit?
e They can oscillate. Good for motor control?

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 20/120

Basic RNN What is RNN

Recurrent neural networks (RNNSs)

@ What kinds of behaviour can RNNs exhibit?

e They can oscillate. Good for motor control?
o They can settle to point attractors. Good for retrieving memories?

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 20/120

Basic RNN What is RNN

Recurrent neural networks (RNNSs)

@ What kinds of behaviour can RNNs exhibit?

e They can oscillate. Good for motor control?
o They can settle to point attractors. Good for retrieving memories?
e They can behave chaotically. Bad for information processing?

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 20/120

Basic RNN What is RNN

Recurrent neural networks (RNNSs)

@ What kinds of behaviour can RNNs exhibit?

e They can oscillate. Good for motor control?

o They can settle to point attractors. Good for retrieving memories?

e They can behave chaotically. Bad for information processing?

@ RNNs could potentially learn to implement lots of small programs
that each capture a nugget of knowledge and run in parallel,
interacting to produce very complicated effects (Hinton 2012)

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 20/120

Basic RNN What is RNN

Recurrent neural networks (RNNSs)

@ What kinds of behaviour can RNNs exhibit?

e They can oscillate. Good for motor control?

o They can settle to point attractors. Good for retrieving memories?

e They can behave chaotically. Bad for information processing?

@ RNNs could potentially learn to implement lots of small programs
that each capture a nugget of knowledge and run in parallel,
interacting to produce very complicated effects (Hinton 2012)

@ But the computational power of RNNs makes them very hard to
train

@ As you will see, with some similar issues that plague deep
feedforward nets

e For many years we could not exploit the computational power of

RNNs despite some heroic efforts (e.g. Tony Robinson’s speech
recognizer)

[Hinton 2012, week 7]

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 20/120

Basic RNN Basic RNN training with BPTT

Expanding RNN as feedforward nets

The equivalence between feedforward nets and recurrent

nets
w1
time=3
W3

time=2
Assume that there is a time
delay of 1 in using each
connection. time=1
The recurrent net is just a
layered net that keeps
reusing the same weights. time=0

[Hinton 2012, week 7]

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 21/120

Basic RNN Basic RNN training with BPTT

Backpropagation with weight constraints

@ ltis easy to modify the
backprop algorithm to
incorporate linear constraints
between the weights

To constrain : w1(1) = w1(2)

We need : Aw1(1) = Awéz)
E E
Compute : 0) and 0 B
ow, ow,
0E 0E
ow " ow®

for both W1(1) and W1(2)

Use :

[Hinton 2012, week 7]

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 22/120

Basic RNN Basic RNN training with BPTT

Backpropagation with weight constraints

@ ltis easy to modify the

To constrain : W1(1) = w1(2) backprop algorithm to
We need - AW1(1) _ Awéz) incorporate Ilnegr constraints
between the weights
0E 0E .
Compute :) and B @ We compute the gradients as
ow, ow, usual, and then modify the
OE OE gradients so that they satisfy
Use: —my+ 5 the constraints.
ow. ow. . :
1 1 e So if the weights started off
for both W1(1) and W1(2) satisfying the constraints,
they will continue to satisfy
[Hinton 2012, week 7] them

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 22/120

Basic RNN Basic RNN training with BPTT

Back-Propagation Through Time (BPTT)

@ In previous slides, we considered the recurrent net as a layered,
feed-forward net with shared weights and then trained the
feed-forward net with weight constraints

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 23/120

Basic RNN Basic RNN training with BPTT

Back-Propagation Through Time (BPTT)

@ In previous slides, we considered the recurrent net as a layered,
feed-forward net with shared weights and then trained the
feed-forward net with weight constraints

@ Equivalently, we can also think of this training algorithm in the time
domain:

e The forward pass builds up a stack of the activities of all the units at
each time step

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 23/120

Basic RNN Basic RNN training with BPTT

Back-Propagation Through Time (BPTT)

@ In previous slides, we considered the recurrent net as a layered,
feed-forward net with shared weights and then trained the
feed-forward net with weight constraints

@ Equivalently, we can also think of this training algorithm in the time
domain:

e The forward pass builds up a stack of the activities of all the units at
each time step

e The backward pass peels activities off the stack to compute the
error derivatives at each time step

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 23/120

Basic RNN Basic RNN training with BPTT

Back-Propagation Through Time (BPTT)

@ In previous slides, we considered the recurrent net as a layered,
feed-forward net with shared weights and then trained the
feed-forward net with weight constraints

@ Equivalently, we can also think of this training algorithm in the time
domain:

e The forward pass builds up a stack of the activities of all the units at
each time step

e The backward pass peels activities off the stack to compute the
error derivatives at each time step

o After the backward pass we add together the derivatives at all the
different times for each weight

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 23/120

Basic RNN Basic RNN training with BPTT

An irritative extra issue

@ We need to specify the initial activity state of all the hidden and
output units

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 24 /120

Basic RNN Basic RNN training with BPTT

An irritative extra issue

@ We need to specify the initial activity state of all the hidden and
output units

@ We could just fix these initial states to have some default value like
0.5

@ But it is better to treat the initial states as learned parameters

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 24 /120

Basic RNN Basic RNN training with BPTT

An irritative extra issue

@ We need to specify the initial activity state of all the hidden and
output units

@ We could just fix these initial states to have some default value like
0.5

@ But it is better to treat the initial states as learned parameters

@ We learn them in the same way as we learn the weights

e Start off with an initial random guess for the initial states

o At the end of each training sequence, backpropagate through time
all the way to the initial states to get the gradient of the error
function with respect to each initial state

o Adjust the initial states by following the negative gradient

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 24 /120

Basic RNN Basic RNN training with BPTT

Providing inputs to recurrent networks

@ We can specify inputs in
several ways:
o Specify the initial states of
all the units

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 25/120

Basic RNN Basic RNN training with BPTT

Providing inputs to recurrent networks

@ We can specify inputs in
several ways:
o Specify the initial states of
all the units
@ Specify the initial states of a
subset of the units

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 25/120

Basic RNN Basic RNN training with BPTT

Providing inputs to recurrent networks

@ We can specify inputs in
several ways:

o Specify the initial states of
all the units

@ Specify the initial states of a
subset of the units

e Specify the states of the
same subset of the units at
every time step

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 25/120

Basic RNN Basic RNN training with BPTT

Teaching recurrent networks to learn signals

@ We can specify targets in
several ways:

O
% @ Specify desired final
Cf b b activities of all the units
A/

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 26 /120

Basic RNN Basic RNN training with BPTT

Teaching recurrent networks to learn signals

@ We can specify targets in
several ways:

O
% @ Specify desired final
Cf b b activities of all the units
A/

o Specify desired activities of

w1 A W3 w4 all units for the last few
steps
@ Good for learning
Wid<W3 % attractors
2

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 26 /120

Basic RNN Basic RNN training with BPTT

Teaching recurrent networks to learn signals

Q /,O\ Q @ We can specify targets in

W1 S W3 W several ways:
| @ Specify desired final
Cf b b activities of all the units
A TN X

o Specify desired activities of
W1 A\W3 w4 all units for the last few
steps
@ Good for learning
w1 X W3 w4 attractors
5 e Specify the desired activity
of a subset of the units.
@ The other units are input

or hidden units.

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 26 /120

Basic RNN Toy example: RNN for addition

Toy problem for RNN: binary addition

@ We can train a feedforward
net to do binary addition, but
11001100 there are obvious regularities
that it cannot capture

il efficiently

| hidden units |

i T

00100110 10100110

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 27 /120

Basic RNN Toy example: RNN for addition

Toy problem for RNN: binary addition

@ We can train a feedforward
net to do binary addition, but
11001100 therg are obvious regularities
that it cannot capture
il efficiently
i . e We must decide in advance
‘ hidden units ‘ the maximum number of

ﬁ ﬁ digits in each number

00100110 10100110

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 27 /120

Basic RNN Toy example: RNN for addition

Toy problem for RNN: binary addition

@ We can train a feedforward
net to do binary addition, but
11001100 there are obvious regularities
that it cannot capture

il efficiently

@ We must decide in advance

‘ hidden units ‘ the maximum number of
digits in each number
ﬁ ﬁ o We expect weights to
process different bits to be
00100110 10100110 the same, but it is tricky to

enforce that

@ As a result, feedforward nets
do not generalize well for the
binary addition task

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 27 /120

Basic RNN Toy example: RNN for addition

We are trying to learn this!

