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Math review

Some notations and simple linear algebra

A scalar s is lower-case and normal font

A vector v is lower-case and bold

By convention, we always stick with column vectors

A matrix M is upper-case

MT is the transpose of the matrix M

If B = AT , bij = aji

Quiz: for a n-dim vector v,
What is the dimension of vTv?

1× 1 (inner product)

What is the dimension of vvT ?

n × n (outer product)
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Math review

A quick review of gradient

For a vector x = (x1, x2, · · · , xn)T , the gradient of a scalar multivariate
function f (x) is denoted by ∇f (x)

Note that ∇f (x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)
∇f (x) is a vector pointing to the steepest (ascending) direction

The magnitude ‖∇f (x)‖ is the slope along that steepest direction

E.g., f ((x1, x2, x3)) = (x1 + 2)x22x3

∇f (x) =

 x22x3
2(x1 + 2)x2x3
(x1 + 2)x22


and ∇f (x)|(0,1,0)?

∇f (x)|(0,1,0) = (0, 0, 2)T
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Regression Loss function

Loss function for regression

Let us start with the regression problem. Recall from previously that

We are trying to learn a function f (x ;W ) such that for training input
xi and desired output yi , f (xi ;W ) ∼ yi

We can define a loss (aka cost, objective) function L(·, ·) to measure the
discrepancy between the desired output and the actual output

During training, a reasonable goal will simply be to

min
W

∑
i

L(f (xi ;W ), yi ),

where in the objective function, we are summing the corresponding
loss over all pair of training data

For regression, it is common to use mean square error for loss
function, i.e., l(f (xi ;W ), yi ) = (f (xi ;W )− yi )

2
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Regression Linear regression

Linear regression

For example, try to predict the mass (weight) of a man based on his
height, bmi, and his age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age =29, what is his mass?

For linear regression, we assume y ∼ xTw
x = (1.8, 23, 29, 1)T

w = (w1,w2,w3, b)
T is an unknown weight vector

N.B. we append the feature vector by 1 to make the expression more
compact. b is a bias weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T , y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T , y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T , yN = 112.33

Write Xtrain =
(
x1, x2, · · · , xN

)
and ytrain = (y1, y2, · · · , yN)T , we

want
ytrain ∼ XT

trainw
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Regression Linear regression

Linear regression – analytical solution

Assume that mean square loss is used, we want to minimize

L(w)

=
1

2
(ytrain − XT

trainw)T (ytrain − XT
trainw)

=
1

2

(
yTtrainytrain −wTXtrainytrain − yTtrainX

T
trainw +wTXtrainX

T
trainw

)

Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain
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Regression Example: mass estimation

Experiment

mass = bmi × height2

We generated 30 training data points and wiggled the masses with
Gaussian noises of a standard deviation of 3 kg

Trained weights: (1.17e+02, 3.11, 8.97e-03, -2.05e+02) #
(height,bmi,age,1)

The weights are quite reasonable

mass should not really depend on age
height should have a stronger effect to mass than bmi

MSE: 6.63. It is a bit high, let’s try to reduce it
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Regression Example: mass estimation

Expanding features...

Let’s include some higher “order” features. For the raw feature
x1, x2, x3, we can also include products of them as a feature. So a
new feature vector becomes

(1, x1, x2, x3, x
2
1 , x

2
2 , x

2
3 , x1x2, x1x3, x2x3),

where the function of mapping from the raw feature to the new
feature vector is sometimes known as the basis or kernel function

We can do linear regression just as before, just the number of weights
increases from 4 to 10

MSE: 1.01. Nice!
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Regression Example: mass estimation

Expanding features (con’t)...

Let’s go even higher order and also include products like x1x2x3 and
x21x2. So the new feature vector now becomes

(1, x1, x2, x3, x
2
1 , x

2
2 , x

2
3 , x1x2, x1x3, x2x3, x

3
1 , x

3
2 , x

3
3 , x

2
1x2, · · · )

Again we will do linear regression as before, the number of weights
now increases from to 25

MSE: 0.32...
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Regression Example: mass estimation

Expanding features (con’t)...

We can go further to the 4-th order and the number of weights now
increases to 70

MSE: 1.13e-12. Wow!
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Regression Example: mass estimation

Wait, how about testing error?

