Neural Networks

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2018

Table of Contents

(1) Review
(2) Back-propagation
(3) Activation functions

4 Initialization
(5) Regularization
(6) Optimization
(7) Conclusions

Logistics

- Need your presentation preference by the end of this class. Again, please give me three package names with order of preference. The final decision will be computed by minimizing the following cost function :)
- $\sum_{\text {student }}$ student cost $+\sum_{\text {package }}$ package cost
- student cost $= \begin{cases}0, & \text { first priority } \\ 2.5, & \text { second priority } \\ 5, & \text { third priority }\end{cases}$
- package cost $=\alpha \cdot 2^{(\text {num }}$ presentations covered $)$

Logistics

- Need your presentation preference by the end of this class. Again, please give me three package names with order of preference. The final decision will be computed by minimizing the following cost function :)
- $\sum_{\text {student }}$ student cost $+\sum_{\text {package }}$ package cost
- student cost $= \begin{cases}0, & \text { first priority } \\ 2.5, & \text { second priority }\end{cases}$

5, third priority

- package cost $=\alpha \cdot 2^{(\text {num }}$ presentations covered)
- Most popular package (in terms of first priority pick) will be presented first. If there is a tie, I will break it with popularity based all choices regardless of priority. If there is a tie, I will break it by random

Logistics

- Need your presentation preference by the end of this class. Again, please give me three package names with order of preference. The final decision will be computed by minimizing the following cost function :)
- $\sum_{\text {student }}$ student cost $+\sum_{\text {package }}$ package cost
- student cost $= \begin{cases}0, & \text { first priority } \\ 2.5, & \text { second priority }\end{cases}$

5, third priority

- package cost $=\alpha \cdot 2^{(\text {num presentations covered })}$
- Most popular package (in terms of first priority pick) will be presented first. If there is a tie, I will break it with popularity based all choices regardless of priority. If there is a tie, I will break it by random
- Students presenting the same packages will be ordered randomly

Logistics

- HW1 due this Thursday
- Package choice due this Thursday

Review

In the last couple classes, we discussed

- Basic concepts of regression and classification
- Examples of regularization such as ridge $\left(l_{2}\right)$ regression and lasso $\left(l_{1}\right)$
- Linear classifiers including logistic regression and softmax classifier

Review

In the last couple classes, we discussed

- Basic concepts of regression and classification
- Examples of regularization such as ridge $\left(l_{2}\right)$ regression and lasso $\left(l_{1}\right)$
- Linear classifiers including logistic regression and softmax classifier
- We introduced loss functions and the concept of training a classifier through minimizing the loss function

Review

In the last couple classes, we discussed

- Basic concepts of regression and classification
- Examples of regularization such as ridge $\left(l_{2}\right)$ regression and lasso $\left(l_{1}\right)$
- Linear classifiers including logistic regression and softmax classifier
- We introduced loss functions and the concept of training a classifier through minimizing the loss function
- We described stochastic gradient descent and momentum trick for classification

Review

In the last couple classes, we discussed

- Basic concepts of regression and classification
- Examples of regularization such as ridge $\left(l_{2}\right)$ regression and lasso $\left(l_{1}\right)$
- Linear classifiers including logistic regression and softmax classifier
- We introduced loss functions and the concept of training a classifier through minimizing the loss function
- We described stochastic gradient descent and momentum trick for classification
- We also briefly went through SVM and hinge loss

SVM

- Denote $\hat{\mathbf{w}}=\frac{\mathbf{w}}{\|\mathbf{w}\|}, \hat{\mathbf{w}} \cdot \mathbf{x}_{1}$ ($\hat{\mathbf{w}} \cdot \mathbf{x}_{-1}$) is the distance of the boundary line of $\mathbf{x}_{1}\left(\mathbf{x}_{-1}\right)$ from the origin

SVM

- Denote $\hat{\mathbf{w}}=\frac{\mathbf{w}}{\|\mathbf{w}\|}, \hat{\mathbf{w}} \cdot \mathbf{x}_{1}$ ($\hat{\mathbf{w}} \cdot \mathbf{x}_{-1}$) is the distance of the boundary line of $\mathbf{x}_{1}\left(\mathbf{x}_{-1}\right)$ from the origin
- Thus, the distance between the two boundary lines is $\hat{\mathbf{w}} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{-1}\right)=\frac{2}{\|\mathbf{w}\|}$

SVM

- Denote $\hat{\mathbf{w}}=\frac{\mathbf{w}}{\|\mathbf{w}\|}, \hat{\mathbf{w}} \cdot \mathbf{x}_{1}$ ($\hat{\mathbf{w}} \cdot \mathbf{x}_{-1}$) is the distance of the boundary line of $\mathbf{x}_{1}\left(\mathbf{x}_{-1}\right)$ from the origin
- Thus, the distance between the two boundary lines is $\hat{\mathbf{w}} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{-1}\right)=\frac{2}{\|\mathbf{w}\|}$
- SVM: for all \mathbf{x}_{i}
$\max \frac{2}{\|\mathbf{w}\|} \quad$ s.t. $\quad y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right) \geq 1$