The algorithm for binary addition

no carry
print 1

40

O -

Y 1
no carry ™

print 0 o 1

This is a finite state automaton. It decides what transition to make by looking at the next
column. It prints after making the transition. It moves from right to left over the two input
numbers.

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 28/120

Basic RNN Toy example: RNN for addition

A little bit detail

X:[bS)b7)"'7b1]
y:[087077"';c1]
Z:X+y:[d87d77'” 7d1]

2:[887877"' 7a‘|]

Hidden unit: h; = sigm(W slbr, ™ + Whphi_+)
Output: d; = sigm(W, .h;)

https://github.com/11Sourcell/recurrent_neural_net_demo

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 29/120

https://github.com/llSourcell/recurrent_neural_net_demo

Basic RNN Toy example: RNN for addition

Demo

S. Cheng (OU-Tulsa) Recurrent Neural Networks

Basic RNN Why RNN is difficult to train

Why training RNN is difficulty? The backward pass is

linear

@ There is a big difference between the
forward and backward passes

S. Cheng (OU-Tulsa) Feb2017 31/120

Basic RNN Why RNN is difficult to train

Why training RNN is difficulty? The backward pass is

linear

@ There is a big difference between the
forward and backward passes

@ In the forward pass we use
squashing functions (like the logistic)
to prevent the activity vectors from
exploding

Recurrent Neural Networks Feb 2017 31/120

S. Cheng (OU-Tulsa)

Basic RNN Why RNN is difficult to train

Why training RNN is difficulty? The backward pass is

linear

@ There is a big difference between the
forward and backward passes

@ In the forward pass we use
squashing functions (like the logistic)
to prevent the activity vectors from
exploding

@ The backward pass, is completely
linear. If you double the error
derivatives at the final layer, all the
error derivatives will double

e The forward pass determines the
slope of the linear function used for
backpropagating through each
neuron

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 31/120

Basic RNN Why RNN is difficult to train

The problem of exploding or vanishing gradients

@ What happens to the magnitude of the gradients as we
backpropagate through many layers?

o If the weights are small, the gradients shrink exponentially.
o If the weights are big the gradients grow exponentially

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 32/120

Basic RNN Why RNN is difficult to train

The problem of exploding or vanishing gradients

@ What happens to the magnitude of the gradients as we
backpropagate through many layers?

o If the weights are small, the gradients shrink exponentially.
o If the weights are big the gradients grow exponentially

@ Typical feed-forward neural nets can cope with these exponential
effects when they only have a few hidden layers

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 32/120

Basic RNN Why RNN is difficult to train

The problem of exploding or vanishing gradients

@ What happens to the magnitude of the gradients as we
backpropagate through many layers?
o If the weights are small, the gradients shrink exponentially.
o If the weights are big the gradients grow exponentially
@ Typical feed-forward neural nets can cope with these exponential
effects when they only have a few hidden layers
@ In an RNN trained on long sequences (e.g. 100 time steps) the
gradients can easily explode or vanish
@ We could avoid this by initializing the weights very carefully

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 32/120

Basic RNN Why RNN is difficult to train

The problem of exploding or vanishing gradients

@ What happens to the magnitude of the gradients as we
backpropagate through many layers?

o If the weights are small, the gradients shrink exponentially.
o If the weights are big the gradients grow exponentially
@ Typical feed-forward neural nets can cope with these exponential
effects when they only have a few hidden layers

@ In an RNN trained on long sequences (e.g. 100 time steps) the
gradients can easily explode or vanish
o We could avoid this by initializing the weights very carefully
@ Even with good initial weights, its very hard to detect that the
current target output depends on an input from many time-steps
ago
o So RNNs have difficulty dealing with long-range dependencies

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 32/120

Basic RNN Why RNN is difficult to train

Passing gradient to many steps back

@ Recall
he = tanh(W,\ b1 + W, x)

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 33/120

Basic RNN Why RNN is difficult to train

Passing gradient to many steps back

@ Recall
ht = tanh(W ht 1+ WhXt)

@ To see how W, at the first time step affects the hidden layer at
time t, compute

Ohy oht Oht_1 Oht_» Ohy

oW~ Ol Oh 20 s o)

t

e h

— (Htanh()W,(,;)> 9 11
T=2

(1)’
oW,

7)

where tanh'” = tanh'(WDh, ¢ + W)x,).

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017

33/120

Basic RNN Why RNN is difficult to train

Passing gradient to many steps back

@ Recall
ht = tanh(W ht 1+ WhXt)

@ To see how W, at the first time step affects the hidden layer at
time t, compute

Ohy oht Oht_1 Oht_» Ohy

oW~ Ol Oh 20 s o)

t

e h

— (Htanh()W;,;)) 9 11
T=2

(1)’
oW,

where tanh'” = tanh'(WDh, ¢ + W)x,).

° Hizz tahh(T) W,(J,) can either explode or vanish when t is big

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017

33/120

Basic RNN Why RNN is difficult to train

Understanding gradient flow dynamics

Cute backprop signal video: http://imgur.com/gallery/vaNahKE

H=5 # dimensionality of hidden state

T =50 # number of time steps

Whh = np.random. randn(H,H)

forward pass of an RNN (ignoring inmputs x)
hs = {}

ss = {}

hs[-1] = np.random. randn(H)

for t in xrange(T):
ss[t] = np.dot(whh, hs[t-1])
hs[t] = np.maximum(@, ss[t])

backward pass of the RNN
dhs = {}
dss = {}
dhs[T-1] = np.random.randn(H) # start off the chain with random g
for t in reversed(xrange(T)):
dss[t] = (hs[t] > ©) * dhs[t] # backprop thr
dhs[t-1] = np.dot(Whh.T, dss[t]) # backprop i

gh the nonli

S. Cheng (OU-Tulsa) Recurrent Neural Networks b 2017 34/120

Basic RNN Why RNN is difficult to train

Understanding gradient flow dynamics

5 # dimensionality of hidden state

50 # number of {ime steps .) . . .

= np.random. randn(H,H)l if the largest eigenvalue is > 1, gradient will explode
if the largest eigenvalue is < 1, gradient will vanish

EHT

hh

forward pass of an RNN (ignoring inmputs x)
hs = {}
ss = {}
hs[-1] = np.random. randn(H)
for t in xrange(T):
ss[t] = np.dot(whh, hs[t-1])
hs[t] = np.maximum(@, ss[t])

backward pass of the RNN
dhs = {}
dss = {}
dhs[T-1] = np.random.randn(H) # start off/fhe chain with random g
for t in reversed(xrange(T)):
dss[t] = (hs[t] > ©) * dhs[t] # kprop through the nonlinearity
dhs[t-1] = np.dot(whh.T, dss[t]) % backprop into previous hidden state

lient

o

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 -

S. Cheng (OU-Tulsa) Recurrent Neural Networks

b 2017 35/120

Basic RNN Why RNN is difficult to train

Four effective ways to learn an RNN

@ Long Short Term Memory:
Make the RNN out of little
modules that are designed to
remember values for a long
time

S. Cheng (OU-Tulsa) Recurrent Neural Networks

Feb 2017

36/120

Basic RNN Why RNN is difficult to train

Four effective ways to learn an RNN

@ Long Short Term Memory:
Make the RNN out of little
modules that are designed to
remember values for a long
time

@ Hessian Free Optimization:
Deal with the vanishing
gradients problem by using a
fancy optimizer that can
detect directions with a tiny
gradient but even smaller
curvature

o The HF optimizer (Martens
& Sutskever, 2011) is good
at this

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 36/120

Basic RNN

Why RNN is difficult to train

Four effective ways to learn an RNN

@ Long Short Term Memory:
Make the RNN out of little
modules that are designed to
remember values for a long
time

