Regression and Classification

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2018

Table of Contents

(1) Math review
(2) Regression

- Loss function
- Linear regression
- Example: mass estimation
- Example: curve fitting
- Bias-variance trade-off
(3) Lesson learned
- Regularization
(4) Classification
- Binary classification
- Multi-class classification
(5) Optimization
(6) Supprot vector machine
(7) Presentation logistics

Some notations and simple linear algebra

- A scalar s is lower-case and normal font
- A vector \mathbf{v} is lower-case and bold

Some notations and simple linear algebra

- A scalar s is lower-case and normal font
- A vector \mathbf{v} is lower-case and bold
- By convention, we always stick with column vectors
- A matrix M is upper-case
- M^{T} is the transpose of the matrix M

Some notations and simple linear algebra

- A scalar s is lower-case and normal font
- A vector \mathbf{v} is lower-case and bold
- By convention, we always stick with column vectors
- A matrix M is upper-case
- M^{T} is the transpose of the matrix M
- If $B=A^{T}, b_{i j}=a_{j i}$
- Quiz: for a n-dim vector v,
- What is the dimension of $\mathbf{v}^{\boldsymbol{T}} \mathbf{v}$?

Some notations and simple linear algebra

- A scalar s is lower-case and normal font
- A vector \mathbf{v} is lower-case and bold
- By convention, we always stick with column vectors
- A matrix M is upper-case
- M^{T} is the transpose of the matrix M
- If $B=A^{T}, b_{i j}=a_{j i}$
- Quiz: for a n-dim vector v,
- What is the dimension of $\mathbf{v}^{\top} \mathbf{v}$?
- 1×1 (inner product)
- What is the dimension of $\mathbf{v v}^{\top}$?

Some notations and simple linear algebra

- A scalar s is lower-case and normal font
- A vector \mathbf{v} is lower-case and bold
- By convention, we always stick with column vectors
- A matrix M is upper-case
- M^{T} is the transpose of the matrix M
- If $B=A^{T}, b_{i j}=a_{j i}$
- Quiz: for a n-dim vector v,
- What is the dimension of $\mathbf{v}^{\top} \mathbf{v}$?
- 1×1 (inner product)
- What is the dimension of $\mathbf{v v}^{\top}$?
- $n \times n$ (outer product)

A quick review of gradient

For a vector $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$, the gradient of a scalar multivariate function $f(\mathbf{x})$ is denoted by $\nabla f(\mathbf{x})$

A quick review of gradient

For a vector $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$, the gradient of a scalar multivariate function $f(\mathbf{x})$ is denoted by $\nabla f(\mathbf{x})$

- Note that $\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)$

A quick review of gradient

For a vector $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$, the gradient of a scalar multivariate function $f(\mathbf{x})$ is denoted by $\nabla f(\mathbf{x})$

- Note that $\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)$
- $\nabla f(\mathbf{x})$ is a vector pointing to the steepest (ascending) direction
- The magnitude $\|\nabla f(\mathbf{x})\|$ is the slope along that steepest direction

A quick review of gradient

For a vector $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$, the gradient of a scalar multivariate function $f(\mathbf{x})$ is denoted by $\nabla f(\mathbf{x})$

- Note that $\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)$
- $\nabla f(\mathbf{x})$ is a vector pointing to the steepest (ascending) direction
- The magnitude $\|\nabla f(\mathbf{x})\|$ is the slope along that steepest direction E.g., $f\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}+2\right) x_{2}^{2} x_{3}$

A quick review of gradient

For a vector $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$, the gradient of a scalar multivariate function $f(\mathbf{x})$ is denoted by $\nabla f(\mathbf{x})$

- Note that $\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)$
- $\nabla f(\mathbf{x})$ is a vector pointing to the steepest (ascending) direction
- The magnitude $\|\nabla f(\mathbf{x})\|$ is the slope along that steepest direction E.g., $f\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}+2\right) x_{2}^{2} x_{3}$

$$
\nabla f(\mathbf{x})=\left(\begin{array}{c}
x_{2}^{2} x_{3} \\
2\left(x_{1}+2\right) x_{2} x_{3} \\
\left(x_{1}+2\right) x_{2}^{2}
\end{array}\right)
$$

and $\left.\nabla f(\mathbf{x})\right|_{(0,1,0)}$?

A quick review of gradient

For a vector $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$, the gradient of a scalar multivariate function $f(\mathbf{x})$ is denoted by $\nabla f(\mathbf{x})$

- Note that $\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)$
- $\nabla f(\mathbf{x})$ is a vector pointing to the steepest (ascending) direction
- The magnitude $\|\nabla f(\mathbf{x})\|$ is the slope along that steepest direction E.g., $f\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}+2\right) x_{2}^{2} x_{3}$

$$
\nabla f(\mathbf{x})=\left(\begin{array}{c}
x_{2}^{2} x_{3} \\
2\left(x_{1}+2\right) x_{2} x_{3} \\
\left(x_{1}+2\right) x_{2}^{2}
\end{array}\right)
$$

and $\left.\nabla f(\mathbf{x})\right|_{(0,1,0)}$?

$$
\left.\nabla f(\mathbf{x})\right|_{(0,1,0)}=(0,0,2)^{T}
$$

Loss function for regression

Let us start with the regression problem. Recall from previously that

- We are trying to learn a function $f(x ; W)$ such that for training input x_{i} and desired output $y_{i}, f\left(x_{i} ; W\right) \sim y_{i}$
We can define a loss (aka cost, objective) function $L(\cdot, \cdot)$ to measure the discrepancy between the desired output and the actual output

Loss function for regression

Let us start with the regression problem. Recall from previously that

- We are trying to learn a function $f(x ; W)$ such that for training input x_{i} and desired output $y_{i}, f\left(x_{i} ; W\right) \sim y_{i}$
We can define a loss (aka cost, objective) function $L(\cdot, \cdot)$ to measure the discrepancy between the desired output and the actual output
- During training, a reasonable goal will simply be to

$$
\min _{W} \sum_{i} L\left(f\left(x_{i} ; W\right), y_{i}\right)
$$

where in the objective function, we are summing the corresponding loss over all pair of training data

Loss function for regression

Let us start with the regression problem. Recall from previously that

- We are trying to learn a function $f(x ; W)$ such that for training input x_{i} and desired output $y_{i}, f\left(x_{i} ; W\right) \sim y_{i}$
We can define a loss (aka cost, objective) function $L(\cdot, \cdot)$ to measure the discrepancy between the desired output and the actual output
- During training, a reasonable goal will simply be to

$$
\min _{W} \sum_{i} L\left(f\left(x_{i} ; W\right), y_{i}\right),
$$

where in the objective function, we are summing the corresponding loss over all pair of training data

- For regression, it is common to use mean square error for loss function, i.e., $I\left(f\left(x_{i} ; W\right), y_{i}\right)=\left(f\left(x_{i} ; W\right)-y_{i}\right)^{2}$

Linear regression

For example, try to predict the mass (weight) of a man based on his height, bmi, and his age (assuming we don't know what bmi is here)

- E.g., height $=1.8 \mathrm{~m}, \mathrm{bmi}=23$, age $=29$, what is his mass?