SVM

- Denote $\hat{\mathbf{w}}=\frac{\mathbf{w}}{\|\mathbf{w}\|}, \hat{\mathbf{w}} \cdot \mathbf{x}_{1}$ ($\hat{\mathbf{w}} \cdot \mathbf{x}_{-1}$) is the distance of the boundary line of $\mathbf{x}_{1}\left(\mathbf{x}_{-1}\right)$ from the origin
- Thus, the distance between the two boundary lines is $\hat{\mathbf{w}} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{-1}\right)=\frac{2}{\|\mathbf{w}\|}$
- SVM: for all \mathbf{x}_{i}
$\max \frac{2}{\|\mathbf{w}\|} \quad$ s.t. $\quad y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right) \geq 1$
Equivalently,

$$
\min \|\mathbf{w}\| \quad \text { s.t. } \quad y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right) \geq 1
$$

Soft-margin SVM and hinge loss

- Hard-margin SVM

$$
\min \|\mathbf{w}\| \quad \text { s.t. } \quad y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right)-1 \geq 0
$$

- Soft-margin SVM (allow constrain to be violate)
- Define "hinge" loss function

$$
h(z)=\max (0, z)
$$

- Want to minimize hinge loss

$$
\sum_{i} h\left(1-y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right)\right)
$$

- Soft-margin SVM

$$
\min \lambda\|\mathbf{w}\|^{2}+\sum_{i} h\left(1-y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}-b\right)\right)
$$

Multi-class SVM

- We can easily extend soft-margin SVM to multi-class case. Let $s_{l}(\mathbf{x})=\mathbf{w}_{\mathbf{l}}^{T}\left[\begin{array}{l}1 \\ \mathbf{x}\end{array}\right]$ be the score for class l.

Multi-class SVM

- We can easily extend soft-margin SVM to multi-class case. Let $s_{l}(\mathbf{x})=\mathbf{w}_{\mathbf{l}}{ }^{T}\left[\begin{array}{l}1 \\ \mathbf{x}\end{array}\right]$ be the score for class l. We can define the hinge loss for sample \mathbf{x} as

$$
\sum_{l \neq j} h\left(s_{l}(\mathbf{x})-s_{j}(\mathbf{x})+\Delta\right)=\sum_{l \neq j} \max \left(0, s_{l}(\mathbf{x})-s_{j}(\mathbf{x})+\Delta\right),
$$

where j is the true label of \mathbf{x} and Δ contributes a margin ensuring that the true label score has to be at least Δ more than the rest to be penalty free

Multi-class SVM

- We can easily extend soft-margin SVM to multi-class case. Let $s_{l}(\mathbf{x})=\mathbf{w}_{\mathbf{l}}{ }^{T}\left[\begin{array}{l}1 \\ \mathbf{x}\end{array}\right]$ be the score for class l. We can define the hinge loss for sample \mathbf{x} as

$$
\sum_{l \neq j} h\left(s_{l}(\mathbf{x})-s_{j}(\mathbf{x})+\Delta\right)=\sum_{l \neq j} \max \left(0, s_{l}(\mathbf{x})-s_{j}(\mathbf{x})+\Delta\right),
$$

where j is the true label of \mathbf{x} and Δ contributes a margin ensuring that the true label score has to be at least Δ more than the rest to be penalty free

- Multi-class SVM:

$$
\min \lambda\|\mathbf{w}\|^{2}+\sum_{i} \sum_{l \neq j\left(\mathbf{x}_{i}\right)} h\left(s_{l}\left(\mathbf{x}_{i}\right)-s_{j\left(\mathbf{x}_{i}\right)}\left(\mathbf{x}_{i}\right)+\Delta\right)
$$

Perceptron

- Perceptron is an artificial neuron with step function as activation function

Perceptron

- Perceptron is an artificial neuron with step function as activation function
- It is impossible to extend perceptron to multilayer. Multilayer perceptron (MLP) is a misnomer. Step activation function is never used multilayer neural networks (not trainable)

Perceptron

- Perceptron is an artificial neuron with step function as activation function
- It is impossible to extend perceptron to multilayer. Multilayer perceptron (MLP) is a misnomer. Step activation function is never used multilayer neural networks (not trainable)
- According to Hinton, perceptrons are still used in systems with large number (millions) of features. Other than that, it has relatively limited use since most problems are not linearly separable

Perceptron

- In most cases, perceptron would be useful if only one manages to handcode inputs into separable features

Perceptron

- In most cases, perceptron would be useful if only one manages to handcode inputs into separable features
- That was the main area of research in many machine learning applications-finding efficient ways to generate good features

Perceptron

- In most cases, perceptron would be useful if only one manages to handcode inputs into separable features
- That was the main area of research in many machine learning applications-finding efficient ways to generate good features
- One attractive characteristic of deep learning (neural networks) is that we not only can train the classifier but also can learn the appropriate features automatically

Nomenclature of basic network architectures

Neural Networks: Architectures

hidden layer 1 hidden layer 2
"3-layer Neural Net", or "2-hidden-layer Neural Net"
"Fully-connected" layers

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-77 13 Jan 2016

Caveat: don't go too far for the brain analogy

Biological neurons:

- Many different types
- Dendrite can perform complex non-linear operations
- Synapses are not a single weight but a complex non-linear dynamical system
- Rate code may not be adequate

Also see London 2005 (Slide credit: CS231n)

Back-propagation and computational graph

- As described in last lecture, training in supervised learning system often boils down to minimizing of loss function w.r.t. some parameters

Back-propagation and computational graph

- As described in last lecture, training in supervised learning system often boils down to minimizing of loss function w.r.t. some parameters
- For neural networks, it is thus necessary to find $\frac{\partial L(\mathbf{w} ; \mathbf{x})}{\partial w}$ for a weight in each layer