@ Hessian Free Optimization:
Deal with the vanishing
gradients problem by using a
fancy optimizer that can
detect directions with a tiny
gradient but even smaller
curvature

o The HF optimizer (Martens

& Sutskever, 2011) is good
at this

S. Cheng (OU-Tulsa)

Recurrent Neural Networks

Echo State Networks:
Initialize the input— hidden
and hidden—hidden and
output— hidden connections
very carefully so that the
hidden state has a huge
reservoir of weakly coupled
oscillators which can be
selectively driven by the input
o ESNs only need to learn the
hidden—output connections

Good initialization with
momentum: Initialize like in
Echo State Networks, but
then learn all of the
connections using momentum

Feb 2017

36/120

LSTM

Long Short Term Memory (LSTM)

@ Hochreiter & Schmidhuber
(1997) solved the problem of
getting an RNN to remember
things for a long time (like
hundreds of time steps)

o Keep short-term memory
for a long period of time,
thus the name

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 37/120

LSTM

Long Short Term Memory (LSTM)

@ Hochreiter & Schmidhuber
(1997) solved the problem of
getting an RNN to remember
things for a long time (like
hundreds of time steps)

o Keep short-term memory
for a long period of time,
thus the name

@ They designed a memory cell
using logistic and linear units
with multiplicative interactions

S. Cheng (OU-Tulsa) Recurrent Neural Networks

Feb 2017

37/120

LSTM

Long Short Term Memory (LSTM)

@ Hochreiter & Schmidhuber
(1997) solved the problem of
getting an RNN to remember
things for a long time (like
hundreds of time steps)

o Keep short-term memory
for a long period of time,
thus the name

@ They designed a memory cell
using logistic and linear units
with multiplicative interactions

S. Cheng (OU-Tulsa)

Recurrent Neural Networks

@ Information gets into the cell
whenever its “write” gate is on

@ The information stays in the
cell so long as its “keep” gate
is on

@ Information can be read from
the cell by turning on its
“read” gate

Feb 2017 37/120

LSTM

Implementing a memory cell in a neural network

@ To preserve information for a long
time in the activities of an RNN,
we use a circuit that implements
an analog memory cell

e Alinear unit that has a self-link
with a weight of 1 will maintain
its state

o Information is stored in the cell
by activating its write gate

input from output to o Information is retrieved by

rest of RNN rest of RNN activating the read gate.

e We can backpropagate through
this circuit because logistics are
have nice derivatives

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 38/120

LSTM

Backpropagation through a memory cell

keep

1

@@

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 39/120

g
g
g
g
g
g
g

h! = tanh W* (hg_l)
t hl
t—1

heR" Wt [nx2n]

.
.
|
.
.
.
.

depth

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 67 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 40/120

RNN: FRERRRRRERE
hi:tanhW’<Z§_l) Y
RSN i 5 M A . s A
LSTM Wl [41’).)(271] e e = R R
i s;gm & 2 I . S S M
T _ | sigm W’(ht)
o Slglill h£71 A L
g e fffffff
d=fod +iog depth
Rk = 0 ® tanh(c}) S)) OO

8 Feb 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 10 - 68

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 41/120

LSTM

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from
below (x)

sigmoid | —

I
sigmoid | —— | f
w — i sigm
vector from sigmoid | — | o F| _ [sigm | R
before (h) — o| | sigm Ri
tanh | — | g g tanh
P x d=fod_+iog
4nx2n 4n 4'n h! = 0 ® tanh(c})

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 70 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 42/120

LSTM

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

cell
state ¢

.

sigm

2
s -1
| | sigm | hzt
0 sigm hi 4
g tanh

hl = 0 ® tanh(ch)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 10 - 71 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 43/120

LSTM

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

cell
state ¢

.

Fei-Fei Li & Andrej Karpathy & Justin Johnson

S. Cheng (OU-Tulsa)

Recurrent Neural Networks

sigm

i

F| — | sigm | (h;t—l)
o sigm RY
g

tanh

4~ sod[rTo7]

hl = 0 ® tanh(ch)

1

Lecture 10 - 72

Feb 2017

8 Feb 2016

44 /120

LSTM

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

cell
state ¢

Cc

A (hg—l)
o
g

~ | sigm W hi 1
n ° tanh
h G=f0c_+i0g
L. |hi = 0 ® tanh(el)

—) ®

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 73 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 45/120

LSTM

Long Short Term Memory (LSTM) higher layer, or
[Hochreiter et al., 1997] prediction

cell

state ¢

Cc

_ | sigm W hi_l
| sigm hi 1
n ° g tanh
h G=f0c_+i0g
h! = 0 ® tanh(ct)

© =t

—) ®

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 74 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 46/120

LSTM

LSTM one timestep one timestep

cell
state ¢

+®

®

e
B <
o8

HEE%G

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 75 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 47 /120

LSTM

state — — —

RNN f f f

LSTM O, O, O
(ignoring
forget gates)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 76 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 48/120

LSTM

34-layer plain 34-layer residual

image image

[x7conv,68,72 | 7x7 conv,64,/2__|
v v

pool, /2 pool, /2

[33conves | [33coves |

3x3 conv, 64 33 conv, 64

[33conv,6s | [33conv,64

[3Gcomvea | [33com 0

[mscoves | [33conv, 64

333 conv, 64 3G conv, 64
[13,2] [Geowima |
[3Gconv,128 | [3x3conv,128

[33cnv,128 | [3x3conv, 128 |

2 v
33 conv, 128 33 conv, 128

Recall:
“PlainNets” vs. ResNets

ResNet is to PlainNet what LSTM is to RNN, kind of.

* Plaint net * Residual net

x

weight layer
weight layer

Hx)=F(x)+x @

weight layer

relu

weight layer

relu

F(x)

identity
x

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 77 8 Feb 20

S. Cheng (OU-Tulsa)

Recurrent Neural Networks Feb 2017

49/120

LSTM

LSTM variants and friends [An Empirical Exploration of

Recurrent Network Architectures,
Jozefowicz et al., 2015]

[LSTM: A Search Space Odyssey, TR
Greff et al., 2015] z = sigm(War+5,)
ro= sigm(Weze + Wi +B,)
bt = tanh(Wig(r © by) + tanh(z,) + b) © 2
+ he(1-2)
GRU [Learning phrase MUT2:
representations using rnn encoder- s = sign(Weze + Widhs +5,)
decoder for statistical machine P2 AEREEWRER)
translation, Cho et al. 2014] hest = tanh(Win(r @ he) + Wanze +) © 2
+ ma(l-2)
re = sigm (Weeze + Whiehe—1 +br) .
z = sigm(Wiz, + Wighi1 +b,) : = sign(Wez, + Wi tanh(he) +b,)
hy = tanh(Wyne; + Win(r: © he—1) + by) ro= sign(Wae+ Wiche +5)
= hepr = tanh(Win(r © he) + Woazs + b)) © 2
hy = zzOhy+ (1 —2z)Ohe + ho(l—z)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 81 8 Feb 201

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 50/120

Example: simple character-level language model

Modelling text: Advantages of working with characters

@ The web is composed of character strings

@ Any learning method powerful enough to understand the world by
reading the web ought to find it trivial to learn which strings make
words (this turns out to be true, as we shall see)

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 51/120

Example: simple character-level language model

Modelling text: Advantages of working with characters

@ The web is composed of character strings

@ Any learning method powerful enough to understand the world by
reading the web ought to find it trivial to learn which strings make
words (this turns out to be true, as we shall see)

@ Pre-processing text to get words is a big hassle

o What about morphemes (prefixes, suffixes etc)

What about subtle effects like “sn” words?