Linear regression

For example, try to predict the mass (weight) of a man based on his height, bmi, and his age (assuming we don't know what bmi is here)

- E.g., height $=1.8 \mathrm{~m}, \mathrm{bmi}=23$, age $=29$, what is his mass?
- For linear regression, we assume $y \sim \mathbf{x}^{T} \mathbf{w}$
- $\mathbf{x}=(1.8,23,29,1)^{T}$
- $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}, b\right)^{T}$ is an unknown weight vector
- N.B. we append the feature vector by 1 to make the expression more compact. b is a bias weight

Linear regression

For example, try to predict the mass (weight) of a man based on his height, bmi, and his age (assuming we don't know what bmi is here)

- E.g., height $=1.8 \mathrm{~m}, \mathrm{bmi}=23$, age $=29$, what is his mass?
- For linear regression, we assume $y \sim \mathbf{x}^{T} \mathbf{w}$
- $\mathbf{x}=(1.8,23,29,1)^{T}$
- $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}, b\right)^{T}$ is an unknown weight vector
- N.B. we append the feature vector by 1 to make the expression more compact. b is a bias weight
- Given training data, we need to find \mathbf{w}
- $\mathbf{x}_{1}=(1.68,31.80,43.34,1)^{T}, y_{1}=87.50$
- $\mathrm{x}_{2}=(1.80,33.11,16.69,1)^{T}, y_{2}=110.06$
- $\mathbf{x}_{N}=(1.83,33.79,43.30,1)^{T}, y_{N}=112.33$

Linear regression

For example, try to predict the mass (weight) of a man based on his height, bmi, and his age (assuming we don't know what bmi is here)

- E.g., height $=1.8 \mathrm{~m}, \mathrm{bmi}=23$, age $=29$, what is his mass?
- For linear regression, we assume $y \sim \mathbf{x}^{T} \mathbf{w}$
- $\mathbf{x}=(1.8,23,29,1)^{T}$
- $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}, b\right)^{T}$ is an unknown weight vector
- N.B. we append the feature vector by 1 to make the expression more compact. b is a bias weight
- Given training data, we need to find \mathbf{w}
- $\mathrm{x}_{1}=(1.68,31.80,43.34,1)^{T}, y_{1}=87.50$
- $\mathbf{x}_{2}=(1.80,33.11,16.69,1)^{T}, y_{2}=110.06$
- $\mathbf{x}_{N}=(1.83,33.79,43.30,1)^{T}, y_{N}=112.33$
- Write $X_{\text {train }}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}\right)$ and $\mathbf{y}_{\text {train }}=\left(y_{1}, y_{2}, \cdots, y_{N}\right)^{T}$, we want

$$
\mathbf{y}_{\text {train }} \sim X_{\text {train }}^{\top} \mathbf{w}
$$

Linear regression - analytical solution

Assume that mean square loss is used, we want to minimize
$L(\mathbf{w})$

Linear regression - analytical solution

Assume that mean square loss is used, we want to minimize

$$
\begin{aligned}
& L(\mathbf{w}) \\
= & \frac{1}{2}\left(\mathbf{y}_{\text {train }}-X_{\text {train }}^{T} \mathbf{w}\right)^{T}\left(\mathbf{y}_{\text {train }}-X_{\text {train }}^{T} \mathbf{w}\right)
\end{aligned}
$$

Linear regression - analytical solution

Assume that mean square loss is used, we want to minimize

$$
\begin{aligned}
& L(\mathbf{w}) \\
= & \frac{1}{2}\left(\mathbf{y}_{\text {train }}-X_{\text {train }}^{T} \mathbf{w}\right)^{T}\left(\mathbf{y}_{\text {train }}-X_{\text {train }}^{T} \mathbf{w}\right) \\
= & \frac{1}{2}\left(\mathbf{y}_{\text {train }}^{T} \mathbf{y}_{\text {train }}-\mathbf{w}^{T} X_{\text {train }} \mathbf{y}_{\text {train }}-\mathbf{y}_{\text {train }}^{T} X_{\text {train }}^{T} \mathbf{w}+\mathbf{w}^{T} X_{\text {train }} X_{\text {train }}^{T} \mathbf{w}\right)
\end{aligned}
$$

Linear regression - analytical solution

Assume that mean square loss is used, we want to minimize

$$
\begin{aligned}
& L(\mathbf{w}) \\
= & \frac{1}{2}\left(\mathbf{y}_{\text {train }}-X_{\text {train }}^{T} \mathbf{w}\right)^{T}\left(\mathbf{y}_{\text {train }}-X_{\text {train }}^{T} \mathbf{w}\right) \\
= & \frac{1}{2}\left(\mathbf{y}_{\text {train }}^{T} \mathbf{y}_{\text {train }}-\mathbf{w}^{T} X_{\text {train }} \mathbf{y}_{\text {train }}-\mathbf{y}_{\text {train }}^{T} X_{\text {train }}^{T} \mathbf{w}+\mathbf{w}^{T} X_{\text {train }} X_{\text {train }}^{T} \mathbf{w}\right)
\end{aligned}
$$

- Let's compute the gradient (try it out at home),

$$
\nabla_{\mathbf{w}} L(\mathbf{w})=-X_{\text {train }} \mathbf{y}_{\text {train }}+X_{\text {train }} X_{\text {train }}^{\top} \mathbf{w}
$$

Linear regression - analytical solution

Assume that mean square loss is used, we want to minimize

$$
\begin{aligned}
& L(\mathbf{w}) \\
= & \frac{1}{2}\left(\mathbf{y}_{\text {train }}-X_{\text {train }}^{T} \mathbf{w}\right)^{T}\left(\mathbf{y}_{\text {train }}-X_{\text {train }}^{T} \mathbf{w}\right) \\
= & \frac{1}{2}\left(\mathbf{y}_{\text {train }}^{T} \mathbf{y}_{\text {train }}-\mathbf{w}^{T} X_{\text {train }} \mathbf{y}_{\text {train }}-\mathbf{y}_{\text {train }}^{T} X_{\text {train }}^{T} \mathbf{w}+\mathbf{w}^{T} X_{\text {train }} X_{\text {train }}^{T} \mathbf{w}\right)
\end{aligned}
$$

- Let's compute the gradient (try it out at home),

$$
\nabla_{\mathbf{w}} L(\mathbf{w})=-X_{\text {train }} \mathbf{y}_{\text {train }}+X_{\text {train }} X_{\text {train }}^{\top} \mathbf{w}
$$

- At the optimum, we expect $\nabla_{\mathbf{w}} L(\mathbf{w})=0$. Thus

$$
\mathbf{w}=\underbrace{\left(X_{\text {train }} X_{\text {train }}^{\top}\right)^{-1} X_{\text {train }}} \mathbf{y}_{\text {train }}
$$

Linear regression - analytical solution

Assume that mean square loss is used, we want to minimize

$$
\begin{aligned}
& L(\mathbf{w}) \\
= & \frac{1}{2}\left(\mathbf{y}_{\text {train }}-X_{\text {train }}^{T} \mathbf{w}\right)^{T}\left(\mathbf{y}_{\text {train }}-X_{\text {train }}^{T} \mathbf{w}\right) \\
= & \frac{1}{2}\left(\mathbf{y}_{\text {train }}^{T} \mathbf{y}_{\text {train }}-\mathbf{w}^{T} X_{\text {train }} \mathbf{y}_{\text {train }}-\mathbf{y}_{\text {train }}^{T} X_{\text {train }}^{T} \mathbf{w}+\mathbf{w}^{T} X_{\text {train }} X_{\text {train }}^{T} \mathbf{w}\right)
\end{aligned}
$$

- Let's compute the gradient (try it out at home),

$$
\nabla_{\mathbf{w}} L(\mathbf{w})=-X_{\text {train }} \mathbf{y}_{\text {train }}+X_{\text {train }} X_{\text {train }}^{\top} \mathbf{w}
$$

- At the optimum, we expect $\nabla_{\mathbf{w}} L(\mathbf{w})=0$. Thus

$$
\mathbf{w}=\underbrace{\left(X_{\text {train }} X_{\text {train }}^{\top}\right)^{-1} X_{\text {train }}}_{\left(X_{\text {train }}^{\top}\right)^{\dagger}} \mathbf{y}_{\text {train }}
$$

Experiment

- mass $=$ bmi \times height 2

Experiment

- mass $=$ bmi \times height 2
- We generated 30 training data points and wiggled the masses with Gaussian noises of a standard deviation of 3 kg

Experiment

- mass $=$ bmi \times height 2
- We generated 30 training data points and wiggled the masses with Gaussian noises of a standard deviation of 3 kg
- Trained weights: $(1.17 e+02,3.11,8.97 e-03,-2.05 e+02) \#$ (height,bmi,age,1)

Experiment

- mass $=$ bmi \times height 2
- We generated 30 training data points and wiggled the masses with Gaussian noises of a standard deviation of 3 kg
- Trained weights: $(1.17 e+02,3.11,8.97 e-03,-2.05 e+02) \#$ (height,bmi,age,1)
- The weights are quite reasonable
- mass should not really depend on age
- height should have a stronger effect to mass than bmi

Experiment

- mass $=$ bmi \times height 2
- We generated 30 training data points and wiggled the masses with Gaussian noises of a standard deviation of 3 kg
- Trained weights: $(1.17 e+02,3.11,8.97 e-03,-2.05 e+02) \#$ (height,bmi,age,1)
- The weights are quite reasonable
- mass should not really depend on age
- height should have a stronger effect to mass than bmi
- MSE: 6.63. It is a bit high, let's try to reduce it

Expanding features...