Back-propagation and computational graph

- As described in last lecture, training in supervised learning system often boils down to minimizing of loss function w.r.t. some parameters
- For neural networks, it is thus necessary to find $\frac{\partial L(\mathbf{w} ; \mathbf{x})}{\partial w}$ for a weight in each layer
- Back-propagation (BP) is an efficient way to find such derivation. Actually it is in fact just another way of spelling out the chain rule $\frac{\partial L}{\partial x}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial x}$ in calculus

Back-propagation and computational graph

- As described in last lecture, training in supervised learning system often boils down to minimizing of loss function w.r.t. some parameters
- For neural networks, it is thus necessary to find $\frac{\partial L(\mathbf{w} ; \mathbf{x})}{\partial w}$ for a weight in each layer
- Back-propagation (BP) is an efficient way to find such derivation. Actually it is in fact just another way of spelling out the chain rule $\frac{\partial L}{\partial x}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial x}$ in calculus
- It is often easier to explain BP in terms of computational graph

Back-propagation and computational graph

- As described in last lecture, training in supervised learning system often boils down to minimizing of loss function w.r.t. some parameters
- For neural networks, it is thus necessary to find $\frac{\partial L(\mathbf{w} ; \mathbf{x})}{\partial w}$ for a weight in each layer
- Back-propagation (BP) is an efficient way to find such derivation. Actually it is in fact just another way of spelling out the chain rule $\frac{\partial L}{\partial x}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial x}$ in calculus
- It is often easier to explain BP in terms of computational graph
- Computational graph can be interpreted as generalization of a neural networks
- Neuron no longer will be restricted to summation and activation function but can be any computation as well (e.g., max)

Back-propagation and computational graph

- As described in last lecture, training in supervised learning system often boils down to minimizing of loss function w.r.t. some parameters
- For neural networks, it is thus necessary to find $\frac{\partial L(\mathbf{w} ; \mathbf{x})}{\partial w}$ for a weight in each layer
- Back-propagation (BP) is an efficient way to find such derivation. Actually it is in fact just another way of spelling out the chain rule $\frac{\partial L}{\partial x}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial x}$ in calculus
- It is often easier to explain BP in terms of computational graph
- Computational graph can be interpreted as generalization of a neural networks
- Neuron no longer will be restricted to summation and activation function but can be any computation as well (e.g., max)
- Let me try to explain through an example

Multi-class SVM

Computational graphs

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-8
April 13, 2017

More complex example

Convolutional network (AlexNet)

A simple BP example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

A simple BP example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-11 13 Jan 2016

A simple BP example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\end{aligned}
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$
Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-12 13 Jan 2016

A simple BP example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-13 13 Jan 2016

A simple BP example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$
Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-14 13 Jan 2016

A simple BP example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$
Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-15 13 Jan 2016

A simple BP example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-16 13 Jan 2016

A simple BP example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-17 13 Jan 2016

A simple BP example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-18 13 Jan 2016

A simple BP example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Chain rule:

$$
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial y}
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-19 13 Jan 2016

A simple BP example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$
Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-20 13 Jan 2016

A simple BP example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-21 13 Jan 2016

BP at one node

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-22 13 Jan 2016

BP at one node

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-23 13 Jan 2016

BP at one node

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-24 13 Jan 2016

BP at one node

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-25 13 Jan 2016

BP at one node

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-26 13 Jan 2016

BP at one node

Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(u_{0} x_{0}+w_{1}, x_{1}+w_{2}\right)}}$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-28 13 Jan 2016

Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$$
\begin{array}{lll|lll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
$$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-29 13 Jan 2016

Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	$\frac{d f}{d x}=-1 / x^{2}$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-30
13 Jan 2016

Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$$
\begin{array}{lll|ll|}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow \\
\hline
\end{array}
$$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-31 13 Jan 2016

Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(u_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$$
\begin{array}{lll|ccc|}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1 \\
\hline
\end{array}
$$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-32 13 Jan 2016

Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	$\frac{d f}{d x}=-1 / x^{2}$
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow	$\frac{d f}{d x}=1$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson
Lecture 4-33
13 Jan 2016

Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(u_{0} x_{0}+w_{1}, x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	$\frac{d f}{d x}=-1 / x^{2}$
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow	$\frac{d f}{d x}=1$

[^0]
Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(u_{0} x_{0}+w_{1}, x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	$\frac{d f}{d x}=-1 / x^{2}$
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow	$\frac{d f}{d x}=1$

[^1]
Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$		$\frac{d f}{d x}=-1 / x^{2}$	
$f_{c}(x)=c+x$		\rightarrow	$\frac{d f}{d x}=1$		

[^2]
Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(u_{0} x_{0}+w_{1}, x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$		$\frac{d f}{d x}=-1 / x^{2}$	
$f_{c}(x)=c+x$		\rightarrow	$\frac{d f}{d x}=1$		

[^3]
Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(u_{0} x_{0}+w_{1}, x_{1}+w_{2}\right)}}$

$$
\begin{array}{lll|ll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow
\end{array} \quad \begin{array}{ll}
\frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow
\end{array}
$$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-38 13 Jan 2016

Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$$
\begin{array}{lll|ll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow
\end{array} \begin{aligned}
& \frac{d f}{d x}=-1 / x^{2} \\
&
\end{aligned}
$$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-39 13 Jan 2016

Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$$
\begin{array}{lll|lll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
$$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-40 13 Jan 2016

Yet another BP example

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	$\frac{d f}{d x}=-1 / x^{2}$
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow	$\frac{d f}{d x}=1$

[^4]
Breaking down at different granularities

$$
\begin{aligned}
& f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}} \quad \sigma(x)=\frac{1}{1+e^{-x}} \quad \text { sigmoid function } \\
& \frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)
\end{aligned}
$$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-42 13 Jan 2016

Breaking down at different granularities

$$
\begin{aligned}
& f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}} \quad \sigma(x)=\frac{1}{1+e^{-x}} \quad \text { sigmoid function } \\
& \frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)
\end{aligned}
$$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-43 13 Jan 2016

Think, pair, share

Patterns in backward flow

add gate: gradient distributor

Think, pair, share

Patterns in backward flow

add gate: gradient distributor
Q: What is a max gate?

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-47
April 13, 2017

Think, pair, share

Patterns in backward flow

add gate: gradient distributor max gate: gradient router

Think, pair, share

Patterns in backward flow

add gate: gradient distributor max gate: gradient router
Q: What is a mul gate?

Think, pair, share

Patterns in backward flow

add gate: gradient distributor max gate: gradient router
mul gate: gradient switcher

Merging gradients

Gradients add at branches

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-51

Handing vector variables

Gradients for vectorized code

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-52
April 13, 2017

Handing vector variables

Vectorized operations

Handing vector variables

Vectorized operations

4096-d
input vector
Q: what is the size of the Jacobian matrix?

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-54

Handing vector variables

Vectorized operations

4096-d
input vector
Q: what is the size of the Jacobian matrix? [4096 x 4096!]

$$
\frac{\partial L}{\partial x}=\frac{\partial f}{\partial x} \frac{\partial L}{\partial f}
$$

Jacobian matrix

4096-d
output vector

Handing vector variables

Vectorized operations

Handing vector variables

Vectorized operations

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

$$
\in \mathbb{R}^{n} \in \mathbb{R}^{n \times n}
$$

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right] \mathbf{W}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$
$f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}$
Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-61

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right] \mathbf{W}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$
$f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}$
Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-62

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right] \mathbf{W}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$
$f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}$
Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-63

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left.\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right] \mathbf{W}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right) \quad \frac{\partial f}{\partial q_{i}}=2 q_{i}$
$f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}$
Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-64

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right] \mathbf{W}$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right) \quad \frac{\partial f}{\partial q_{i}}=2 q_{i}$
$f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}$
Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-65

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left.\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right] \mathbf{W}$
$\left[\begin{array}{l}0.2 \\ 0.4\end{array}\right] \xrightarrow{\left(2 q_{i, j}\right.}$

$$
\begin{aligned}
& q=W \cdot x=\left(\begin{array}{c}
W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\
\vdots \\
W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}
\end{array}\right) \\
& f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}
\end{aligned}
$$

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-66

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$
$\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right] \mathbf{W}$

$$
\begin{aligned}
q=W \cdot x=\left(\begin{array}{c}
W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\
\vdots \\
W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}
\end{array}\right) & \left.\begin{array}{rl}
\frac{\partial f}{\partial W_{i, j}} & =\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial W_{i, j}} \\
& =\sum_{k}\left(2 q_{k}\right)\left(\mathbf{1}_{k=i} x_{j}\right) \\
f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2} &
\end{array}\right)=2 q_{i} x_{j}
\end{aligned}
$$

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-67

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

$$
\left.\begin{array}{l}
{\left[\begin{array}{cc}
0.1 & 0.5 \\
-0.3 & 0.8
\end{array}\right] \mathrm{W}} \\
{\left[\begin{array}{cc}
0.088 & 0.176 \\
0.104 & 0.208
\end{array}\right]} \\
0.4
\end{array}\right] \text { (}
$$

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-68

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

$$
\begin{aligned}
& \begin{array}{cc}
{\left[\begin{array}{cc}
0.1 & 0.5 \\
-0.3 & 0.8
\end{array}\right] \mathrm{W}} & \nabla_{W} f=2 q \cdot x^{T}
\end{array} \\
& 0.104 \quad 0.208 \\
& {\left[\begin{array}{l}
0.2 \\
0.4
\end{array}\right] \mathrm{x} \ll\left[\begin{array}{l}
0.26
\end{array}\right]} \\
& q=W \cdot x=\binom{W_{1,1} x_{1}+\cdots+W_{1, n} x_{n}}{:} \quad \frac{\partial f}{\partial W_{i, j}}=\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial W_{i, j}} \\
& =\sum_{k}\left(2 q_{k}\right)\left(\mathbf{1}_{k=i} x_{j}\right) \\
& f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2} \\
& =2_{q_{i}}^{k} x_{j}
\end{aligned}
$$