What about New York vs new York Minster roof?
What about Finnish

@ ymmartamattémyydellansakaan

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 51/120

Example: simple character-level language model

Character-level
language model

example RNN P

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 18 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 52 /120

Example: simple character-level language model

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training ;
sequence: input layer g
“hello” 0

==

input chars: “e” T

o=00

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 19 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 53/120

Example: simple character-level language model

Character-level
hy = tanh(Wyphi— Wenx

language model by (Whnht-1 + Wanz:)
example
vocabulary: e e | 33— 69 {55 022
[h,e,l,o] 0.9 0.1 03 0.7
e amplo rai T 1 T e
xample training : 5 . .
sequence: input layer g (1] ? (1)
“hello” L O] 0 L O | L O]

= =

input chars: “h”

’

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 20 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 54 /120

Example: simple character-level language model

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Fei-Fei Li & Andrej Karpathy & Justin Johnson

target chars: ‘e’

output layer

hidden layer _d_1

input layer

input chars: “h”

0.5 0.1 0.2
0.3 0.5 -1.5
-1.0 1.9 -0.1
12 -1.1 22
L =
1.0 0.1 (W hn|-03
0.3 -0.5 — 0.9
0.1 -0.3 0.7
T [
0 0 0
1 0 0
0 9 1
0 0 0
“qn o

’

Lecture 10 - 21

' xh

8 Feb 2016

S. Cheng (OU-Tulsa)

Recurrent Neural Networks

Feb 2017

55/120

Example: simple character-level language model

min-char-rnn.py gist: 112 lines of Python

(https://gist.qithub.
com/karpathy/d4dee566867f8291f086)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 22 8 Feb 201

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 56 /120

cter-level language model

min-char-rnn.py gist

Data I/O

Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License

import numpy as np

data = open('input.txt', 'r').read()

chars = list(set(data))

data_size, vocab_size = len(data), len(chars)

print 'data has %d characters, %d unique.' % (data_size, vocab_size)
char_to_ix = { ch:i for i,ch in enumerate(chars) }

ix_to_char = { i:ch for i,ch in enumerate(chars) }

2017

S. Cheng (OU-Tulsa) ecurrent Neural Networ

min-char-rnn.py gist

I~

S. Cheng (OU-Tulsa)

cter-level language model

Initializations

hidden_size = 100 # size o idden la e
seq_length = 25 # number o teps t roll t RNN To
learning_rate = le-1

Wxh = np.random.randn(hidden_size, vocab_size)*0.61 # input to hidden
whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidc t idder
why = np.random.randn(vocab_size, hidden_size)*0.01 # hi t tp
bh = np.zeros((hidden_size, 1)) # hi

by = np.zeros((vocab_size, 1)) # outp ia

target chars: “e”

10
22
outputlayer | ZF
41
"
- 03 1 0.1 -0.3
recall: S o | | O o O
08 0. 03 07
t + Iy T

W_xh
input chars:

“4|eaoco

2017 58/120

ecurrent Neural Networ

acter-level language model

min-char-rnn.py gist

Main loop
np=9, 0
mwxh, mwhh, mWwhy = np.zeros_like(Wxh),
mbh, mby = np.zeros_like(bh), np.zeros_like(by) e

smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iterati
while True:

np. zeros_like(whh), np.zeros_like(why)

if p+seq_length+1 >= len(data) or n =
hprev = np.zeros((hidden_size,1))
ogd £ tarboof dab

inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100 5

sample_ix = sample(hprev, inputs[e], 260)

txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print '----\n %s \n----' % (txt,)

loss, dWxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * ©.601
if n % 100 == 0: print 'iter

, loss: %f'

% (n, smooth_loss)

for param, dparam, mem in zip([Wxh, Whh, why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],

[mxh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam

param +

-learning_rate * dparam / np.sqrt(mem + le-8)

p += seq_length e data
 § iterati

Cheng (OU-Tulsa)

ecurrent Neural Networ

2017 59/120

acter-level language model

min-char-rnn.py gist .
Main loop

n,p=0, 0
mWxh, mWhh, mWhy = np.zeros_Like(wxh),
mbh, mby = np.zeros_like(bh), np.zeros_like(by) # me ariabl
smooth_loss = -np.log(1.6/vocab_size)*seq_length # loss at iterat

while True:

np. zeros_like(whh), np.zeros_like(why)

if p+seq_length+1 >= len(data) or n =
hprev = np.zeros((hidden_size,1))
p=o0 f tart of dat

inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]

targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100 5
sample_ix = sample(hprev, inputs[e], 260)
**_join(ix_to_char[ix] for ix in sample_ix)

txt
' % (txt,)

print '----\n %s \n-

loss, dWxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)

smooth_loss = smooth_loss * ©.999 + loss * ©.601
, loss: %f' % (n, smooth_loss) i

if n % 100 == 0: print 'iter

for param, dparam, mem in zip([Wxh, Whh, why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],
[mxh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam
-learning_rate * dparam / np.sqrt(mem + le-8) # a te

param +

p += seq_length e data poil

2017

ecurrent Neural Networ

Cheng (OU-Tulsa)

acter-level language model

min-char-rnn.py gist

Main loop
np=9, 0
mwxh, mwhh, mWwhy = np.zeros_like(Wxh),
mbh, mby = np.zeros_like(bh), np.zeros_like(by) e

smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iterati
while True:

np. zeros_like(whh), np.zeros_like(why)

if p+seq_length+1 >= len(data) or n =
hprev = np.zeros((hidden_size,1))
ogd £ tarboof dab

inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100 :
sample_ix = sample(hprev, inputs[e], 260)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print '----\n %s \n----' % (txt,)

loss, dWxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * ©.601
if n % 100 == 0: print 'iter

, loss: %f'

% (n, smooth_loss)

for param, dparam, mem in zip([Wxh, Whh, why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],

[mxh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam

param +

-learning_rate * dparam / np.sqrt(mem + le-8)

p += seq_length e data
 § iterati

Cheng (OU-Tulsa)

ecurrent Neural Networ

2017

acter-level language model

min-char-rnn.py gist

Main loop
np=9, 0
mwxh, mwhh, mWwhy = np.zeros_like(Wxh),
mbh, mby = np.zeros_like(bh), np.zeros_like(by) e

smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iterati
while True:

np. zeros_like(whh), np.zeros_like(why)

if p+seq_length+1 >= len(data) or n =
hprev = np.zeros((hidden_size,1))
ogd £ tarboof dab

inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100 5

sample_ix = sample(hprev, inputs[e], 260)

txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print '----\n %s \n----' % (txt,)

loss, dWxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * ©.601
if n % 160 == 0: print 'iter

, loss: %f' % (n, smooth_loss) t

for param, dparam, mem in zip([Wxh, Whh, why, bh, by],

[dwxh, dwhh, dwhy, dbh, dby],

[mxh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam

param +

-learning_rate * dparam / np.sqrt(mem + le-8)

p += seq_length e data
A .

Cheng (OU-Tulsa)

ecurrent Neural Networ

2017 62/120

acter-level language model

min-char-rnn.py gist

Main loop
np=9, 0
mwxh, mwhh, mWwhy = np.zeros_like(Wxh),
mbh, mby = np.zeros_like(bh), np.zeros_like(by) e

smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iterati
while True:

np. zeros_like(whh), np.zeros_like(why)

if p+seq_length+1 >= len(data) or n =
hprev = np.zeros((hidden_size,1))
ogd £ tarboof dab

inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100 5

sample_ix = sample(hprev, inputs[e], 260)

txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print '----\n %s \n----' % (txt,)

loss, dWxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * ©.601
if n % 100 == 0: print 'iter

, loss: %f'

% (n, smooth_loss)

for param, dparam, mem in zip([Wxh, Whh, why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],