- Let's include some higher "order" features. For the raw feature x_{1}, x_{2}, x_{3}, we can also include products of them as a feature. So a new feature vector becomes

$$
\left(1, x_{1}, x_{2}, x_{3}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)
$$

where the function of mapping from the raw feature to the new feature vector is sometimes known as the basis or kernel function

Expanding features...

- Let's include some higher "order" features. For the raw feature x_{1}, x_{2}, x_{3}, we can also include products of them as a feature. So a new feature vector becomes

$$
\left(1, x_{1}, x_{2}, x_{3}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)
$$

where the function of mapping from the raw feature to the new feature vector is sometimes known as the basis or kernel function

- We can do linear regression just as before, just the number of weights increases from 4 to 10

Expanding features...

- Let's include some higher "order" features. For the raw feature x_{1}, x_{2}, x_{3}, we can also include products of them as a feature. So a new feature vector becomes

$$
\left(1, x_{1}, x_{2}, x_{3}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)
$$

where the function of mapping from the raw feature to the new feature vector is sometimes known as the basis or kernel function

- We can do linear regression just as before, just the number of weights increases from 4 to 10
- MSE: 1.01. Nice!

Expanding features (con't)...

- Let's go even higher order and also include products like $x_{1} x_{2} x_{3}$ and $x_{1}^{2} x_{2}$. So the new feature vector now becomes

$$
\left(1, x_{1}, x_{2}, x_{3}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{1}^{3}, x_{2}^{3}, x_{3}^{3}, x_{1}^{2} x_{2}, \cdots\right)
$$

Expanding features (con't)...

- Let's go even higher order and also include products like $x_{1} x_{2} x_{3}$ and $x_{1}^{2} x_{2}$. So the new feature vector now becomes

$$
\left(1, x_{1}, x_{2}, x_{3}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{1}^{3}, x_{2}^{3}, x_{3}^{3}, x_{1}^{2} x_{2}, \cdots\right)
$$

- Again we will do linear regression as before, the number of weights now increases from to 25

Expanding features (con't)...

- Let's go even higher order and also include products like $x_{1} x_{2} x_{3}$ and $x_{1}^{2} x_{2}$. So the new feature vector now becomes

$$
\left(1, x_{1}, x_{2}, x_{3}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{1}^{3}, x_{2}^{3}, x_{3}^{3}, x_{1}^{2} x_{2}, \cdots\right)
$$

- Again we will do linear regression as before, the number of weights now increases from to 25
- MSE: 0.32...

Expanding features (con't)...

- We can go further to the 4 -th order and the number of weights now increases to 70
- MSE: 1.13e-12. Wow!

Wait, how about testing error?

Wait, how about testing error...? Oops

Curve fitting

Why is it so bad for testing? Let's visit another even simpler example

- Let's try to fit a quadratic curve $y=(x-3)^{2}$ with linear regression. And again our training data will be wiggled a little bit by a Gaussian noise

Curve fitting (2nd order)

Let's include higher order feature just as before. Take $\left(1, x, x^{2}\right)$ as feature by including x^{2}

Curve fitting (3rd order)

$\left(1, x, x^{2}, x^{3}\right)$

Curve fitting (4th order)

$\left(1, x, x^{2}, x^{3}, x^{4}\right)$

Curve fitting (5th order)

$\left(1, x, x^{2}, x^{3}, x^{4}, x^{5}\right)$

Curve fitting (6rd order)

$\left(1, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}\right)$

Curve fitting (7rd order)

$\left(1, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, x^{7}\right)$

Curve fitting (8th order)

$\left(1, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, x^{7}, x^{8}\right)$

Curve fitting (9th order)

$\left(1, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, x^{7}, x^{8}, x^{9}\right)$

Overfitting vs underfitting

Lesson learned

- Given sufficiently complex model, we can learn "anything", but ...
- Machine learning is all about generalization
- It is testing error but not training error that actually counts

Lesson learned

- Given sufficiently complex model, we can learn "anything", but ...
- Machine learning is all about generalization
- It is testing error but not training error that actually counts
- Machine learning is very similar to optimization, we just try to find our best model by minimizing a loss function, but...

Lesson learned

- Given sufficiently complex model, we can learn "anything", but ...
- Machine learning is all about generalization
- It is testing error but not training error that actually counts
- Machine learning is very similar to optimization, we just try to find our best model by minimizing a loss function, but...
- Unlike optimization, we don't actually know the true objective function
- Loss function is just an approximated goal

Lesson learned

- Given sufficiently complex model, we can learn "anything", but ...
- Machine learning is all about generalization
- It is testing error but not training error that actually counts
- Machine learning is very similar to optimization, we just try to find our best model by minimizing a loss function, but...
- Unlike optimization, we don't actually know the true objective function
- Loss function is just an approximated goal
- Should try to avoid neither overfitting nor underfitting

Lesson learned

- Given sufficiently complex model, we can learn "anything", but ...
- Machine learning is all about generalization
- It is testing error but not training error that actually counts
- Machine learning is very similar to optimization, we just try to find our best model by minimizing a loss function, but...
- Unlike optimization, we don't actually know the true objective function
- Loss function is just an approximated goal
- Should try to avoid neither overfitting nor underfitting
- Everything should be made as simple as possible, but not simpler Albert Einstein
- Occam's razor: overly complex model is not a good thing (if you don't have sufficient data to fit the model)

High-bias vs high-variance

Sometimes we also refer to overfitting and underfitting roughly as highvariance and high-bias

High-bias vs high-variance

Sometimes we also refer to overfitting and underfitting roughly as highvariance and high-bias

- High-bias: model is too rigid to learn (thus biased) and it cannot adapt to the data

High-bias vs high-variance

Sometimes we also refer to overfitting and underfitting roughly as highvariance and high-bias

- High-bias: model is too rigid to learn (thus biased) and it cannot adapt to the data
- High-variance: model is too elastic and can fit any arbitrary data. When fitted with different training data, the weights just converge to totally different values (thus high variance)

More on overfitting (high-variance)

- In the high-variance domain, the model is essentially learning the training data noise. That's why weights converge to different values for different training data
- Model complexity is relative. If
 more training data are available, the model used to be overfitted may not be overfitted anymore. So should we change a model every time we added new data?!

Regularization

Rather than using a simple model, we could restrain a more complex model from running wild with additional constraints. This process is commonly known as regularization

- As regularization can mitigate the overfitting problem, we can use a more expressive model even when we have only few data. And the same model can be used as data size increases
- A regularized complex model typically outperforms an unregularized simple model

Ridge regression

A most common type of regularization is by restraining the magnitudes of the weights

Ridge regression

A most common type of regularization is by restraining the magnitudes of the weights

- For example, in ridge regression, we try to achieve this by simply including $\frac{1}{2} \lambda \mathbf{w}^{T} \mathbf{w}$ in the loss objective function. Thus

$$
L(\mathbf{w})=\frac{1}{2}\left(\mathbf{y}-X^{T} \mathbf{w}\right)^{T}\left(\mathbf{y}-X^{T} \mathbf{w}\right)+\frac{1}{2} \lambda \mathbf{w}^{T} \mathbf{w}
$$

Ridge regression

A most common type of regularization is by restraining the magnitudes of the weights

- For example, in ridge regression, we try to achieve this by simply including $\frac{1}{2} \lambda \mathbf{w}^{T} \mathbf{w}$ in the loss objective function. Thus

$$
\begin{aligned}
L(\mathbf{w}) & =\frac{1}{2}\left(\mathbf{y}-X^{T} \mathbf{w}\right)^{T}\left(\mathbf{y}-X^{T} \mathbf{w}\right)+\frac{1}{2} \lambda \mathbf{w}^{T} \mathbf{w} \\
& =\frac{1}{2}\left(\mathbf{y}^{T} \mathbf{y}-\mathbf{w}^{T} X \mathbf{y}-\mathbf{y}^{T} X^{T} \mathbf{w}+\mathbf{w}\left[X X^{T}+\lambda /\right] \mathbf{w}\right)
\end{aligned}
$$