1.0 1.5 2.0 2.5 3.0
Maximum degree of features

0

1

2

3

4

5

6

7

8

9

M
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Regression Example: curve fitting

Curve fitting

Why is it so bad for testing? Let’s visit another even simpler example

Let’s try to fit a quadratic curve y = (x − 3)2 with linear regression.
And again our training data will be wiggled a little bit by a Gaussian
noise
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Regression Example: curve fitting

Curve fitting (2nd order)

Let’s include higher order feature just as before. Take (1, x , x2) as feature
by including x2
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Regression Example: curve fitting

Curve fitting (3rd order)

(1, x , x2, x3)

0 2 4 6 8 10
10

0

10

20

30

40

50

60
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 16 / 59



Regression Example: curve fitting

Curve fitting (4th order)
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Regression Example: curve fitting

Curve fitting (5th order)
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Regression Example: curve fitting

Curve fitting (6rd order)
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Regression Example: curve fitting

Curve fitting (7rd order)
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Regression Example: curve fitting

Curve fitting (8th order)
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Regression Example: curve fitting

Curve fitting (9th order)
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Regression Bias-variance trade-off

Overfitting vs underfitting
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Lesson learned

Lesson learned

Given sufficiently complex model, we can learn “anything”, but ...

Machine learning is all about generalization
It is testing error but not training error that actually counts

Machine learning is very similar to optimization, we just try to find
our best model by minimizing a loss function, but...

Unlike optimization, we don’t actually know the true objective function
Loss function is just an approximated goal

Should try to avoid neither overfitting nor underfitting

Everything should be made as simple as possible, but not simpler –
Albert Einstein
Occam’s razor: overly complex model is not a good thing (if you don’t
have sufficient data to fit the model)
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Lesson learned

High-bias vs high-variance

Sometimes we also refer to overfit-
ting and underfitting roughly as high-
variance and high-bias

High-bias: model is too rigid to
learn (thus biased) and it
cannot adapt to the data

High-variance: model is too
elastic and can fit any arbitrary
data. When fitted with different
training data, the weights just
converge to totally different
values (thus high variance)
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Lesson learned

More on overfitting (high-variance)

In the high-variance domain, the
model is essentially learning the
training data noise. That’s why
weights converge to different
values for different training data

Model complexity is relative. If
more training data are available,
the model used to be overfitted
may not be overfitted anymore.
So should we change a model
every time we added new data?!
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Lesson learned Regularization

Regularization

Rather than using a simple model, we could restrain a more complex
model from running wild with additional constraints. This process is
commonly known as regularization

As regularization can mitigate the overfitting problem, we can use a
more expressive model even when we have only few data. And the
same model can be used as data size increases

A regularized complex model typically outperforms an unregularized
simple model
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Lesson learned Regularization

Ridge regression

A most common type of regularization is by restraining the magnitudes of
the weights

For example, in ridge regression, we try to achieve this by simply
including 1

2λw
Tw in the loss objective function. Thus

L(w) =
1

2
(y − XTw)T (y − XTw) +

1

2
λwTw

=
1

2

(
yTy −wTXy − yTXTw +w[XXT + λI ]w

)

And the gradient is

∇wL(w) = −Xy + [XXT + λI ] w

As before, if we set ∇wL(w) = 0, we have

w = [XXT + λI ]−1Xy
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Lesson learned Regularization

Lasso

Another common regularization is lasso. Instead of λwTw, the scaled
l1-norm of w, λ‖w‖1 is added to the loss objective function Thus, we
want to

min
w

1

2
(y − XTw)T (y − XTw) + λ‖w‖1,

where ‖w‖1 = |w1|+ |w2|+ · · ·+ |wD |

Unlike ridge regression, one cannot write the close form solution
directly though

We will discuss how the optimization is typically performed later
For the next several slides, I just used sciki-learn library1 in Python

Lasso tends to enforce a sparse weight solution. It was popular several
years ago because of compressed sensing

1The ridge regression function in the 0.18.1 version of sciki-learn appears to have
bug. Both ridge regression and lasso function are implemented as lasso.
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Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)
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Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)
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Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)
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Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)
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Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)
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Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)
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Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)
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Lesson learned Regularization

Conclusion

Machine learning is all about generalization (from data)

One can decrease the training error to arbitrarily small (by increasing
model complexity)

