Project Proposal for Deep Learning 2017

March, 2017

Project Proposal for Deep Learning 2017

March 2017 1 / 10

< A >

- Submit your team info, project title, and abstract to the course wiki by the class of the week after spring break (March 23)
 - 5% of the total course (as part of the activities)
 - Recall: activities (30%), programming assignment (30%), final project (40%)

- Most important (40%) and lasting result
- Start early and clearly define your task and dataset

Project types:

- Apply existing neural network model to a new problem
- Implement a complex architecture for old problem
- One up with a new neural network model
- Theory

Define Task

- Example: summarization of text
- 2 Define Dataset
 - Search for academic dataset
 - They already have baselines
 - E.g., Document Understanding Conference (DUC)
 - 2 Define your own (harder, need more new baselines)
 - Try to connect to your research
 - E.g., For summarization, can use Wikipedia: intro paragraph and the rest of the article
 - Be creative, can try to look into blogs and news also
- Oefine your metric
 - Search online for well established metrics on your task
 - E.g., for summarization, Rogue (Recall-oriented understudy for gisting evaluation) defines n-gram overlap to human summaries

- Define Task
 - Example: summarization of text
- Oefine Dataset
 - Search for academic dataset
 - They already have baselines
 - E.g., Document Understanding Conference (DUC)
 - Define your own (harder, need more new baselines)
 - Try to connect to your research
 - E.g., For summarization, can use Wikipedia: intro paragraph and the rest of the article
 - Be creative, can try to look into blogs and news also
- Define your metric
 - Search online for well established metrics on your task
 - E.g., for summarization, Rogue (Recall-oriented understudy for gisting evaluation) defines n-gram overlap to human summaries

• • • • • • • • • • • •

- Define Task
 - Example: summarization of text
- Oefine Dataset
 - Search for academic dataset
 - They already have baselines
 - E.g., Document Understanding Conference (DUC)
 - ② Define your own (harder, need more new baselines)
 - Try to connect to your research
 - E.g., For summarization, can use Wikipedia: intro paragraph and the rest of the article
 - Be creative, can try to look into blogs and news also
- Define your metric
 - Search online for well established metrics on your task
 - E.g., for summarization, Rogue (Recall-oriented understudy for gisting evaluation) defines n-gram overlap to human summaries

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- Define Task
 - Example: summarization of text
- Oefine Dataset
 - Search for academic dataset
 - They already have baselines
 - E.g., Document Understanding Conference (DUC)
 - ② Define your own (harder, need more new baselines)
 - Try to connect to your research
 - E.g., For summarization, can use Wikipedia: intro paragraph and the rest of the article
 - Be creative, can try to look into blogs and news also
- Oefine your metric
 - Search online for well established metrics on your task
 - E.g., for summarization, Rogue (Recall-oriented understudy for gisting evaluation) defines n-gram overlap to human summaries

Split your dataset

- Training/validation/testing
- Academic dataset often come pre-split
- Don't try to peek into your test set until the very last moment

Establish a baseline

- Implement the simplest model first (for classification, logistic regression on some simple features?)
- Compute metrics on training and validation sets
- Analyze errors
- If metrics are amazing and no errors: done, problem was too easy, restart :)
- Implement existing neural net model
 - Compute metric on training and validation sets
 - Analyze output and errors
 - Minimum bar for this class (guarantee half of the project score)

Split your dataset

- Training/validation/testing
- Academic dataset often come pre-split
- Don't try to peek into your test set until the very last moment
- Establish a baseline
 - Implement the simplest model first (for classification, logistic regression on some simple features?)
 - Compute metrics on training and validation sets
 - Analyze errors
 - If metrics are amazing and no errors: done, problem was too easy, restart :)
- Implement existing neural net model
 - Compute metric on training and validation sets
 - Analyze output and errors
 - Minimum bar for this class (guarantee half of the project score)

• • • • • • • • • • • •

Split your dataset

- Training/validation/testing
- Academic dataset often come pre-split
- Don't try to peek into your test set until the very last moment
- Establish a baseline
 - Implement the simplest model first (for classification, logistic regression on some simple features?)
 - Compute metrics on training and validation sets
 - Analyze errors
 - If metrics are amazing and no errors: done, problem was too easy, restart :)
- Implement existing neural net model
 - Compute metric on training and validation sets
 - Analyze output and errors
 - Minimum bar for this class (guarantee half of the project score)

• • • • • • • • • • • •

Split your dataset

- Training/validation/testing
- Academic dataset often come pre-split
- Don't try to peek into your test set until the very last moment
- Establish a baseline
 - Implement the simplest model first (for classification, logistic regression on some simple features?)
 - Compute metrics on training and validation sets
 - Analyze errors
 - If metrics are amazing and no errors: done, problem was too easy, restart :)
- Implement existing neural net model
 - · Compute metric on training and validation sets
 - Analyze output and errors
 - Minimum bar for this class (guarantee half of the project score)

< < >> < <</p>

Try out different model variants

- CNN/RNN/Hybrid?
- Depth/width variation?
- ReLU/tanh/leaky ReLU/etc.?

Some tips and suggestions:

- Always be close to your data
 - Try to visualize the dataset
 - collect summary statistics
 - Look at errors
 - Analyze how different hyperparameters affect performance

< 🗇 🕨 < 🖻 🕨

Try out different model variants

- CNN/RNN/Hybrid?
- Depth/width variation?
- ReLU/tanh/leaky ReLU/etc.?

Some tips and suggestions:

- Always be close to your data
 - Try to visualize the dataset
 - collect summary statistics
 - Look at errors
 - Analyze how different hyperparameters affect performance

Additional step for type 3: a new model

- Do all other steps first
- · Gain intuition of why existing models are flawed
- Discuss with others (your research advisor and your peers), can also catch me after Tuesday meeting
- Implement new models and iterate quickly over ideas
- Set up efficient experimental framework (automate stuffs with scripts)
- Take advantage of Schooner
- Remember to build simpler new models first

Some project ideas

- Object detection and segmentation
- Text summarization
- Named entity recognition
 - predicting if a word is a person, a place, an organization, misc, or others (not a name)
- Simple question answering system
- Image/video captioning
- Use DL to solve an a Kaggle challenge
- More ideas: see past projects of Stanford machine learning class http://cs229.stanford.edu/projects2013.html

- Presentation or video screencast is expected (TBD). Written report is not mandatory but encouraged
 - Tentative presentation date: 5/5
- Group projects are graded the same as single person projects. Given more hands there, a slight penalty is imposed for small group but goes steep as size increases (out of 40)

# members in group	2	3	4	5
Penalty	-2	-4	-8	-16

 Additional bonus (4% overall) if the projects lead to a submitted publication before course ends

Grading

- Presentation: (10 out of 40)
 - clarity, structure, references
 - background literature survey, good understanding of the problem
 - good insights and discussions of methodology, analysis, results, etc.
- Technical: (15 out of 40)
 - correctness
 - depth
 - innovation
- Evaluation and results: (15 out of 40)
 - sound evaluation metric
 - thoroughness in analysis and experimentation
 - results and performance