[meixh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam

param +

-learning_rate * dparam / np.sqrt(mem + le-8) # a t

p += seq_length e data
 § iterati

Cheng (OU-Tulsa)

ecurrent Neural Networ

2017 63/120

Example: simple

min-char-rnn.py gist

S. Cheng (O

Loss function
- forward pass (compute loss)

backward pass (compute param gradient)

der n(inputs, targets, hprev):

inputs, targets are both list of integers
hprev 1s Hxl array of initial hidden state

returns the loss, gradients on model parameters, and last hidden state

xs, hs, ys, ps = O O (O O
ns[-1] = np.copy(hprev)

loss = o

for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size, 1)
xs[c] (inputs[t]]
NS{t] = np.tann(np.dot (4ih, XS[E1) + np.dot (A, Rs[t-11) + bn)
ys[t] = np.dot(why, hs[t]) + by 11z 114
RS el se nTer ()
loss += -np.log(ps[t] [cargets[c],0 c: tropy 1

ﬂwxh, awhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
don, dby = np.zeros_like(bh), np.zeros_Like(by
dnnext = np.zeros_ 11xe(ns[t1,
for ¢ in reve ange(len(inputs))):
dy = np cnp)(ps[(]l
ay[eargets[e1] -= 1 #
p.dot(dy, hs[c].T)

dh = np.dot(Why.T, dy) + dhnext it
dhraw = (1 - hs[t] * hs[t]) * dh t
dhraw

np.dot(dhraw, xs[t].T)

dhnext = np.dot(whh.T,

ecurrent Neural Networ

Tor dparam in [dWxh, dwhh, duhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam)
return loss, dwxh, duhh, dWhy, dbh, dby, hs[len(inputs)-1]

2017 64/120

cter-level language

min-char-rnn.py gist def lossFun(inputs, targets, hprev):

inputs, targets are both list of integers.

hprev is Hx1 array of initial hidden state

returns the loss, gradients on model parameters, and last hidden state
xs, hs, ys, ps = {3}, 3, 3, 3

hs[-1] = np.copy(hprev)

/ loss = ©
for t in xrange(len(inputs)):

xs[t] = np.zeros((vocab_size, 1)) #
xs[t][inputs[t]] =

hs[t] = np.tanh(np.dot(Wxh, Xxs[t]) + np. dot(wnh hs[t-1]) + bh) idd
p.dot(why, hs[t]) + by e

|ysm S t e
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # ti t
loss += -np.log(ps[t][targets[t],e])

/
ht = tanh(Whhht,1 —+ thxt)
Yt = Whyht
Softmax classifier

2017 65/120

S. Cheng (O current Neural Networ

min-char-rnn.py gist

S. Cheng (OU-Tulsa)

dwhh += np.dot(dhraw, hs[t-1].T)
dhnext = np.dot(whh.T, dhraw)

cter-level language model

dwxh, dwhh, dwhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[@])
for t in reversed(xrange(len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1 of
dwhy += np.dot(dy, hs[t].T)
dby += dy
dh = np.dot(Why.T, dy) + dhnext # ba i
dhraw = (1 - hs[t] * hs[t]) * dh # backp through tan linearit
dbh += dhraw
dwxh += np.dot(dhraw, xs[t].T)

for dparam in [dwxh, dwhh, dwhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam) # clip t itig loding gradi
return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(lnputs) 1]

target chars: ¢ T
0
22

ouputiayer | 22

03

recall: w8 J

input layer

input chars:

2017 66 /120

ecurrent Neural Networ

odel

acter-level languag

min-char-rnn.py gist

def sample(h, seed_ix, n):
wun
sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step
X = np.zeros((vocab_size, 1))
x[seed_ix] = 1
ixes = []
for t in xrange(n):
h = np.tanh(np.dot(wxh, x) + np.dot(whh, h) + bh)
y = np.dot(why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
ix = np.random.choice(range(vocab_size), p=p.ravel())

X = np.zeros((vocab_size, 1))
XEix] = 1
ixes.append(ix)

return ixes

2017

S. Cheng (OU-Tulsa) Recurrent Neural Networks

Example: simple character-level language model

(@)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 34 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 68 /120

Example: simple character-level language model

Demo

S. Cheng (OU-Tulsa) Recurrent Neural Networks b 2017 69/120

Example: simple character-level language model Result

Sonnet 116 - Let me not ...

by William Shakespeare

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O no! it is an ever-fixed mark
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
| never writ, nor no man ever loved.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 35 8 Feb 201

2017

S. Cheng (OU-Tulsa) Recurrent Neural Networks

cter-level language model Result

Example:

t f' t- tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
atfirst: plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

J train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.
J train more
"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

8 Feb 2

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lect 0- 36

2017 71/120

S. Cheng (OU-Tulsa) Recurrent Neural Network

Example: simple

PANDARUS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'1l drink it.

Fei-Fei Li & Andrej Karpathy & Justin Johnson

del Result

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
shall be against your honour.

Lecture 10 - 37 8 Feb 20

S. Cheng (O

ecurrent Neural Networ

odel Result

acter-level languag

open source textbook on algebraic geometry

2 The Stacks Project
home about tagsexplained taglookup browse search bibli y recentcomments blog add slogans
Browse chapters L5
1. Preliminaries
Part Chapter online TeXsource view pdf 2. Schemes
Preliminaries 3. Topics in Scheme Theory
1. Introduction online tex() pdf > 4. Algebraic Spaces
= 5. Topics in Geometry
2. Conventions anl!ne tex() pdf > 6. Deformation Theol
3. SetTheory online tex) pdf » 7. Algebraic Stacks
4. Categories online tex() pdf > 8. Miscellany
5. Topology online tex() pdf > Statistics
6. Sheaves on Spaces online tex() pdf >
7. Sites and Sheaves online tex() pdf > The Stacks project now consists of
8. Stacks online tex() pdf > o 455910 lines of code
9. Fields online tex() pdf > o 14221 tags (56 inactive tags)
10. Commutative Algebra online tex() pdf > o 2366 sections

Latex source

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 38 8 Feb 2016

2017

S. Cheng (OU-Tulsa) Recurrent Neural Networks

acter-level language model

Result

For @, where L,,, = 0, hence we can find a closed subset H in H and
any sets on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S'=Spec(R) = U xx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points

sm,p,,, and U — U is the fibre category of $ in U in Section, 72 and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) = S is smooth or an

U= JUixs, Ui
which has a nonzero morphism we may assume that f;
S. We claim that Ox . is a scheme where z,2”, 5" € § o = O 18

separated. By Algebra, Lemma ?? we can define a map of complexes GLs:(2'/S")
and we win. o

is of finite presentation over
such that O

To s study we s
i>0a

g of A", and T; is an object of Fys for
of Ox-modules on C as a F-module.

-1
* @spectty 050 = i51F)
is a unique morphism of algebraic stacks. Note that

Arrow Sch/S)Jon ;. (Sch/S) gpps

and
V =T(5.0) —> (U, Spec(A))

is an open subset of X. Thus U is affine. This is a continuous map of X is the

inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. o

g follows from the less of E:

The result for prove any open coveri ample ?7. It may

. by Xopaces.étate which gives an open subspace of X and T equal to Szar,
sce Descent, Lemma 77, Namely, by Lemma 77 we sec that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X =1im|X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex
Set(A) = T(X,Ox.0,)
When in this case of to show that @ — Cz/x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition ??
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem
(1) f is locally of finite type. Since S = Spec(R) and ¥ = Spec(R).

is form all sheaves of sheaves on X. But given a scheme U and a
ale morphism U — X. Let UNU =[], Ui be the scheme X over
S at the schemes X; —

The following lemma surjective restrocomposes of th
Fx...0

Lemma 0.2. Let X be a locally Noetherian scheme over S. E = Fys. Set T =
i CT,,. Since I* C I are nonzero over io < p is a subset of Joo © 2 \, works.

mplies that Fy, = Fr, =

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (7?). On the
other hand, by Lemma ?? we see that
D(0x:) = 0x(D)

where K is an F-algebra where 8,1 is a scheme over S. o

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Cheng (OU-Tulsa)

ecurrent Neural Networ

Lecture 10 - 39

2017

8 Feb 2016

74/120

del Result

Example: simple

Proof. Omitted. u} This since F € F and z € G the diagra
| s—
| Lemma 0.1. Let C be a set of the construction.
| Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We i
have to show that §——=0x
Oo, =0x(£)
3 gor,
Proof. ebraic space with the compasition of sheaves F on X¢are we
have
| Ox(F) = {morphy xoy (G.F)}
where G defines an isomorphism F — F of O-modules. o