On the other hand, we really only care about test error, which is
composed of

Bias: High bias when model is too rigid (model complexity is too low)
to adapt to the training data
Variance: High variance when model is too flexible (model complexity
is too high) that different sets of training data will converge to
completely different weight parameters

Occam’s razor: a good explanation should be minimal
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Lesson learned Regularization

Conclusion

For supervised learning systems (both classification and regression),
we can typically reduce it to an optimization problem of minimizing a
loss function (instead of training error) w.r.t. some weights

Regularization terms can typically be incorporated in the loss function
to keep the weights from running wild

It is almost always better to use a more complex but regularized
model than a simple model when one has sufficient training data

Provided that one regularized wisely
That is why deep neural networks typically work better

Actually with sufficient data, we don’t need to worry about overfitting
Furthermore, sometimes you may even want to overfit a small training
set (attain 0 training error but large testing error) just to make sure
your model is correct
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Classification Binary classification

Linear classification

The same linear regression idea can be transferred to classification
problems

Consider binary classification whether an image contains a cat or not

We can first vectorize the input image into a column vector x (with an
extra 1 appended to account for bias)

E.g., for a very small 2× 2 image patch

(
10 25
36 90

)
, it will be converted

to

x = (10, 25, 36, 90, 1)T

We will decide if the image contains a cat of not by verifying if

xTw ≶ 0,

where we will need to obtain the weight w through training (more later)
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Classification Binary classification

Logistic regression

We can introduce a scoring function

f (x;w) = H(xTw),

where H(t) =

{
1, t ≥ 0

0, t < 0
is a step function and we have a cat if

f (x;w) = 1 and no cat if f (x;w) = 0

Note that f (x;w) essentially is a perceptron model and is difficult to
train because of the discontinuity of H(·). Instead, we could replace
H(·) by the sigmoid (or logistic) function S(t) = 1

1+e−t

Hence, known as logistic regression
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Classification Binary classification

Loss function of logistic regression

Another advantage of using S(·) is that we can interpret the output as
probability and then the loss function can be specified by a “cross-entropy
loss” as follows (will explain next)

L(w; x) =

{
− log f (x;w), if the image is a cat

− log(1− f (x;w)), otherwise
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Classification Multi-class classification

Softmax classifier

For multiclass problem, we can extend the logistic scoring function to

fi (x;W ) = σi (W x),

where σi (y) =
exp(yi )∑
j exp(yj )

is known as a softmax function and is really

just a normalized exponential function

Again, we can interpret fi (x;W ) as the estimated probability of x
belong to class i

E.g., p(cat; x,W ) = fcat(x;W )
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Classification Multi-class classification

Cross entropy loss function

q(cat) q(pig)q(dog)

Actual

p(cat) p(dog) p(pig)

Estimate

Let say the image is actually a dog. We can express this as a
distribution as shown on the left

Ideally we would like the estimated probability distribution matches
the actual one

We can measure the difference between two distributions with
KL-divergence given by

KL(q‖p) =
∑
i

qi log
qi
pi

S. Cheng (OU-ECE) Regression and Classification Jan 2017 43 / 59



Classification Multi-class classification

Cross entropy loss function

q(cat) q(pig)q(dog)

Actual

p(cat) p(dog) p(pig)

Estimate

Let say the image is actually a dog. We can express this as a
distribution as shown on the left

Ideally we would like the estimated probability distribution matches
the actual one

We can measure the difference between two distributions with
KL-divergence given by

KL(q‖p) =
∑
i

qi log
qi
pi

S. Cheng (OU-ECE) Regression and Classification Jan 2017 43 / 59



Classification Multi-class classification

Cross entropy loss function

q(cat) q(pig)q(dog)

Actual

p(cat) p(dog) p(pig)

Estimate

Let say the image is actually a dog. We can express this as a
distribution as shown on the left

Ideally we would like the estimated probability distribution matches
the actual one

We can measure the difference between two distributions with
KL-divergence given by

KL(q‖p) =
∑
i

qi log
qi
pi

S. Cheng (OU-ECE) Regression and Classification Jan 2017 43 / 59



Classification Multi-class classification

KL-divergence is non-negative

KL(p‖q) =
∑
i

pi log2
pi
qi

= −
∑
i

pi log2
qi
pi

= −
∑
i

pi
ln 2

ln
qi
pi

≥ −
∑
i

pi
ln 2

(
qi
pi

− 1

)