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-69

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0.1 & 0.5 \\
-0.3 & 0.8
\end{array}\right]} \\
& {\left[\begin{array}{cc}
0.088 & 0.176
\end{array}\right] \mathrm{W}} \\
& 0.104 \quad 0.208 \\
& \nabla_{W} f=2 q \cdot x^{T} \\
& \xrightarrow\left[(\text { L2 }]{\frac{\partial q_{k}}{\partial W_{i, j}}=\stackrel{1.00}{0.116}} \stackrel{\mathbf{1}_{k=i} x_{j}}{1}\right. \\
& \text { Always check: The } \\
& \text { gradient with } \\
& \text { respect to a variable } \\
& \text { should have the } \\
& \text { same shape as the } \\
& \text { variable } \\
& q=W \cdot x=\left(\begin{array}{c}
W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\
\vdots \\
W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}
\end{array}\right) \\
& f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2} \\
& \frac{\partial f}{\partial W_{i, j}}=\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial W_{i, j}} \\
& =\sum\left(2 q_{k}\right)\left(\mathbf{1}_{k=i} x_{j}\right) \\
& =2_{q_{i}}^{k} x_{j}
\end{aligned}
$$

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-70

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

$$
\frac{\partial q_{k}}{\partial x_{i}}=W_{k, i}
$$

$q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)$
$f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}$
Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-71

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

$$
\begin{aligned}
\frac{\partial q_{k}}{\partial x_{i}} & =W_{k, i} \\
\frac{\partial f}{\partial x_{i}} & =\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial x_{i}} \\
& =\sum_{k} 2 q_{k} W_{k, i}
\end{aligned}
$$

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-72

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

$$
\begin{aligned}
& \frac{\partial q_{k}}{\partial x_{i}}=W_{k, i} \\
& \frac{\partial f}{\partial x_{i}}=\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial x_{i}} \\
& =\sum_{k} 2 q_{k} W_{k, i}
\end{aligned}
$$

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-73

Handing vector variables

A vectorized example: $f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}$

$$
\begin{aligned}
& \frac{\partial q_{k}}{\partial x_{i}}=W_{k, i} \\
& \frac{\partial f}{\partial x_{i}}=\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial x_{i}} \\
& =\sum_{k} 2 q_{k} W_{k, i}
\end{aligned}
$$

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-74

Implementation

Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)


```
class ComputationalGraph(object):
    #...
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes_topologically_sorted():
        gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
        gate.backward() # little piece of backprop (chain rule applied)
    return inputs_gradients
```


Implementation

Modularized implementation: forward / backward API

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 4-76

Implementation

Modularized implementation: forward / backward API

```
class MultiplyGate(object):
```

class MultiplyGate(object):
def forward(x,y):
def forward(x,y):
z = x*y
z = x*y
self.x = x \# must keep these around!
self.x = x \# must keep these around!
self.y = y
self.y = y
return z
return z
def backward(dz):
def backward(dz):
dx = self.y * dz \# [dz/dx * dL/dz]
dx = self.y * dz \# [dz/dx * dL/dz]
dy = self.x * dz \# [dz/dy * dL/dz]
dy = self.x * dz \# [dz/dy * dL/dz]
return [dx, dy]

```
    return [dx, dy]
```


Remark of BP

- During the forward pass, each computing unit will evaluate the output and also the corresponding local derivatives of the output w.r.t. the inputs

Remark of BP

- During the forward pass, each computing unit will evaluate the output and also the corresponding local derivatives of the output w.r.t. the inputs
- During the backward pass, the local derivatives and the evaluated outputs will be "consumed" to compute the overall derivatives

Remark of BP

- During the forward pass, each computing unit will evaluate the output and also the corresponding local derivatives of the output w.r.t. the inputs
- During the backward pass, the local derivatives and the evaluated outputs will be "consumed" to compute the overall derivatives
- For a large network, there can be a large spike of memory consumption during the forward pass

Remark of BP

- During the forward pass, each computing unit will evaluate the output and also the corresponding local derivatives of the output w.r.t. the inputs
- During the backward pass, the local derivatives and the evaluated outputs will be "consumed" to compute the overall derivatives
- For a large network, there can be a large spike of memory consumption during the forward pass
- Note that BP only computes the gradients. It does not perform the optimization. Sometimes you may hear people said that they trained their networks with BP. What they said was not literally right. We will discuss more on optimizer later today

Activation functions

Activation Functions

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-28 20 Jan 2016

Activation functions

Activation Functions

Leaky ReLU $\max (0.1 x, x)$

Sigmoid
$\sigma(x)=1 /\left(1+e^{-x}\right)$

$\boldsymbol{\operatorname { t a n h }} \boldsymbol{\operatorname { t a n h }}(\mathrm{x})$

ReLU $\max (0, x)$

Maxout $\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$

ELU

$$
f(x)= \begin{cases}x & \text { if } x>0 \\ \alpha(\exp (x)-1) & \text { if } x \leq 0\end{cases}
$$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-29 20 Jan 2016

Activation functions

Activation Functions

Sigmoid

$$
\sigma(x)=1 /\left(1+e^{-x}\right)
$$

- Squashes numbers to range $[0,1]$
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

Activation functions

Activation Functions

Sigmoid

$$
\sigma(x)=1 /\left(1+e^{-x}\right)
$$

- Squashes numbers to range $[0,1]$
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

1. Saturated neurons "kill" the gradients

Activation functions

What happens when $x=-10$?
What happens when $x=0$?
What happens when $x=10$?

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-32 20 Jan 2016

Activation functions

Activation Functions

Sigmoid

$$
\sigma(x)=1 /\left(1+e^{-x}\right)
$$

- Squashes numbers to range $[0,1]$
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

1. Saturated neurons "kill" the gradients
2. Sigmoid outputs are not zerocentered

Activation functions

Consider what happens when the input to a neuron (x) is always positive:

What can we say about the gradients on w?