- And the gradient is

$$
\nabla_{\mathbf{w}} L(\mathbf{w})=-X \mathbf{y}+\left[X X^{T}+\lambda /\right] \mathbf{w}
$$

Ridge regression

A most common type of regularization is by restraining the magnitudes of the weights

- For example, in ridge regression, we try to achieve this by simply including $\frac{1}{2} \lambda \mathbf{w}^{T} \mathbf{w}$ in the loss objective function. Thus

$$
\begin{aligned}
L(\mathbf{w}) & =\frac{1}{2}\left(\mathbf{y}-X^{T} \mathbf{w}\right)^{T}\left(\mathbf{y}-X^{T} \mathbf{w}\right)+\frac{1}{2} \lambda \mathbf{w}^{T} \mathbf{w} \\
& =\frac{1}{2}\left(\mathbf{y}^{T} \mathbf{y}-\mathbf{w}^{T} X \mathbf{y}-\mathbf{y}^{T} X^{T} \mathbf{w}+\mathbf{w}\left[X X^{T}+\lambda /\right] \mathbf{w}\right)
\end{aligned}
$$

- And the gradient is

$$
\nabla_{\mathbf{w}} L(\mathbf{w})=-X \mathbf{y}+\left[X X^{T}+\lambda I\right] \mathbf{w}
$$

- As before, if we set $\nabla_{\mathbf{w}} L(\mathbf{w})=0$, we have

$$
\mathbf{w}=\left[X X^{T}+\lambda I\right]^{-1} X \mathbf{y}
$$

Lasso

- Another common regularization is lasso. Instead of $\lambda \mathbf{w}^{T} \mathbf{w}$, the scaled l_{1}-norm of $\mathbf{w}, \lambda\|\mathbf{w}\|_{\mathbf{1}}$ is added to the loss objective function Thus, we want to

$$
\min _{\mathbf{w}} \frac{1}{2}\left(\mathbf{y}-X^{T} \mathbf{w}\right)^{T}\left(\mathbf{y}-X^{T} \mathbf{w}\right)+\lambda\|\mathbf{w}\|_{1}
$$

where $\|\mathbf{w}\|_{1}=\left|w_{1}\right|+\left|w_{2}\right|+\cdots+\left|w_{D}\right|$
${ }^{1}$ The ridge regression function in the 0.18 .1 version of sciki-learn appears to have bug. Both ridge regression and lasso function are implemented as lasso:

Lasso

- Another common regularization is lasso. Instead of $\lambda \mathbf{w}^{\top} \mathbf{w}$, the scaled l_{1}-norm of $\mathbf{w}, \lambda\|\mathbf{w}\|_{\mathbf{1}}$ is added to the loss objective function Thus, we want to

$$
\min _{\mathbf{w}} \frac{1}{2}\left(\mathbf{y}-X^{T} \mathbf{w}\right)^{T}\left(\mathbf{y}-X^{T} \mathbf{w}\right)+\lambda\|\mathbf{w}\|_{1}
$$

where $\|\mathbf{w}\|_{1}=\left|w_{1}\right|+\left|w_{2}\right|+\cdots+\left|w_{D}\right|$

- Unlike ridge regression, one cannot write the close form solution directly though
- We will discuss how the optimization is typically performed later
- For the next several slides, I just used sciki-learn library ${ }^{1}$ in Python

[^0]
Lasso

- Another common regularization is lasso. Instead of $\lambda \mathbf{w}^{\top} \mathbf{w}$, the scaled l_{1}-norm of $\mathbf{w}, \lambda\|\mathbf{w}\|_{\mathbf{1}}$ is added to the loss objective function Thus, we want to

$$
\min _{\mathbf{w}} \frac{1}{2}\left(\mathbf{y}-X^{T} \mathbf{w}\right)^{T}\left(\mathbf{y}-X^{T} \mathbf{w}\right)+\lambda\|\mathbf{w}\|_{1}
$$

where $\|\mathbf{w}\|_{1}=\left|w_{1}\right|+\left|w_{2}\right|+\cdots+\left|w_{D}\right|$

- Unlike ridge regression, one cannot write the close form solution directly though
- We will discuss how the optimization is typically performed later
- For the next several slides, I just used sciki-learn library ${ }^{1}$ in Python
- Lasso tends to enforce a sparse weight solution. It was popular several years ago because of compressed sensing

[^1]
Curve fitting with Lasso and ridge regression (degree=9)

Curve fitting with Lasso and ridge regression (degree=9)

Curve fitting with Lasso and ridge regression (degree=9)

Curve fitting with Lasso and ridge regression (degree=9)

Curve fitting with Lasso and ridge regression (degree=9)

Curve fitting with Lasso and ridge regression (degree=9)

Curve fitting with Lasso and ridge regression (degree=9)

$$
\lambda=8
$$

Conclusion

- Machine learning is all about generalization (from data)
- One can decrease the training error to arbitrarily small (by increasing model complexity)
- On the other hand, we really only care about test error, which is composed of
- Bias: High bias when model is too rigid (model complexity is too low) to adapt to the training data
- Variance: High variance when model is too flexible (model complexity is too high) that different sets of training data will converge to completely different weight parameters
- Occam's razor: a good explanation should be minimal

Conclusion

- For supervised learning systems (both classification and regression), we can typically reduce it to an optimization problem of minimizing a loss function (instead of training error) w.r.t. some weights
- Regularization terms can typically be incorporated in the loss function to keep the weights from running wild
- It is almost always better to use a more complex but regularized model than a simple model when one has sufficient training data
- Provided that one regularized wisely
- That is why deep neural networks typically work better

Conclusion

- For supervised learning systems (both classification and regression), we can typically reduce it to an optimization problem of minimizing a loss function (instead of training error) w.r.t. some weights
- Regularization terms can typically be incorporated in the loss function to keep the weights from running wild
- It is almost always better to use a more complex but regularized model than a simple model when one has sufficient training data
- Provided that one regularized wisely
- That is why deep neural networks typically work better
- Actually with sufficient data, we don't need to worry about overfitting

Conclusion

- For supervised learning systems (both classification and regression), we can typically reduce it to an optimization problem of minimizing a loss function (instead of training error) w.r.t. some weights
- Regularization terms can typically be incorporated in the loss function to keep the weights from running wild
- It is almost always better to use a more complex but regularized model than a simple model when one has sufficient training data
- Provided that one regularized wisely
- That is why deep neural networks typically work better
- Actually with sufficient data, we don't need to worry about overfitting
- Furthermore, sometimes you may even want to overfit a small training set (attain 0 training error but large testing error) just to make sure your model is correct

Linear classification

The same linear regression idea can be transferred to classification problems

- Consider binary classification whether an image contains a cat or not
- We can first vectorize the input image into a column vector \mathbf{x} (with an extra 1 appended to account for bias)

Linear classification

The same linear regression idea can be transferred to classification problems

- Consider binary classification whether an image contains a cat or not
- We can first vectorize the input image into a column vector \mathbf{x} (with an extra 1 appended to account for bias)
- E.g., for a very small 2×2 image patch $\left(\begin{array}{ll}10 & 25 \\ 36 & 90\end{array}\right)$, it will be converted to

$$
\mathbf{x}=(10,25,36,90,1)^{T}
$$

Linear classification

The same linear regression idea can be transferred to classification problems

- Consider binary classification whether an image contains a cat or not
- We can first vectorize the input image into a column vector \mathbf{x} (with an extra 1 appended to account for bias)
- E.g., for a very small 2×2 image patch $\left(\begin{array}{ll}10 & 25 \\ 36 & 90\end{array}\right)$, it will be converted to

$$
\mathbf{x}=(10,25,36,90,1)^{T}
$$

- We will decide if the image contains a cat of not by verifying if

$$
\mathbf{x}^{\top} \mathbf{w} \lessgtr 0,
$$

where we will need to obtain the weight \mathbf{w} through training (more later)

Logistic regression

- We can introduce a scoring function

$$
f(\mathbf{x} ; \mathbf{w})=H\left(\mathbf{x}^{T} \mathbf{w}\right)
$$

where $H(t)=\left\{\begin{array}{ll}1, & t \geq 0 \\ 0, & t<0\end{array}\right.$ is a step function and we have a cat if $f(\mathbf{x} ; \mathbf{w})=1$ and no cat if $f(\mathbf{x} ; \mathbf{w})=0$