=
1

ln 2

(∑
i

pi −
∑
i

qi

)
= 0

Fact

For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1
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Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two
distribution

KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p

It is not a actual distant measure: KL(q||p) 6= KL(p||q)
We can pick KL(q‖p) as the loss function, then

L(W ; x) = KL(q‖p) =
∑
i

qi log
qi
pi

= −

[
−
∑
i

qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑
i

qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑
i

qi log pi = − log pj(x) = − log fj(x)(x;W ) = − log σj(x)(W x),

where j(x) is the actual class index of x

The total loss is just sum over all training x: L(W ) =
∑

x L(W ; x)
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Optimization

Optimization

For linear regression and ridge regression, we have a close form
solution for minimizing the loss function but in most other models, we
do not

In practice, to minimize the loss function w.r.t. the weight W , we can
use simple steepest descent. That is,

W = W −∆W with ∆W = ε∇W L(W ),

where ε is the learning rate and suppose to be small. It is often just
set heuristically. We may talk more about it later in this course

So to optimize, we need to find the gradient of L wrt W
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Optimization

Derivative of softmax loss

Recall that L(W ) =
∑

x L(W ; x) = −
∑

x

∑
l q

(x)
l log σl(W x), where

q
(x)
j is non-zero (= 1) only when j is the true label of x

∇L(W ) =
∑

x∇L(W ; x). Let’s focus on computing the individual
gradient ∇L(W ; x)

Write L(W ; x) =
∑

l ql log σl(o), where o = W x. And we drop the
superscript (x) for clarity

Using chain rule,

∂

∂wi,j
L(W ; x) =

∑
k

∂

∂ok
L(W ; x)

∂ok
∂wi,j

= xj
∂

∂oi
L(W ; x)

We need to find ∂
∂oi

L(W ; x)
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Optimization

∂
∂oi

L(W ; x)

Recall L(W ; x) =
∑

l ql log σl(o) and
2 σl(o) =

exp(ol )∑
k exp(ok )

. It is easy

to verify that ∂
∂oi

σj(o) = −σi (o)σj(o) and
∂
∂oi

σi (o) = σi (o)(1− σi (o)).

Thus,

∂

∂oi
L(W ; x) = − ∂

∂oi

∑
l

ql log σl(o)

=
qi
σi
(σi )(1− σi )−

∑
l 6=i

ql
σl
σiσl = qi −

∑
l

qlσi

= qi − σi

Using chain rule

∂

∂wi ,j
L(W ; x) =

∑
k

∂

∂ok
L(W ; x)

∂ok
∂wi ,j

=
∂

∂oi
L(W ; x)xj = (qi − σi )xj

2o = W x
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Optimization

Stochastic gradient descent

An immediate issue that one will come across is that the original
“full-batch” gradient descent is too slow

Recall that L(W ) supposes to a sum over individual loss of all training
data L(W ; x)
But L(W ) is really just an approximate as any training set is stochastic
in natural in any case. Why not just approximate L(W ) not as refined
with few data? That is, just pick a subset Xi from the training set and
use

Li (W ) =
∑
x∈Xi

L(W ; x)

instead. And this is known as the mini-batch gradient descent

One may go to the extreme and only pick one x to estimate the
gradient. This formally is known as the stochastic gradient descent.
But in practice, no one uses it. But people often say stochastic
gradient descent when they actually mean mini-batch gradient descent
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Optimization

Gradient descent with moment

Going downhill reduces the error, but
the direction of steepest descent does
not point at the minimum unless the
ellipse is a circle

The gradient is big in the direction
in which we only want to travel a
small distance
The gradient is small in the direction
in which we want to travel a large
distance

A simple solution is to introduce
“momentum” to the change of W .
That is,
∆W = λ(ε∇W L(W ))+(1−λ)∆W (old)

Will talk more about optimization
methods later. So much for today

2Slide borrowed from Hinton’s coursera course
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Optimization

Remark on computing gradient

For the previous discussion, we always assume that the gradient can
be found analytically. In practice, it may not be true also

But gradient of L(W ) can easily be computed numerically. For

example, say W =

(
4.1 3.3
−1.2 2.1

)
,

∂

∂W1,1
L(W ) ≈ 1

h

[
L

((
4.1 + h 3.3
−1.2 2.1

))
− L

((
4.1 3.3
−1.2 2.1

))]