Activation functions

Consider what happens when the input to a neuron is always positive...

$$
f\left(\sum_{i} w_{i} x_{i}+b\right)
$$

allowed
gradient
update
directions

> allowed
> gradient
> update
> directions
hypothetical optimal w vector

What can we say about the gradients on \mathbf{w} ?
Always all positive or all negative :(
(this is also why you want zero-mean data!)
Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-35 20 Jan 2016

Activation functions

Activation Functions

Sigmoid

$$
\sigma(x)=1 /\left(1+e^{-x}\right)
$$

- Squashes numbers to range $[0,1]$
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

1. Saturated neurons "kill" the gradients
2. Sigmoid outputs are not zerocentered
3. $\exp ()$ is a bit compute expensive

Activation functions

Activation Functions

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

$\tanh (x)$

[LeCun et al., 1991]
Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-37 20 Jan 2016

Activation functions

Activation Functions

ReLU
(Rectified Linear Unit)
[Krizhevsky et al., 2012]

Activation functions

Activation Functions

ReLU
(Rectified Linear Unit)

- Computes $\mathbf{f}(\mathbf{x})=\max (\mathbf{0 , x})$
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
- An annoyance:
hint: what is the gradient when $x<0$?

[^5]
Activation functions

What happens when $x=-10$?
What happens when $x=0$?
What happens when $x=10 ?$

Activation functions

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-41 20 Jan 2016

Activation functions

Activation functions

Activation Functions

[Mass et al., 2013] [He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Leaky ReLU
$f(x)=\max (0.01 x, x)$

Activation functions

Activation Functions

[Mass et al., 2013] [He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Parametric Rectifier (PReLU)

$$
f(x)=\max (\alpha x, x)
$$

backprop into \alpha (parameter)

Leaky ReLU
$f(x)=\max (0.01 x, x)$

Lecture 5-44
20 Jan 2016

Activation functions

Activation Functions

Exponential Linear Units (ELU)

- All benefits of ReLU
- Does not die
- Closer to zero mean outputs
- Computation requires $\exp ()$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-45 20 Jan 2016

Activation functions

Maxout "Neurons" [Goodfellow et al., 2013]

- Try to generalize ReLU and leaky ReLU

$$
\max \left(\mathbf{w}_{1}^{T} \mathbf{x}+b_{1}, \mathbf{w}_{2}^{T} \mathbf{x}+b_{2}\right)
$$

Activation functions

Maxout "Neurons" [Goodfellow et al., 2013]

- Try to generalize ReLU and leaky ReLU

$$
\max \left(\mathbf{w}_{1}^{T} \mathbf{x}+b_{1}, \mathbf{w}_{2}^{T} \mathbf{x}+b_{2}\right)
$$

Pros

- Linear regime
- Does not saturate
- Does not die

Activation functions

Maxout "Neurons" [Goodfellow et al., 2013]

- Try to generalize ReLU and leaky ReLU

$$
\max \left(\mathbf{w}_{1}^{T} \mathbf{x}+b_{1}, \mathbf{w}_{2}^{T} \mathbf{x}+b_{2}\right)
$$

Pros

- Linear regime
- Does not saturate
- Does not die

Cons

- Double amount of parameters

Activation functions

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don't expect much
- Don't use sigmoid

Input preprocessing

Step 1: Preprocess the data

(Assume $\mathrm{X}[\mathrm{NxD}]$ is data matrix, each example in a row)

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-49 20 Jan 2016

Input preprocessing

Step 1: Preprocess the data

In practice, you may also see PCA and Whitening of the data

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-50 20 Jan 2016

Input preprocessing

TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet) (mean image $=[32,32,3]$ array)
- Subtract per-channel mean (e.g. VGGNet) (mean along each channel $=3$ numbers)

Not common to normalize variance, to do PCA or whitening

$$
\text { Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-51 } 20 \text { Jan } 2016
$$

Weight initialization

- Q : what happens when $W=0$ init is used?

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-53 20 Jan 2016

Weight initialization

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

$$
W=0.01^{*} \text { np. random. } \operatorname{randn}(\mathrm{D}, \mathrm{H})
$$

Weight initialization

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

$$
W=0.01^{*} \mathrm{np} . \text { random. } \operatorname{randn}(\mathrm{D}, \mathrm{H})
$$

Works ~okay for small networks, but can lead to non-homogeneous distributions of activations across the layers of a network.

Weight initialization

Lets look at some activation statistics

E.g. 10-layer net with 500 neurons on each layer, using tanh nonlinearities, and initializing as described in last slide.

```
# assume some unit gaussian 10-D input data
D = np.random. randn(1000, 500)
hidden_layer_sizes = [500]*10
nonlinearities = ['tanh']*len(hidden_layer_sizes)
act = {'relu':lambda x:np.maximum( }0,x\mathrm{ ), 'tanh':lambda x:np.tanh (x)}
Hs}={
for i in xrange(len(hidden layer_sizes)):
    x=D if i== else Hs[i-1] # Input at this layer
    fan in = X.shape[1]
    fan_out = hidden layer_sizes[i]
    W = np.random.randn(fan_in, fan_out) * 0.01 # layer initialization
    H=np.dot(X, W) # matrix multiply
    H}=\operatorname{act[nonlinearities[i]](H) # nonlinearity
    Hs[i] = H# cache result on this layer
```

