Deep Learning

Samuel Cheng

Project presentation

- Start as usual class time
- Please prepare 20-25 minutes presentation. Be quick with problem statement. Focus on your approach and result
 - Take a format similar to conference presentation
- ~5 min Q/A
- Grading
 - Presentation: clarity, structure, references, etc. (10/40)
 - Technical: correctness, depth, innovation, etc. (15/40)
 - Evaluation and results: sound evaluation metric, thoroughness in analysis and experimentation, results and performance (15/40)
- Expectation
 - National conference quality (4/4), research day quality (3/4), Tuesday meeting quality (2/4), just show up (1/4)

We have went through a lot ...

- Backprop
- Regularization, weight initialization
- CNN
 - R-CNN, faster R-CNN
- Seq2seq models
 - Neural machine translations
 - Chatbots
- Memory networks, neural Turing machines
- Autoencoders
- GANs
- Deep Q-learning

Many ideas were not new...

- Mainly two things happened
 - Inexpensive computational power
 - GPUs
 - Large dataset available
 - ImageNet
 - MS COCO
 - Kaggle ...
- Persistent efforts of many researchers
 - Hinton (Toronto, Google)
 - Yann Lecun (NYU, Facebook)
 - Bengio (Montreal)
 - Andrew Ng (Stanford, Google, Baidu)

Three Types of Learning

- Reinforcement Learning
 - The machine predicts a scalar reward given once in a while
 - A few bits for some samples
- Supervised Learning
 - The machine predicts a category or a few numbers for each input
 - 10→10,000 bits per sample
- Unsupervised Learning
 - The machine predicts any part of its input for any observed part
 - Predicts future frame in videos
 - Millions of bits per sample

How much information does machine needs to predict

Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- 10→10,000 bits per sample •

Unsupervised Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

For Yann Lecun: father of CNN, director of Facebook AI Research, NYU professor

Four missing pieces of AI (by Lecun)

- Theoretical Understanding for Deep Learning
 - What is the geometry of the objective function in deep networks?
 - Why the ConvNet architecture works so well? [Mallat, Bruna, Tygert...[
- Integrating Representation/Deep Learning with Reasoning, Attention, Planning and Memory
 - A lot of recent work on reasoning/planning, attention, memory, learning "algorithms"
 - Memory-augmented neural nets
 - "Differentiable" algorithm
- Integrating supervised, unsupervised and reinforcement learning into a single "algorithm"
 - Boltzmann machines would be nice if they worked
 - Stacked What-Where Auto-Encoders, Ladder Networks...
- Effective ways to do unsupervised learning
 - Discovering the structure and regularities of the world by observing it and living in it like animals and human do

Information Theory and Statistical Learning A shameless advertisement of my fall course

- Will look into (shallow) machine learning models not discussed in this class
 - SVM
 - Decision trees
 - Sparse coding
 - GMM, MRF, CRF ...
- Why relevant?
 - They are still very useful when you just need a quick and dirty way that does not need to have state-of-the-art accuracy
 - New ideas almost never came from scratch. They all are just some modification of old ideas
 - Standing on the shoulders of giants

Epilogue

- Don't easily believe something wouldn't work just because someone told you so
 - Try it yourself!
- If you really believe in it, be persistent and enjoy your last laugh

Wish you all good luck with your finals and presentations! And have a fruitful sem-break! Don't forget to fill in evaluation!