Logistic regression

- We can introduce a scoring function

$$
f(\mathbf{x} ; \mathbf{w})=H\left(\mathbf{x}^{T} \mathbf{w}\right)
$$

where $H(t)=\left\{\begin{array}{ll}1, & t \geq 0 \\ 0, & t<0\end{array}\right.$ is a step function and we have a cat if
$f(\mathbf{x} ; \mathbf{w})=1$ and no cat if $f(\mathbf{x} ; \mathbf{w})=0$

- Note that $f(\mathbf{x} ; \mathbf{w})$ essentially is a perceptron model and is difficult to train because of the discontinuity of $H(\cdot)$. Instead, we could replace $H(\cdot)$ by the sigmoid (or logistic) function $S(t)=\frac{1}{1+e^{-t}}$
- Hence, known as logistic regression

Loss function of logistic regression

Another advantage of using $S(\cdot)$ is that we can interpret the output as probability and then the loss function can be specified by a "cross-entropy loss" as follows (will explain next)

$$
L(\mathbf{w} ; \mathbf{x})= \begin{cases}-\log f(\mathbf{x} ; \mathbf{w}), & \text { if the image is a cat } \\ -\log (1-f(\mathbf{x} ; \mathbf{w})), & \text { otherwise }\end{cases}
$$

Softmax classifier

- For multiclass problem, we can extend the logistic scoring function to

$$
f_{i}(\mathbf{x} ; W)=\sigma_{i}(W \mathbf{x})
$$

where $\sigma_{i}(\mathbf{y})=\frac{\exp \left(y_{i}\right)}{\sum_{j} \exp \left(y_{j}\right)}$ is known as a softmax function and is really just a normalized exponential function

Softmax classifier

- For multiclass problem, we can extend the logistic scoring function to

$$
f_{i}(\mathbf{x} ; W)=\sigma_{i}(W \mathbf{x})
$$

where $\sigma_{i}(\mathbf{y})=\frac{\exp \left(y_{i}\right)}{\sum_{j} \exp \left(y_{j}\right)}$ is known as a softmax function and is really just a normalized exponential function

- Again, we can interpret $f_{i}(\mathbf{x} ; W)$ as the estimated probability of \mathbf{x} belong to class i
- E.g., $p(c a t ; \mathbf{x}, W)=f_{c a t}(\mathbf{x} ; W)$

Cross entropy loss function

Actual

Estimate

- Let say the image is actually a dog. We can express this as a distribution as shown on the left

Cross entropy loss function

Actual

Estimate

- Let say the image is actually a dog. We can express this as a distribution as shown on the left
- Ideally we would like the estimated probability distribution matches the actual one

Cross entropy loss function

Actual

Estimate

- Let say the image is actually a dog. We can express this as a distribution as shown on the left
- Ideally we would like the estimated probability distribution matches the actual one
- We can measure the difference between two distributions with KL-divergence given by

$$
K L(q \| p)=\sum_{i} q_{i} \log \frac{q_{i}}{p_{i}}
$$

KL-divergence is non-negative

$$
\begin{aligned}
K L(p \| q) & =\sum_{i} p_{i} \log _{2} \frac{p_{i}}{q_{i}} \\
& =-\sum_{i} p_{i} \log _{2} \frac{q_{i}}{p_{i}}
\end{aligned}
$$

KL-divergence is non-negative

$$
\begin{aligned}
K L(p \| q) & =\sum_{i} p_{i} \log _{2} \frac{p_{i}}{q_{i}} \\
& =-\sum_{i} p_{i} \log _{2} \frac{q_{i}}{p_{i}} \\
& =-\sum_{i} \frac{p_{i}}{\ln 2} \ln \frac{q_{i}}{p_{i}}
\end{aligned}
$$

KL-divergence is non-negative

$$
\begin{aligned}
K L(p \| q) & =\sum_{i} p_{i} \log _{2} \frac{p_{i}}{q_{i}} \\
& =-\sum_{i} p_{i} \log _{2} \frac{q_{i}}{p_{i}} \\
& =-\sum_{i} \frac{p_{i}}{\ln 2} \ln \frac{q_{i}}{p_{i}}
\end{aligned}
$$

Fact

For any real $x, \ln (x) \leq x-1$. Moreover, the equality only holds when $x=1$

KL-divergence is non-negative

$$
\begin{aligned}
K L(p \| q) & =\sum_{i} p_{i} \log _{2} \frac{p_{i}}{q_{i}} \\
& =-\sum_{i} p_{i} \log _{2} \frac{q_{i}}{p_{i}} \\
& =-\sum_{i} \frac{p_{i}}{\ln 2} \ln \frac{q_{i}}{p_{i}} \\
& \geq-\sum_{i} \frac{p_{i}}{\ln 2}\left(\frac{q_{i}}{p_{i}}-1\right)
\end{aligned}
$$

Fact

For any real $x, \ln (x) \leq x-1$. Moreover, the equality only holds when $x=1$

KL-divergence is non-negative

$$
\begin{aligned}
K L(p \| q) & =\sum_{i} p_{i} \log _{2} \frac{p_{i}}{q_{i}} \\
& =-\sum_{i} p_{i} \log _{2} \frac{q_{i}}{p_{i}} \\
& =-\sum_{i} \frac{p_{i}}{\ln 2} \ln \frac{q_{i}}{p_{i}} \\
& \geq-\sum_{i} \frac{p_{i}}{\ln 2}\left(\frac{q_{i}}{p_{i}}-1\right) \\
\underbrace{}_{2} & =\frac{1}{\ln 2}\left(\sum_{i} p_{i}-\sum_{i} q_{i}\right)=0
\end{aligned}
$$

Fact

For any real $x, \ln (x) \leq x-1$. Moreover, the equality only holds when $x=1$

Cross entropy loss function (con't)

- KL-divergence is a way to estimate the difference between two distribution
- $K L(q \| p) \geq 0$ and $K L(q \| p)=0$ if and only if $q \equiv p$

Cross entropy loss function (con't)

- KL-divergence is a way to estimate the difference between two distribution
- $K L(q \| p) \geq 0$ and $K L(q \| p)=0$ if and only if $q \equiv p$
- It is not a actual distant measure: $K L(q \| p) \neq K L(p \| q)$

Cross entropy loss function (con't)

- KL-divergence is a way to estimate the difference between two distribution
- $K L(q \| p) \geq 0$ and $K L(q \| p)=0$ if and only if $q \equiv p$
- It is not a actual distant measure: $K L(q \| p) \neq K L(p \| q)$
- We can pick $K L(q \| p)$ as the loss function, then

$$
L(W ; \mathbf{x})=K L(q \| p)=\sum_{i} q_{i} \log \frac{q_{i}}{p_{i}}=-\underbrace{\left[-\sum_{i} q_{i} \log q_{i}\right]}_{\text {entropy }}+\underbrace{\left[-\sum_{i} q_{i} \log p_{i}\right]}_{\text {cross-entropy }}
$$

$=-\sum_{i} q_{i} \log p_{i}$

Cross entropy loss function (con't)

- KL-divergence is a way to estimate the difference between two distribution
- $K L(q \| p) \geq 0$ and $K L(q \| p)=0$ if and only if $q \equiv p$
- It is not a actual distant measure: $K L(q \| p) \neq K L(p \| q)$
- We can pick $K L(q \| p)$ as the loss function, then

$$
L(W ; \mathbf{x})=K L(q \| p)=\sum_{i} q_{i} \log \frac{q_{i}}{p_{i}}=-\underbrace{\left[-\sum_{i} q_{i} \log q_{i}\right]}_{\text {entropy }}+\underbrace{\left[-\sum_{i} q_{i} \log p_{i}\right]}_{\text {cross-entropy }}
$$

$=-\sum_{i} q_{i} \log p_{i}=-\log p_{j(x)}$

Cross entropy loss function (con't)