\# look at distributions at each layer
print 'input layer had mean \%f and std \%f' \% (np.mean(D), np.std(D))
layer means $=[n p$. mean (H) for i, H in Hs.iteritems()]
layer_stds $=$ [np.std (H) for i, H in Hs.iteritems()]
layer stds $=$ [np.std (H) fo
for i , H in Hs . iteritems():
print 'hidden layer \%d had mean sf and std \%f' \% ($i+1$, layer_means[i], layer_stds[i])
\# plot the means and standard deviations
plt.figure()
plt.subplot(121)
plt.plot(Hs.keys(), layer_means, ob-1)
plt.title('layer mean')
plt.subplot(122)
plt.plot(Hs.keys(), layer stds, 'or-')
plt.title('layer std')
\# plot the raw distributions
plt.figure()
for i, H in $\mathrm{H} s$.iteritems():
plt.subplot(1,len(Hs),1+1)
plt.hist(H.ravel(), 30 , range $=(-1,1))$

Weight initialization

input layer had mean 0.000927 and std 0.998388
hidden layer 1 had mean -0.000117 and std 0.213081 hidden Layer 1 had mean -0.000117 and std 0.213081 hidden layer 2 had mean -0.000001 and std 0.047551 hidden layer 3 had mean $-\theta .000002$ and std $\theta .010636$
hidden layer 4 had mean 0.000001 and std 0.002378 hidden layer 4 had mean 0.000001 and std 0.002378 hidden layer 5 had mean 0.000002 and std 0.000532 hidden layer 6 had mean -0.000000 and std 0.000119 hidden layer 7 had mean 0.000000 and std 0.000026 hidden layer 8 had mean -0.000000 and std 0.000006 hidden layer 9 had mean 0.000000 and std 0.000001 hidden layer 10 had mean -0.000000 and std 0.000000

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-57 20 Jan 2016

Weight initialization

input layer had mean 0.000927 and std 0.998388
hidden layer 1 had mean -0.000117 and std 0.213081 hidden layer 2 had mean -0.000001 and std 0.047551 hidden layer 3 had mean $-\theta .000002$ and std $\theta .010631$ hidden layer 4 had mean 0.000001 and std 0.002378 hidden layer 5 had mean 0.000002 and std 0.000532 hidden layer 6 had mean -0.000000 and std 0.000119 hidden layer 7 had mean 0.000000 and std 0.000026 hidden layer 8 had mean -0.000000 and std 0.000006 hidden layer 9 had mean 0.000000 and std 0.000001 hidden layer 10 had mean -0.000000 and std 0.000000

All activations become zero!

Hint: think about backward pass for a $W^{*} X$ gate.

Weight initialization

input layer had mean 0.001800 and std 1.001311 hidden layer 1 had mean -0.000430 and std 0.981879 hidden layer 2 had mean -0.000849 and std 0.981649 hidden layer 3 had mean $0.0 日 0565$ and std $\theta .981601$ hidden layer 4 had mean 0.000483 and std 0.981755 hidden layer 5 had mean -0.000682 and std 0.981614 hidden layer 6 had mean -0.000401 and std 0.981560 hidden layer 7 had mean -0.000237 and std 0.981520 hidden layer 8 had mean -0.000448 and std 0.981913 hidden layer 9 had mean -0.000899 and std 0.981728 hidden layer 10 had mean 0.000584 and std 0.981736

Almost all neurons completely saturated, either -1 and 1. Gradients will be all zero.

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-59 20 Jan 2016

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n. Then,

$$
\operatorname{Var}(y)=\operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right)
$$

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n. Then,

$$
\begin{aligned}
\operatorname{Var}(y) & =\operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right) \\
& =\sum_{i}^{n}\left[E\left(w_{i}\right)\right]^{2} \operatorname{Var}\left(x_{i}\right)+E\left[\left(x_{i}\right)\right]^{2} \operatorname{Var}\left(w_{i}\right)+\operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right)
\end{aligned}
$$

$\operatorname{Var}(X Y)=$ $E[X]^{2} \operatorname{Var}(X)+E[Y]^{2} \operatorname{Var}(Y)+\operatorname{Var}(X) \operatorname{Var}(Y)$

$$
\operatorname{Var}(X Y)=E\left[(X Y)^{2}\right]-E[X Y]^{2}
$$

$\operatorname{Var}(X Y)=$ $E[X]^{2} \operatorname{Var}(X)+E[Y]^{2} \operatorname{Var}(Y)+\operatorname{Var}(X) \operatorname{Var}(Y)$

$$
\begin{aligned}
\operatorname{Var}(X Y) & =E\left[(X Y)^{2}\right]-E[X Y]^{2} \\
& =E\left[X^{2}\right] E\left[Y^{2}\right]-E[X]^{2} E[Y]^{2}
\end{aligned}
$$

$\operatorname{Var}(X Y)=$ $E[X]^{2} \operatorname{Var}(X)+E[Y]^{2} \operatorname{Var}(Y)+\operatorname{Var}(X) \operatorname{Var}(Y)$

$$
\begin{aligned}
\operatorname{Var}(X Y) & =E\left[(X Y)^{2}\right]-E[X Y]^{2} \\
& =E\left[X^{2}\right] E\left[Y^{2}\right]-E[X]^{2} E[Y]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}(X) \operatorname{Var}(Y) \\
= & \left(E\left[X^{2}\right]-E[X]^{2}\right)\left(E\left[Y^{2}\right]-E[Y]^{2}\right)
\end{aligned}
$$