Actually, the numerical gradient is useful even if an analytical
gradient exists. It at least provides a mean to debug your system

And luckily, for some packages such as Theano, they automatically find
the analytical gradient for you
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))
− L

((
4.1 3.3
−1.2 2.1

))]

Actually, the numerical gradient is useful even if an analytical
gradient exists. It at least provides a mean to debug your system

And luckily, for some packages such as Theano, they automatically find
the analytical gradient for you

S. Cheng (OU-ECE) Regression and Classification Jan 2017 51 / 59



Optimization

Conclusion

For classification, we can feed the output of a linear regressor to a
logistic function or softmax function to form a linear classifier

For only two classes, we have the logistic “regression” classifier
For multi-class cases, we have the softmax classifiers

For finding the optimal weights, we may not be able to get the
solution right away analytically (possible though for linear regression
and ridge regression)

Can optimize iteratively with gradient descent
Can speed up gradient descent by using mini-batch instead of full batch
Momentum is a common trick to improve optimization efficiency also
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Supprot vector machine

SVM

Denote ŵ = w
‖w‖ , ŵ · x1

(ŵ · x−1) is the distance of the
boundary line of x1 (x−1) from
the origin

Thus, the distance between the
two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all xi

max
2

‖w‖
s.t. yi (w · xi − b) ≥ 1

Equivalently,

min‖w‖ s.t. yi (w · xi − b) ≥ 1
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Supprot vector machine

Soft-margin SVM and hinge loss

Hard-margin SVM

min‖w‖ s.t. yi (w · xi − b)− 1 ≥ 0

Soft-margin SVM (allow constrain to be
violate)

Define “hinge” loss function h(z) = max(0, z)
Want to minimize hinge loss∑

i

h(1− yi (w · xi − b))

Soft-margin SVM

minλ‖w‖2 +
∑
i

h(1− yi (w · xi − b))
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Supprot vector machine

Multi-class SVM

We can easily extend soft-margin SVM to multi-class case. Let

sl(x) = wl
T

[
1
x

]
be the score for class l .

We can define the hinge loss

for sample x as∑
l 6=j

h(sl(x)− sj(x) + ∆) =
∑
l 6=j

max(0, sl(x)− sj(x) + ∆),

where j is the true label of x and ∆ contributes a margin ensuring
that the true label score has to be at least ∆ more than the rest to be
penalty free

Multi-class SVM:

minλ‖w‖2 +
∑
i

∑
l 6=j(xi )

h(sl(xi )− sj(xi )(xi ) + ∆)
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Presentation logistics

Presentation logistics

Tentative start dates: mid-Feb

Pick your packages, give me your preference by next Thursday.
Include your highest three preferred packages with sorted order

We may go through a lottery if too many of you pick the same
packages. Aim to have diversity besides depth

The order of presentation is based on popularity of your topic. The
most popular topic will be presented first and so on

Within a topic, the order will be determined randomly
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Presentation logistics

Presentation logistics (con’t)

I will let you know who are presenting the same package as you. I will
let you all to coordinate yourself. Try to present different aspect of
the package from your classmate. A little overlapping is acceptable
though

> 20 minutes and < 40 minutes presentation, don’t drag too long.
Try to get quick to the point

I’ll try to record the video and share with you all (maybe put up on
YouTube)

Four bonus awards: (5% each) for the best presentation and (3%
each) for first runner up according to my taste and popular votes
from you all, respectively

Tentatively reserve Tuesday classes for presentations
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Presentation logistics

Software packages

Pros Cons
Caffe(2) Don’t need to write code Adding module is harder

(need C++); RNN is not
support

(Py)Torch Easy to create own module;
Can do RNN

Lua (check out PyTorch)

Theano Flexible and powerful Kind of low-level
Tensorflow Industry loves it. Most pop-

ular
Slow

Keras /
Lasagne

Less verbose than Theano Less flexible

MXnet Rumored to be fast Unpopular
Matconvnet MATLAB CNN only
CNTK (MS) ? ?
Paddle
(Baidu)

? ?

Watch this CS231n lecture
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https://www.youtube.com/watch?v=6SlgtELqOWc


Presentation logistics

Final reminder

Assignment 1 and package selection will be due next
Thursday
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