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ?2. o Spec(Ky) Morse d(Oen6)
|

Sisa flat and F and G is a finite

is a limit Gisal
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open| |iype f.. This i of fuite type ¢

| covering. LetU C X be a canonical and locally of finite type. Let X be a scheme. o
| Let X be a scheme which is equal to the formal compler. .

ype and assu

composition of G is a regular sequence

. s a sheaf of rings.

o

The following to the construction of the lemma follows -

Proof. We
algebraic spac
cohomology of X

we see that pec(R) and F is a finite type repre
he property F is a finite morphism of algebraic stacks. Then the
J. o

Let X be a scheme. Let X be a scheme covering. Let

is an open ourhood of U

DX PE IV Ve ey Proof. This is clear that G is a finite presentation, see Lemmas ?2.
A reduced above we conclude that U is an open covering of C. The functor F is a

be a morphism of algebraic spaces over S and Y.
- “field

Oxe = Tz U(OXuuie) — O5,0x,(O
an isomorphism of covering of Ox, . If F is the unique elem

)

c space. Let F be a
nt of F such that X

Proof. Let X be a nonzero scheme of X. Let X be an algebra
herent sheaf of O . The following are equivalent
(1) F is an algebraic space over S.
(2) If X is an affine open covering.

of Proposition 7?2

id we can filtered set of
algebra with F are opens of finite type over S.

scheme theoretic i

points.
Consider a common structure on X and X the functor Ox(U) which is locally of e T T i
| finite type. o sequence of F is a sin

sum Ox, is a closed immersion, se Lemma

jar morphism.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 40 8 Feb 20

2017

ecurrent Neural Networ

S. Cheng (O

cter-level language model Result

O This repasiiory Explore Gist Blog Help Slierpaty +. F & B

torvalds / linux @Watch- 3711 Swr 23058 YFork 9,141

Linux kemel source tree

<«
520,007 commits 1 branch 420 reloases 5,039 contributors Code
- o ; — 74
AW P branch: master- | linux / + i Pull requests

Merge branch ‘drm-fixes' of gitipsople freedeskiop orgi~aitied/inux ==

M rorvaids

it 4b17869274 =

= firmware e

=

= include

2 day ag (2 Clone in Desktop

B init "

<> Download ZIP

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 4 8 Feb 2016

S. Cheng (OU-Tulsa)

ecurrent Neural Networ

2017

cter-level language model Result

static void do_command(struct seq file *m, void *v)
{

int column = 32 << (cmd[2] & 0x80); Generated

if (state)

cmd = (int)(int_state " (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
C code

seq = 1;
for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD_UNCCA) +
((count & 0x00000000fff£f£ff8) & O0x000000f) << 8;
if (count == 0)
sub(pid, ppe_md.kexec_handle, 0x20000000);
pipe_set _bytes(i, 0);
}
subsystem info = &of changes[PAGE_SIZE];
rek_controls(offset, idx, &soffset);
jeliberately put it device
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)
seq puts(s, “policy ");

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 42 8 Feb 2016

2017 77/120

S. Cheng (OU-Tulsa) ecurrent Neural Networ

Example: simple character-level language model Result

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 43 8 Feb 201

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 78/120

Example: simple character-level language model Result

static void stat PC_SEC _ read mostly offsetof(struct seq_argsqueue, \
pC>[11);

static void
os_prefix(unsigned long sys)
{
PUT_PARAM RAID(2, sel) = get_state state();
set_pid sum((unsigned long)state, current state str(),
(unsigned long)-1->1r full; low;

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lectu - 44

S. Cheng (OU-Tulsa) Recurrent Neural Networks

2017 79/120

Example: simple character-level language model Multiplicative models

Ideal tree model

An ideal model considers all previous input characters and the current
character

There are
exponentially many
nodes in the tree of
all character strings
of length N.

In an RNN, each
node is a hidden
state vector. The
next character
must transform this
to a new node.

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 80/120

Example: simple character-level language model Multiplicative models

Ideal tree model

An ideal model considers all previous input characters and the current
character

There are
exponentially many
nodes in the tree of
all character strings
of length N.

In an RNN, each
node is a hidden
state vector. The
next character
must transform this
to a new node.

@ The next hidden representation needs to depend on the
conjunction of the current character and the current hidden
representation

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 80/120

Example: simple character-level language model Multiplicative models

Ideal tree model

An ideal model considers all previous input characters and the current
character

There are
exponentially many
nodes in the tree of
all character strings
of length N.

In an RNN, each
node is a hidden
state vector. The
next character
must transform this
to a new node.

@ The next hidden representation needs to depend on the
conjunction of the current character and the current hidden
representation

o We expect under each hidden state vector and each current
character, we should have a different transition matrix. The earlier
model does not quite catch that

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 80/120

Example: simple character-level language model Multiplicative models

Multiplicative connections

@ Instead of using the inputs to the recurrent net to provide additive
extra input to the hidden units, we could use the current input
character to choose the whole hidden-to-hidden weight matrix

e But this requires 86x1500x1500 parameters
e This could make the net overfit

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 81/120

Example: simple character-level language model Multiplicative models

Multiplicative connections

@ Instead of using the inputs to the recurrent net to provide additive
extra input to the hidden units, we could use the current input
character to choose the whole hidden-to-hidden weight matrix

e But this requires 86x1500x1500 parameters
e This could make the net overfit

@ Can we achieve the same kind of multiplicative interaction using
fewer parameters?

e We want a different transition matrix for each of the 86 characters,
but we want these 86 character-specific weight matrices to share
parameters (the characters 9 and 8 should have similar matrices)

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 81/120

Example: simple character-level language model Multiplicative models

Using factors to implement multiplicative interactions

Vector input to group c:

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 82/120

Example: simple character-level language model Multiplicative models

Using factors to implement multiplicative interactions

Vector input to group c:

cc= (b'wy) (a'u) v
~—— ~——
Scalar Scalar

input from input from
group b group a

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 82/120

Example: simple character-level language model Multiplicative models

Using factors to implement multiplicative interactions

Vector input to group c:

cc= (b'wy) (a'u) v
~—— ~——
Scalar Scalar

input from input from
group b group a

@ We can get groups a and b to interact multiplicatively by using
“factors”
e Each factor first computes a weighted sum for each of its input
groups
e Then it sends the product of the weighted sums to its output group

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 82/120

Example: simple character-level language model Multiplicative models

Using factors to implement a set of basis matrices

Group a

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 83/120

Example: simple character-level language model Multiplicative models

Using factors to implement a set of basis matrices

Group a

Group b

@ We can think about factors
another way:

e Each factor defines a rank 1
transition matrix fromato c

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017

83/120

Example: simple character-level language model Multiplicative models

Using factors to implement a set of basis matrices

© “r
o —(b"wy)(a" ur)vs
2 =(b"wy)vi(uf)
= (b"wy) (viul) a
S—— SN——

4 i N scalar coeffi- outer prod-

Group b cient uct transi-

tion matrix

@ We can think about factors with rank 1

another way:

e Each factor defines a rank 1
transition matrix fromato c

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 83/120

Example: simple character-level language model Multiplicative models

Using factors to implement a set of basis matrices

© cr
o —(b"wy)(a" ur)vs
8 =(b"wy)vs(u/ a)

= (b'w) (vuf) a
—— ——

scalar coeffi- outer prod-

Group b cient uct transi-
tion matrix
@ We can think about factors with rank 1

another way:
o Each factor defines a rank 1

transition matrix fromato c
c= <Z(bTWf)(VfoT)> a
f

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 83/120

Example: simple character-level language model Multiplicative models

Using 3-way factors to allow a character to create a whole
transition matrix

1500 1500
hidden hidden
units

Each factor, f, defines a O ‘,3 O

rank one matrix , u,v, character: 1-of-86

predicted distribution
for next character

Each character, k, determines a gain ka for each of these matrices.