- KL-divergence is a way to estimate the difference between two distribution
- $K L(q \| p) \geq 0$ and $K L(q \| p)=0$ if and only if $q \equiv p$
- It is not a actual distant measure: $K L(q \| p) \neq K L(p \| q)$
- We can pick $K L(q \| p)$ as the loss function, then

$$
L(W ; \mathbf{x})=K L(q \| p)=\sum_{i} q_{i} \log \frac{q_{i}}{p_{i}}=-\underbrace{\left[-\sum_{i} q_{i} \log q_{i}\right]}_{\text {entropy }}+\underbrace{\left[-\sum_{i} q_{i} \log p_{i}\right]}_{\text {cross-entropy }}
$$

$$
=-\sum_{i} q_{i} \log p_{i}=-\log p_{j(\mathbf{x})}=-\log f_{j(\mathbf{x})}(\mathbf{x} ; W)=-\log \sigma_{j(\mathbf{x})}(W \mathbf{x})
$$

where $j(\mathbf{x})$ is the actual class index of \mathbf{x}

Cross entropy loss function (con't)

- KL-divergence is a way to estimate the difference between two distribution
- $K L(q \| p) \geq 0$ and $K L(q \| p)=0$ if and only if $q \equiv p$
- It is not a actual distant measure: $K L(q \| p) \neq K L(p \| q)$
- We can pick $K L(q \| p)$ as the loss function, then

$$
L(W ; \mathbf{x})=K L(q \| p)=\sum_{i} q_{i} \log \frac{q_{i}}{p_{i}}=-\underbrace{\left[-\sum_{i} q_{i} \log q_{i}\right]}_{\text {entropy }}+\underbrace{\left[-\sum_{i} q_{i} \log p_{i}\right]}_{\text {cross-entropy }}
$$

$$
=-\sum_{i} q_{i} \log p_{i}=-\log p_{j(\mathbf{x})}=-\log f_{j(\mathbf{x})}(\mathbf{x} ; W)=-\log \sigma_{j(\mathbf{x})}(W \mathbf{x})
$$

where $j(\mathbf{x})$ is the actual class index of \mathbf{x}

- The total loss is just sum over all training $\mathbf{x}: L(W)=\sum_{\mathbf{x}} L(W ; \mathbf{x})$

Optimization

- For linear regression and ridge regression, we have a close form solution for minimizing the loss function but in most other models, we do not

Optimization

- For linear regression and ridge regression, we have a close form solution for minimizing the loss function but in most other models, we do not
- In practice, to minimize the loss function w.r.t. the weight W, we can use simple steepest descent. That is,

$$
W=W-\Delta W \quad \text { with } \quad \Delta W=\epsilon \nabla_{W} L(W)
$$

where ϵ is the learning rate and suppose to be small. It is often just set heuristically. We may talk more about it later in this course

Optimization

- For linear regression and ridge regression, we have a close form solution for minimizing the loss function but in most other models, we do not
- In practice, to minimize the loss function w.r.t. the weight W, we can use simple steepest descent. That is,

$$
W=W-\Delta W \quad \text { with } \quad \Delta W=\epsilon \nabla_{W} L(W)
$$

where ϵ is the learning rate and suppose to be small. It is often just set heuristically. We may talk more about it later in this course

- So to optimize, we need to find the gradient of L wrt W

Derivative of softmax loss

- Recall that $L(W)=\sum_{\mathbf{x}} L(W ; \mathbf{x})=-\sum_{\mathbf{x}} \sum_{l} q_{l}^{(\mathbf{x})} \log \sigma_{l}(W \mathbf{x})$, where $q_{j}^{(\mathrm{x})}$ is non-zero $(=1)$ only when j is the true label of \mathbf{x}

Derivative of softmax loss

- Recall that $L(W)=\sum_{\mathbf{x}} L(W ; \mathbf{x})=-\sum_{\mathbf{x}} \sum_{l} q_{l}^{(\mathbf{x})} \log \sigma_{l}(W \mathbf{x})$, where $q_{j}^{(\mathrm{x})}$ is non-zero $(=1)$ only when j is the true label of \mathbf{x}
- $\nabla L(W)=\sum_{\mathbf{x}} \nabla L(W ; \mathbf{x})$. Let's focus on computing the individual gradient $\nabla L(W ; \mathbf{x})$

Derivative of softmax loss

- Recall that $L(W)=\sum_{\mathbf{x}} L(W ; \mathbf{x})=-\sum_{\mathbf{x}} \sum_{l} q_{l}^{(\mathrm{x})} \log \sigma_{l}(W \mathbf{x})$, where $q_{j}^{(\mathrm{x})}$ is non-zero $(=1)$ only when j is the true label of \mathbf{x}
- $\nabla L(W)=\sum_{\mathbf{x}} \nabla L(W ; \mathbf{x})$. Let's focus on computing the individual gradient $\nabla L(W ; \mathbf{x})$
- Write $L(W ; \mathbf{x})=\sum_{l} q_{l} \log \sigma_{l}(\mathbf{o})$, where $\mathbf{o}=W \mathbf{x}$. And we drop the superscript (\mathbf{x}) for clarity

Derivative of softmax loss

- Recall that $L(W)=\sum_{\mathbf{x}} L(W ; \mathbf{x})=-\sum_{\mathbf{x}} \sum_{l} q_{l}^{(\mathrm{x})} \log \sigma_{l}(W \mathbf{x})$, where $q_{j}^{(\mathrm{x})}$ is non-zero $(=1)$ only when j is the true label of \mathbf{x}
- $\nabla L(W)=\sum_{\mathbf{x}} \nabla L(W ; \mathbf{x})$. Let's focus on computing the individual gradient $\nabla L(W ; \mathbf{x})$
- Write $L(W ; \mathbf{x})=\sum_{l} q_{l} \log \sigma_{l}(\mathbf{o})$, where $\mathbf{o}=W \mathbf{x}$. And we drop the superscript (x) for clarity
- Using chain rule,

$$
\frac{\partial}{\partial w_{i, j}} L(W ; \mathbf{x})=\sum_{k} \frac{\partial}{\partial o_{k}} L(W ; \mathbf{x}) \frac{\partial o_{k}}{\partial w_{i, j}}=x_{j} \frac{\partial}{\partial o_{i}} L(W ; \mathbf{x})
$$

Derivative of softmax loss

- Recall that $L(W)=\sum_{\mathbf{x}} L(W ; \mathbf{x})=-\sum_{\mathbf{x}} \sum_{l} q_{l}^{(\mathrm{x})} \log \sigma_{l}(W \mathbf{x})$, where $q_{j}^{(\mathrm{x})}$ is non-zero $(=1)$ only when j is the true label of \mathbf{x}
- $\nabla L(W)=\sum_{\mathbf{x}} \nabla L(W ; \mathbf{x})$. Let's focus on computing the individual gradient $\nabla L(W ; \mathbf{x})$
- Write $L(W ; \mathbf{x})=\sum_{l} q_{l} \log \sigma_{l}(\mathbf{o})$, where $\mathbf{o}=W \mathbf{x}$. And we drop the superscript (x) for clarity
- Using chain rule,

$$
\frac{\partial}{\partial w_{i, j}} L(W ; \mathbf{x})=\sum_{k} \frac{\partial}{\partial o_{k}} L(W ; \mathbf{x}) \frac{\partial o_{k}}{\partial w_{i, j}}=x_{j} \frac{\partial}{\partial o_{i}} L(W ; \mathbf{x})
$$

- We need to find $\frac{\partial}{\partial o_{i}} L(W ; \mathbf{x})$
$\frac{\partial}{\partial 0_{i}} L(W ; \mathbf{x})$
- Recall $L(W ; \mathbf{x})=\sum_{l} q_{l} \log \sigma_{l}(\mathbf{o})$ and $^{2} \sigma_{l}(\mathbf{o})=\frac{\exp \left(o_{l}\right)}{\sum_{k} \exp \left(o_{k}\right)}$. It is easy
to verify that $\frac{\partial}{\partial o_{i}} \sigma_{j}(\mathbf{0})=-\sigma_{i}(\mathbf{0}) \sigma_{j}(\mathbf{0})$ and
$\frac{\partial}{\partial o_{i}} \sigma_{i}(\mathbf{o})=\sigma_{i}(\mathbf{o})\left(1-\sigma_{i}(\mathbf{o})\right)$.