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 84 /120

Example: simple character-level language model Multiplicative models

Some note on optimization

@ To optimize efficiently, they use Hessian-free (HF) method to
minimize the cost

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 85/120

Example: simple character-level language model Multiplicative models

Some note on optimization

@ To optimize efficiently, they use Hessian-free (HF) method to
minimize the cost

@ HF is a second order method similar to Newton methods and
LBFGS that take advantage of the curvature (Hessian) matrix

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 85/120

Example: simple character-level language model Multiplicative models

Some note on optimization

@ To optimize efficiently, they use Hessian-free (HF) method to
minimize the cost

@ HF is a second order method similar to Newton methods and
LBFGS that take advantage of the curvature (Hessian) matrix

@ In the HF method, they make an approximation to the curvature
matrix and then, assuming that approximation is correct, they
minimize the error using an efficient technique called conjugate
gradient. Then they make another approximation to the curvature
matrix and minimize again

e For RNNs, it is important to add a penalty to avoid changing any of
the hidden activities too much

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 85/120

Example: simple character-level language model Multiplicative models

Conjugate gradient

@ There is an alternative to going to the minimum in one step by
multiplying by the inverse of the curvature matrix

@ Use a sequence of steps each of which finds the minimum along
one direction

@ Make sure that each new direction is “conjugate” to the previous
directions so you do not mess up the minimization you already
did.

@ “conjugate” means that as you go in the new direction, you do not
change the gradients in the previous directions

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 86/120

Example: simple character-level language model Multiplicative models

Experiment setup

@ Start the model with its default hidden state.

@ Give it a “burn-in” sequence of characters and let it update its
hidden state after each character.

@ Then look at the probability distribution it predicts for the next
character.

@ Pick a character randomly from that distribution and tell the net
that this was the character that actually occurred.

e i.e. tell it that its guess was correct, whatever it guessed.
@ Continue to let it pick characters until bored.
@ Look at the character strings it produces to see what it “knows”.

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 87/120

Example: simple character-level language model Multiplicative models

Result

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters’ sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 88/120

Example: simple character-level language model Multiplicative models

Result: some completions produced by the model

@ Sheila thrunges (most frequent)
@ People thrunge (most frequent next character is space)
°

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 89/120

Example: simple character-level language model Multiplicative models

Result: some completions produced by the model

@ Sheila thrunges (most frequent)

@ People thrunge (most frequent next character is space)
@ Shiela, Thrungelini del Rey (first try)

°

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 89/120

Example: simple character-level language model Multiplicative models

Result: some completions produced by the model

@ Sheila thrunges (most frequent)

@ People thrunge (most frequent next character is space)
@ Shiela, Thrungelini del Rey (first try)

@ The meaning of life is literary recognition. (6 th try)

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 89/120

Example: simple character-level language model Multiplicative models

Result: some completions produced by the model

@ Sheila thrunges (most frequent)

@ People thrunge (most frequent next character is space)
@ Shiela, Thrungelini del Rey (first try)

@ The meaning of life is literary recognition. (6 th try)

@ The meaning of life is the tradition of the ancient human
reproduction: it is less favorable to the good boy for when to
remove her bigger. (one of the first 10 tries for a model trained for
longer)

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 89/120

Example: simple character-level language model Multiplicative models

Result: what does it know?

@ It knows a huge number of words and a lot about proper names,
dates, and numbers

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 90/120

Example: simple character-level language model Multiplicative models

Result: what does it know?

@ It knows a huge number of words and a lot about proper names,
dates, and numbers
@ lItis good at balancing quotes and brackets
@ It can count brackets: none, one, many

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 90 /120

Example: simple character-level language model Multiplicative models

Result: what does it know?

@ It knows a huge number of words and a lot about proper names,
dates, and numbers
@ lItis good at balancing quotes and brackets
@ It can count brackets: none, one, many

@ It knows a lot about syntax but its very hard to pin down exactly
what grammar it actually “knows”

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 90/120

Example: simple character-level language model Multiplicative models

Result: what does it know?

@ It knows a huge number of words and a lot about proper names,
dates, and numbers
@ lItis good at balancing quotes and brackets
@ It can count brackets: none, one, many
@ It knows a lot about syntax but its very hard to pin down exactly
what grammar it actually “knows”
@ It knows a lot of weak semantic associations

e E.g. it knows Plato is associated with Wittgenstein and cabbage is
associated with vegetable

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 90/120

Example: simple character-level language model Multiplicative models

RNNs for predicting the next word

@ Tomas Mikolov and his collaborators have recently trained quite
large RNNs on quite large training sets using backprop through
time (BPTT)

o They do better than feed-forward neural nets
o They do better than the best other models
e They do even better when averaged with other models
@ RNNSs require much less training data to reach the same level of
performance as other models

@ RNNs improve faster than other methods as the dataset gets
bigger

e This is going to make them very hard to beat

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 91/120

Example: image captioning

Image Captioning

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 51 8 Feb 201

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 92/120

Example: image captioning

Recurrent Neural Network

nstraw" "-hat” END

START “straw” “hat”

Convolutional Neural Network

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 52 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 93/120

S. Cheng (OU-Tulsa) Recurrent Neural Networks b 2017 94 /120

Example: image capt

test image

maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool
FC-4096
FC-4096
FC-1000
softmax

2017 95/120

S. Cheng (OU-Tulsa) Recurrent Neural Networks

Example: image capt

test image

maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

Ff 0
sofiyax

2017 96 /120

S. Cheng (OU-Tulsa) Recurrent Neural Networks

Example: image capt

test image

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096 ©

<STA
FC-4096 Sr

<START>

S. Cheng (OU-Tulsa) Recurrent Neural Networks 2017 97 /120

Example: image captioning

test image

maxpool before:
conv-512 h = tanh(WXh * X + Whh * h)

now:
maxpool h = tanh(Wxh * x + Whh * h + Wih * v)

X0

<STA
FC-4096 Sr

<START>

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 98 /120

maxpool

conv-128
conv-128
maxpool
conv-256
conv-256

S. Cheng (OU-Tulsa)

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096 ©
FC-4096 ST

RT>

<START>

sample!

Recurrent Neural Networks

test image

b 2017

99/120

Example: image capt

test image

maxpool

conv-128
conv-128
maxpool
conv-256
conv-256

maxpool

conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

<START>

S. Cheng (OU-Tulsa) Recurrent Neural Networks 2017 100/120

Example: image capt

maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

S. Cheng (OU-Tulsa)

test image

9 sample!

X0
<STA straw hat
RT>

<START>

Recurrent Neural Networks

/120

Example: image capt

test image

maxpool

conv-128
conv-128
maxpool
conv-256
conv-256

maxpool

conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

<START>

S. Cheng (OU-Tulsa) Recurrent Neural Networks

maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

S. Cheng (OU-Tulsa)

X0
<STA
RT>

<START>

yz

straw hat

Recurrent Neural Networks

test image

sample
<END> token
=> finish.

2017

03/120

Example: image captioning

Image Sentence Datasets

a man riding a bike on a dirt path through a forest.
bicyclist raises his fist as he rides on desert dirt frail.

this dirt bike rider is smiling and raising his fist in triumph. .
a man riding a bicycle while pumping his fist in the air. M I C rOS Oft C O C O

a mountain biker pumps his fist in celebration.
GBS e chc : %

[Tsung-Yi Lin et al. 2014]
MSCOC0.0rg

currently:
~120K images
~5 sentences each

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 104 /120

Example: image captioning Result

e

P 7 D > 7 ps_
'man in black shirt is playing ‘construction worker in orange "two young girls are playing with boy is doing backflip on
guitar.” safety vest is working on road.” lego toy." wakeboard

S. Cheng (OU-Tulsa) Recurrent Neural Networks

mage captioning Result

e

2 _ NN 1 £ =
'man in black shirt is playing ‘construction worker in orange "two young girls are playing with boy is doing backflip on
guitar.” safety vest is working on road.” lego toy." wakeboard

" . femm——————)
"a young boy is holding a "a cat is sitting on a couchwitha ~ "a woman holding a teddy bearin "a horse is standing in the middle
baseball bat." remote control.” front of a mirror.” of a road.