$\frac{\partial}{\partial 0} L(W ; x)$

- Recall $L(W ; \mathbf{x})=\sum_{l} q_{l} \log \sigma_{l}(\mathbf{o})$ and $^{2} \sigma_{l}(\mathbf{o})=\frac{\exp \left(o_{l}\right)}{\sum_{k} \exp \left(o_{k}\right)}$. It is easy to verify that $\frac{\partial}{\partial \mathrm{o}_{i}} \sigma_{j}(\mathbf{0})=-\sigma_{i}(\mathbf{0}) \sigma_{j}(\mathbf{0})$ and $\frac{\partial}{\partial o_{i}} \sigma_{i}(\mathbf{o})=\sigma_{i}(\mathbf{o})\left(1-\sigma_{i}(\mathbf{o})\right)$. Thus,

$$
\begin{aligned}
\frac{\partial}{\partial o_{i}} L(W ; \mathbf{x}) & =-\frac{\partial}{\partial o_{i}} \sum_{l} q_{l} \log \sigma_{l}(\mathbf{o}) \\
& =\frac{q_{i}}{\sigma_{i}}\left(\sigma_{i}\right)\left(1-\sigma_{i}\right)-\sum_{l \neq i} \frac{q_{l}}{\sigma_{l}} \sigma_{i} \sigma_{l}=q_{i}-\sum_{l} q_{l} \sigma_{i} \\
& =q_{i}-\sigma_{i}
\end{aligned}
$$

$\frac{\partial}{\partial 0_{i}} L(W ; x)$

- Recall $L(W ; \mathbf{x})=\sum_{l} q_{l} \log \sigma_{l}(\mathbf{o})$ and $^{2} \sigma_{l}(\mathbf{o})=\frac{\exp \left(o_{l}\right)}{\sum_{k} \exp \left(o_{k}\right)}$. It is easy to verify that $\frac{\partial}{\partial o_{i}} \sigma_{j}(\mathbf{0})=-\sigma_{i}(\mathbf{0}) \sigma_{j}(\mathbf{0})$ and $\frac{\partial}{\partial o_{i}} \sigma_{i}(\mathbf{o})=\sigma_{i}(\mathbf{o})\left(1-\sigma_{i}(\mathbf{o})\right)$. Thus,

$$
\begin{aligned}
\frac{\partial}{\partial o_{i}} L(W ; \mathbf{x}) & =-\frac{\partial}{\partial o_{i}} \sum_{l} q_{l} \log \sigma_{l}(\mathbf{o}) \\
& =\frac{q_{i}}{\sigma_{i}}\left(\sigma_{i}\right)\left(1-\sigma_{i}\right)-\sum_{l \neq i} \frac{q_{l}}{\sigma_{l}} \sigma_{i} \sigma_{l}=q_{i}-\sum_{l} q_{l} \sigma_{i} \\
& =q_{i}-\sigma_{i}
\end{aligned}
$$

- Using chain rule

$$
\frac{\partial}{\partial w_{i, j}} L(W ; \mathbf{x})=\sum_{k} \frac{\partial}{\partial o_{k}} L(W ; \mathbf{x}) \frac{\partial o_{k}}{\partial w_{i, j}}=\frac{\partial}{\partial o_{i}} L(W ; \mathbf{x}) x_{j}=\left(q_{i}-\sigma_{i}\right) x_{j}
$$

${ }^{2} \mathbf{o}=W \mathbf{x}$

Stochastic gradient descent

- An immediate issue that one will come across is that the original "full-batch" gradient descent is too slow

Stochastic gradient descent

- An immediate issue that one will come across is that the original "full-batch" gradient descent is too slow
- Recall that $L(W)$ supposes to a sum over individual loss of all training data $L(W ; \mathbf{x})$

Stochastic gradient descent

- An immediate issue that one will come across is that the original "full-batch" gradient descent is too slow
- Recall that $L(W)$ supposes to a sum over individual loss of all training data $L(W ; \mathbf{x})$
- But $L(W)$ is really just an approximate as any training set is stochastic in natural in any case. Why not just approximate $L(W)$ not as refined with few data? That is, just pick a subset \mathcal{X}_{i} from the training set and use

$$
L_{i}(W)=\sum_{\mathbf{x} \in \mathcal{X}_{i}} L(W ; \mathbf{x})
$$

instead. And this is known as the mini-batch gradient descent

Stochastic gradient descent

- An immediate issue that one will come across is that the original "full-batch" gradient descent is too slow
- Recall that $L(W)$ supposes to a sum over individual loss of all training data $L(W ; \mathbf{x})$
- But $L(W)$ is really just an approximate as any training set is stochastic in natural in any case. Why not just approximate $L(W)$ not as refined with few data? That is, just pick a subset \mathcal{X}_{i} from the training set and use

$$
L_{i}(W)=\sum_{\mathbf{x} \in \mathcal{X}_{i}} L(W ; \mathbf{x})
$$

instead. And this is known as the mini-batch gradient descent

- One may go to the extreme and only pick one \mathbf{x} to estimate the gradient. This formally is known as the stochastic gradient descent. But in practice, no one uses it. But people often say stochastic gradient descent when they actually mean mini-batch gradient descent

Gradient descent with moment

- Going downhill reduces the error, but the direction of steepest descent does not point at the minimum unless the ellipse is a circle

Gradient descent with moment

- Going downhill reduces the error, but the direction of steepest descent does not point at the minimum unless the ellipse is a circle
- The gradient is big in the direction in which we only want to travel a small distance
- The gradient is small in the direction in which we want to travel a large distance

[^2]
Gradient descent with moment

- Going downhill reduces the error, but the direction of steepest descent does not point at the minimum unless the ellipse is a circle
- The gradient is big in the direction in which we only want to travel a small distance
- The gradient is small in the direction in which we want to travel a large distance
- A simple solution is to introduce "momentum" to the change of W.

That is,

$$
\Delta W=\lambda(\epsilon \nabla W L(W))+(1-\lambda) \Delta W^{(o l d)}
$$

- Will talk more about optimization methods later. So much for today

[^3]
Remark on computing gradient

- For the previous discussion, we always assume that the gradient can be found analytically. In practice, it may not be true also

Remark on computing gradient

- For the previous discussion, we always assume that the gradient can be found analytically. In practice, it may not be true also
- But gradient of $L(W)$ can easily be computed numerically. For example, say $W=\left(\begin{array}{cc}4.1 & 3.3 \\ -1.2 & 2.1\end{array}\right)$,

$$
\frac{\partial}{\partial W_{1,1}} L(W) \approx \frac{1}{h}\left[L\left(\left(\begin{array}{cc}
4.1+h & 3.3 \\
-1.2 & 2.1
\end{array}\right)\right)-L\left(\left(\begin{array}{cc}
4.1 & 3.3 \\
-1.2 & 2.1
\end{array}\right)\right)\right]
$$

Remark on computing gradient

- For the previous discussion, we always assume that the gradient can be found analytically. In practice, it may not be true also
- But gradient of $L(W)$ can easily be computed numerically. For example, say $W=\left(\begin{array}{cc}4.1 & 3.3 \\ -1.2 & 2.1\end{array}\right)$,

$$
\frac{\partial}{\partial W_{1,1}} L(W) \approx \frac{1}{h}\left[L\left(\left(\begin{array}{cc}
4.1+h & 3.3 \\
-1.2 & 2.1
\end{array}\right)\right)-L\left(\left(\begin{array}{cc}
4.1 & 3.3 \\
-1.2 & 2.1
\end{array}\right)\right)\right]
$$

- Actually, the numerical gradient is useful even if an analytical gradient exists. It at least provides a mean to debug your system
- And luckily, for some packages such as Theano, they automatically find the analytical gradient for you

Conclusion

- For classification, we can feed the output of a linear regressor to a logistic function or softmax function to form a linear classifier
- For only two classes, we have the logistic "regression" classifier
- For multi-class cases, we have the softmax classifiers

Conclusion

- For classification, we can feed the output of a linear regressor to a logistic function or softmax function to form a linear classifier
- For only two classes, we have the logistic "regression" classifier
- For multi-class cases, we have the softmax classifiers
- For finding the optimal weights, we may not be able to get the solution right away analytically (possible though for linear regression and ridge regression)
- Can optimize iteratively with gradient descent
- Can speed up gradient descent by using mini-batch instead of full batch
- Momentum is a common trick to improve optimization efficiency also

SVM

- Denote $\hat{\mathbf{w}}=\frac{\mathbf{w}}{\|\mathbf{w}\|}, \hat{\mathbf{w}} \cdot \mathbf{x}_{1}$ ($\hat{\mathbf{w}} \cdot \mathbf{x}_{-1}$) is the distance of the boundary line of $\mathbf{x}_{1}\left(\mathbf{x}_{-1}\right)$ from the origin