S. Cheng (OU-Tulsa) Recurrent Neural Network

Overview of echo state networks

More examples

S. Cheng (OU-Tulsa) Recurrent Neural Networks eb 2017 07 /120

Overview of echo state networks

The key idea of echo state networks (perceptrons again?)

. * The equivalent idea for RNNs is
* Avery simple way to learn a to fix the input->hidden
feedforward network is to make connections and the

the early layers random and fixed. hidden->hidden connections at
» Then we just learn the last layer random values and only learn the

which is a linear model that hidden->output connections.

uses the transformed — The learning is then very

inputs to predict the simple (assuming linear

target outputs. output units).

— Abig random Q — Its important to set the

expansion of random connections very

tcgeniﬂgllg vector A carefully so the RNN does not

explode or die.

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 108 /120

Overview of echo state networks

How to set random connections in echo state networks

@ Set the hidden—hidden
weights so that the length of
the activity vector stays about
the same after each iteration

e This allows the input to
echo around the network for
a long time

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 109/120

Overview of echo state networks

How to set random connections in echo state networks

@ Set the hidden—hidden
weights so that the length of
the activity vector stays about
the same after each iteration

e This allows the input to
echo around the network for
a long time

@ Use sparse connectivity (i.e.
set most of the weights to
zero)

e This creates lots of loosely
coupled oscillators

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 109/120

Overview of echo state networks

How to set random connections in echo state networks

@ Set the hidden—hidden
weights so that the length of
the activity vector stays about
the same after each iteration

e This allows the input to
echo around the network for
a long time

@ Use sparse connectivity (i.e.
set most of the weights to
zero)

e This creates lots of loosely
coupled oscillators

S. Cheng (OU-Tulsa)

Recurrent Neural Networks

@ Choose the scale of the
input—hidden connections
very carefully

e They need to drive the
loosely coupled oscillators
without wiping out the
information from the past
that they already contain

@ The learning is so fast that we
can try many different scales
for the weights and
sparsenesses

e This is often necessary

Feb 2017

109/120

Overview of echo state networks
A simple example of an echo state network

INPUT SEQUENCE A real-valued time-varying value that specifies
the frequency of a sine wave

TARGET OUTPUT SEQUENCE A sine wave with the currently
specified frequency

LEARNING METHOD Fit a linear model that takes the states of the
hidden units as input and produces a single scalar output

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 110/120

Overview of echo state networks

Example from 0
Scholarpedia N

174

1716 /7
0 100 200
input signal

output (or
teacher)

dynamical i signal
reservoir

Feb 2017 111/120

S. Cheng (OU-Tulsa) Recurrent Neural Networks

The target and predicted outputs after learning

174
1716
0 100 200

input signal 0 100 200

Overview of echo state networks

Beyond echo state networks

@ Good aspects of ESNs Echo
state networks can be trained
very fast because they just fit a
linear model

@ They demonstrate that it is
very important to initialize
weights sensibly

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 113/120

Overview of echo state networks

Beyond echo state networks

@ Good aspects of ESNs Echo
state networks can be trained
very fast because they just fit a
linear model

@ They demonstrate that it is
very important to initialize
weights sensibly

@ They can do impressive
modeling of one-dimensional
time-series

@ but they cannot compete
seriously for
high-dimensional data like
pre-processed speech

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 113/120

Overview of echo state networks

Beyond echo state networks

@ Good aspects of ESNs Echo
state networks can be trained ¢ Bad aspects of ESNs They
very fast because they just fit a need many more hidden units

linear model for a given task than an RNN
@ They demonstrate that it is that learns the
very important to initialize hidden—hidden weights
weights sensibly @ llya Sutskever (2012) has
@ They can do impressive shown that if the weights are
modeling of one-dimensional initialized using the ESN
time-series methods, RNNs can be
o but they cannot compete trained very effectively
seriously for @ He uses rmsprop with
high-dimensional data like momentum

pre-processed speech

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 113/120

Conclusions
Conclusions

@ RNNs allow a lot of flexibility in architecture design and have many
applications

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 114/120

Conclusions

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many

TR TINTT
0 55y Dous0 Bt
Job UoO HOL

—
||
|
||
—
e

t t

\ Vanilla Neural Networks

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 6 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 115/120

Conclusions

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one

I
i oot

g 0 HOE

\ e.g. Image Captioning

4
||

a
||

many to many

||

o

[HH A

||

ifi

image -> sequence of words

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 10 -

many to many

||
—
e

8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks

Feb 2017 116/120

Conclusions

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
] 000 00O OO
\ e.g. Sentiment Classification
sequence of words -> sentiment

—
||
|
||
—
e

—

||

||
—
—
e

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 8 8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 117 /120

Conclusions

Recurrent Networks offer a lot of flexibility:

one to one one to many

4
||

a
||

Fei-Fei Li & Andrej Karpathy & Justin Johnson

ol
i 0

many to one

i

many to many many to many

gl

LRIV

\ e.g. Machine Translation
seq of words -> seq of words

||

Lecture 10- 9 8 Feb 2016

S. Cheng (OU-Tulsa)

Recurrent Neural Networks Feb 2017 118/120

Conclusions

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one

o B
i 0

4
||

a

g 0 HOE

Fei-Fei Li & Andrej Karpathy & Justin Johnson

many to many

||

o

[HH A

||

ifi

Lecture 10 - 10

many to many

||
—
e

e.g. Video classification on frame level

8 Feb 2016

S. Cheng (OU-Tulsa) Recurrent Neural Networks

Feb 2017 119/120

Conclusions
Conclusions

@ RNNs allow a lot of flexibility in architecture design and have many
applications

@ Vanilla RNNs are simple but don’t work very well

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 120/120

Conclusions
Conclusions

@ RNNs allow a lot of flexibility in architecture design and have many
applications

@ Vanilla RNNs are simple but don’t work very well

@ Common to use LSTM or GRU: their additive interactions improve
gradient flow

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 120/120

Conclusions
Conclusions

@ RNNs allow a lot of flexibility in architecture design and have many
applications

@ Vanilla RNNs are simple but don’t work very well

@ Common to use LSTM or GRU: their additive interactions improve
gradient flow

@ Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 120/120

Conclusions
Conclusions

@ RNNs allow a lot of flexibility in architecture design and have many
applications

@ Vanilla RNNs are simple but don’t work very well

@ Common to use LSTM or GRU: their additive interactions improve
gradient flow

@ Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

@ Better/simpler architectures are a hot topic of current research

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 120/120

Conclusions
Conclusions

@ RNNs allow a lot of flexibility in architecture design and have many
applications

@ Vanilla RNNs are simple but don’t work very well

@ Common to use LSTM or GRU: their additive interactions improve
gradient flow

@ Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

@ Better/simpler architectures are a hot topic of current research

@ Better optimization techniques such as Hessian-free methods
could be used to avoid gating structures like LSTM

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 120/120

Conclusions
Conclusions

@ RNNs allow a lot of flexibility in architecture design and have many
applications

@ Vanilla RNNs are simple but don’t work very well

@ Common to use LSTM or GRU: their additive interactions improve
gradient flow

@ Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

@ Better/simpler architectures are a hot topic of current research

@ Better optimization techniques such as Hessian-free methods
could be used to avoid gating structures like LSTM

@ Echo state networks are another possibility but may not work very
well for high dimensional inputs

S. Cheng (OU-Tulsa) Recurrent Neural Networks Feb 2017 120/120

	Motivation
	Why non-memoryless models
	Classic non-memoryless models
	Classic non-memoryless models
	Classic non-memoryless models

	Basic RNN
	What is RNN
	Basic RNN training with BPTT
	Toy example: RNN for addition
	Why RNN is difficult to train

	LSTM
	Example: simple character-level language model
	Result
	Multiplicative models

	Example: image captioning
	Result

	Overview of echo state networks
	Conclusions