SVM

- Denote $\hat{\mathbf{w}}=\frac{\mathbf{w}}{\|\mathbf{w}\|}, \hat{\mathbf{w}} \cdot \mathbf{x}_{1}$ ($\hat{\mathbf{w}} \cdot \mathbf{x}_{-1}$) is the distance of the boundary line of $\mathbf{x}_{1}\left(\mathbf{x}_{-1}\right)$ from the origin
- Thus, the distance between the two boundary lines is $\hat{\mathbf{w}} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{-1}\right)=\frac{2}{\|\mathbf{w}\|}$

SVM

- Denote $\hat{\mathbf{w}}=\frac{\mathbf{w}}{\|\mathbf{w}\|}, \hat{\mathbf{w}} \cdot \mathbf{x}_{1}$ ($\hat{\mathbf{w}} \cdot \mathbf{x}_{-1}$) is the distance of the boundary line of $\mathbf{x}_{1}\left(\mathbf{x}_{-1}\right)$ from the origin
- Thus, the distance between the two boundary lines is $\hat{\mathbf{w}} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{-1}\right)=\frac{2}{\|\mathbf{w}\|}$
- SVM: for all \mathbf{x}_{i}

$$
\max \frac{2}{\|\mathbf{w}\|} \quad \text { s.t. } \quad y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right) \geq 1
$$

SVM

- Denote $\hat{\mathbf{w}}=\frac{\mathbf{w}}{\|\mathbf{w}\|}, \hat{\mathbf{w}} \cdot \mathbf{x}_{1}$ ($\hat{\mathbf{w}} \cdot \mathbf{x}_{-1}$) is the distance of the boundary line of $\mathbf{x}_{1}\left(\mathbf{x}_{-1}\right)$ from the origin
- Thus, the distance between the two boundary lines is $\hat{\mathbf{w}} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{-1}\right)=\frac{2}{\|\mathbf{w}\|}$
- SVM: for all \mathbf{x}_{i}
$\max \frac{2}{\|\mathbf{w}\|} \quad$ s.t. $\quad y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right) \geq 1$
Equivalently, $\min \|\mathbf{w}\| \quad$ s.t. $\quad y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right) \geq 1$

Soft-margin SVM and hinge loss

- Hard-margin SVM

$$
\min \|\mathbf{w}\| \quad \text { s.t. } \quad y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right)-1 \geq 0
$$

- Soft-margin SVM (allow constrain to be violate)
- Define "hinge" loss function $h(z)=\max (0, z)$
- Want to minimize hinge loss

$$
\sum_{i} h\left(1-y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right)\right)
$$

- Soft-margin SVM

$$
\min \lambda\|\mathbf{w}\|^{2}+\sum_{i} h\left(1-y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right)\right)
$$

Multi-class SVM

- We can easily extend soft-margin SVM to multi-class case. Let $s_{l}(\mathbf{x})=\mathbf{w}_{\mathbf{l}}^{T}\left[\begin{array}{l}1 \\ \mathbf{x}\end{array}\right]$ be the score for class l.

Multi-class SVM

- We can easily extend soft-margin SVM to multi-class case. Let $s_{l}(\mathbf{x})=\mathbf{w}_{\mathbf{1}}^{T}\left[\begin{array}{l}1 \\ \mathbf{x}\end{array}\right]$ be the score for class $/$. We can define the hinge loss for sample \mathbf{x} as

$$
\sum_{l \neq j} h\left(s_{l}(\mathbf{x})-s_{j}(\mathbf{x})+\Delta\right)=\sum_{l \neq j} \max \left(0, s_{l}(\mathbf{x})-s_{j}(\mathbf{x})+\Delta\right)
$$

where j is the true label of \mathbf{x} and Δ contributes a margin ensuring that the true label score has to be at least Δ more than the rest to be penalty free

Multi-class SVM

- We can easily extend soft-margin SVM to multi-class case. Let $s_{l}(\mathbf{x})=\mathbf{w}_{\mathbf{l}}{ }^{T}\left[\begin{array}{l}1 \\ \mathbf{x}\end{array}\right]$ be the score for class I. We can define the hinge loss for sample \mathbf{x} as

$$
\sum_{l \neq j} h\left(s_{l}(\mathbf{x})-s_{j}(\mathbf{x})+\Delta\right)=\sum_{l \neq j} \max \left(0, s_{l}(\mathbf{x})-s_{j}(\mathbf{x})+\Delta\right)
$$

where j is the true label of \mathbf{x} and Δ contributes a margin ensuring that the true label score has to be at least Δ more than the rest to be penalty free

- Multi-class SVM:

$$
\min \lambda\|\mathbf{w}\|^{2}+\sum_{i} \sum_{l \neq j\left(\mathbf{x}_{i}\right)} h\left(s_{l}\left(\mathbf{x}_{i}\right)-s_{j\left(\mathbf{x}_{i}\right)}\left(\mathbf{x}_{i}\right)+\Delta\right)
$$

Presentation logistics

- Tentative start dates: mid-Feb
- Pick your packages, give me your preference by next Thursday. Include your highest three preferred packages with sorted order

Presentation logistics

- Tentative start dates: mid-Feb
- Pick your packages, give me your preference by next Thursday. Include your highest three preferred packages with sorted order
- We may go through a lottery if too many of you pick the same packages. Aim to have diversity besides depth
- The order of presentation is based on popularity of your topic. The most popular topic will be presented first and so on

Presentation logistics

- Tentative start dates: mid-Feb
- Pick your packages, give me your preference by next Thursday. Include your highest three preferred packages with sorted order
- We may go through a lottery if too many of you pick the same packages. Aim to have diversity besides depth
- The order of presentation is based on popularity of your topic. The most popular topic will be presented first and so on
- Within a topic, the order will be determined randomly

Presentation logistics (con't)

- I will let you know who are presenting the same package as you. I will let you all to coordinate yourself. Try to present different aspect of the package from your classmate. A little overlapping is acceptable though

Presentation logistics (con't)

- I will let you know who are presenting the same package as you. I will let you all to coordinate yourself. Try to present different aspect of the package from your classmate. A little overlapping is acceptable though
- >20 minutes and <40 minutes presentation, don't drag too long. Try to get quick to the point

Presentation logistics (con't)

- I will let you know who are presenting the same package as you. I will let you all to coordinate yourself. Try to present different aspect of the package from your classmate. A little overlapping is acceptable though
- >20 minutes and <40 minutes presentation, don't drag too long. Try to get quick to the point
- I'll try to record the video and share with you all (maybe put up on YouTube)

Presentation logistics (con't)

- I will let you know who are presenting the same package as you. I will let you all to coordinate yourself. Try to present different aspect of the package from your classmate. A little overlapping is acceptable though
- >20 minutes and <40 minutes presentation, don't drag too long. Try to get quick to the point
- I'll try to record the video and share with you all (maybe put up on YouTube)
- Four bonus awards: (5% each) for the best presentation and (3\% each) for first runner up according to my taste and popular votes from you all, respectively
- Tentatively reserve Tuesday classes for presentations

Software packages

	Pros	Cons
Caffe(2)	Don't need to write code	Adding module is harder (need C++); RNN is not support
(Py)Torch	Easy to create own module; Can do RNN	Lua (check out PyTorch)
Theano	Flexible and powerful	Kind of low-level
Tensorflow	Industry loves it. Most pop- ular	Slow
Keras Lasagne	Less verbose than Theano	Less flexible
MXnet	Rumored to be fast	Unpopular
Matconvnet	MATLAB	CNN only
CNTK (MS)	$?$	$?$
Paddle (Baidu)	$?$	$?$

Watch this CS231n lecture

Final reminder

Assignment 1 and package selection will be due next Thursday

[^0]: ${ }^{1}$ The ridge regression function in the 0.18 .1 version of sciki-learn appears to have bug. Both ridge regression and lasso function are implemented as lasso:

[^1]: ${ }^{1}$ The ridge regression function in the 0.18 .1 version of sciki-learn appears to have bug. Both ridge regression and lasso function are implemented as lasso.

[^2]: ${ }^{2}$ Slide borrowed from Hinton's coursera course

[^3]: ${ }^{2}$ Slide borrowed from Hinton's coursera course