$\operatorname{Var}(X Y)=$ $E[X]^{2} \operatorname{Var}(X)+E[Y]^{2} \operatorname{Var}(Y)+\operatorname{Var}(X) \operatorname{Var}(Y)$

$$
\begin{aligned}
\operatorname{Var}(X Y) & =E\left[(X Y)^{2}\right]-E[X Y]^{2} \\
& =E\left[X^{2}\right] E\left[Y^{2}\right]-E[X]^{2} E[Y]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}(X) \operatorname{Var}(Y) \\
= & \left(E\left[X^{2}\right]-E[X]^{2}\right)\left(E\left[Y^{2}\right]-E[Y]^{2}\right) \\
= & E\left[X^{2}\right] E\left[Y^{2}\right]-E[X]^{2} E\left[Y^{2}\right]-E\left[X^{2}\right] E[Y]^{2}+E[X]^{2} E[Y]^{2}
\end{aligned}
$$

$\operatorname{Var}(X Y)=$ $E[X]^{2} \operatorname{Var}(X)+E[Y]^{2} \operatorname{Var}(Y)+\operatorname{Var}(X) \operatorname{Var}(Y)$

$$
\begin{aligned}
\operatorname{Var}(X Y) & =E\left[(X Y)^{2}\right]-E[X Y]^{2} \\
& =E\left[X^{2}\right] E\left[Y^{2}\right]-E[X]^{2} E[Y]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}(X) \operatorname{Var}(Y) \\
= & \left(E\left[X^{2}\right]-E[X]^{2}\right)\left(E\left[Y^{2}\right]-E[Y]^{2}\right) \\
= & E\left[X^{2}\right] E\left[Y^{2}\right]-E[X]^{2} E\left[Y^{2}\right]-E\left[X^{2}\right] E[Y]^{2}+E[X]^{2} E[Y]^{2} \\
= & E\left[X^{2}\right] E\left[Y^{2}\right]-E[X]^{2}\left(E\left[Y^{2}\right]-E[Y]^{2}\right) \\
& E[Y]^{2}\left(E\left[X^{2}\right]-E[X]^{2}\right)-E[X]^{2} E[Y]^{2}
\end{aligned}
$$

$\operatorname{Var}(X Y)=$ $E[X]^{2} \operatorname{Var}(X)+E[Y]^{2} \operatorname{Var}(Y)+\operatorname{Var}(X) \operatorname{Var}(Y)$

$$
\begin{aligned}
\operatorname{Var}(X Y) & =E\left[(X Y)^{2}\right]-E[X Y]^{2} \\
& =E\left[X^{2}\right] E\left[Y^{2}\right]-E[X]^{2} E[Y]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}(X) \operatorname{Var}(Y) \\
= & \left(E\left[X^{2}\right]-E[X]^{2}\right)\left(E\left[Y^{2}\right]-E[Y]^{2}\right) \\
= & E\left[X^{2}\right] E\left[Y^{2}\right]-E[X]^{2} E\left[Y^{2}\right]-E\left[X^{2}\right] E[Y]^{2}+E[X]^{2} E[Y]^{2} \\
= & E\left[X^{2}\right] E\left[Y^{2}\right]-E[X]^{2}\left(E\left[Y^{2}\right]-E[Y]^{2}\right) \\
& E[Y]^{2}\left(E\left[X^{2}\right]-E[X]^{2}\right)-E[X]^{2} E[Y]^{2} \\
= & \operatorname{Var}(X Y)-E[X]^{2} \operatorname{Var}(Y)-E[Y]^{2} \operatorname{Var}(X)
\end{aligned}
$$

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n. Then,

$$
\begin{aligned}
\operatorname{Var}(y) & =\operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right) \\
& =\sum_{i}^{n}\left[E\left(w_{i}\right)\right]^{2} \operatorname{Var}\left(x_{i}\right)+E\left[\left(x_{i}\right)\right]^{2} \operatorname{Var}\left(w_{i}\right)+\operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right)
\end{aligned}
$$

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n. Then,

$$
\begin{aligned}
\operatorname{Var}(y) & =\operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right) \\
& =\sum_{i}^{n}\left[E\left(w_{i}\right)\right]^{2} \operatorname{Var}\left(x_{i}\right)+E\left[\left(x_{i}\right)\right]^{2} \operatorname{Var}\left(w_{i}\right)+\operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right) \\
& =\sum_{i}^{n} \operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right) \\
& =(n \operatorname{Var}(w)) \operatorname{Var}(x)
\end{aligned}
$$

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n. Then,

$$
\begin{aligned}
\operatorname{Var}(y) & =\operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right) \\
& =\sum_{i}^{n}\left[E\left(w_{i}\right)\right]^{2} \operatorname{Var}\left(x_{i}\right)+E\left[\left(x_{i}\right)\right]^{2} \operatorname{Var}\left(w_{i}\right)+\operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right) \\
& =\sum_{i}^{n} \operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right) \\
& =(n \operatorname{Var}(w)) \operatorname{Var}(x)
\end{aligned}
$$

Thus, output will have same variance as input if $n \operatorname{Var}(w)=1$

Weight initialization

input layer had mean 0.001800 and std 1.001311 hidden layer 1 had mean 0.001198 and std 0.627953 hidden layer 2 had mean -0.000175 and std 0.486051 hidden layer 3 had mean 0.000055 and 5 td 0.407723 hidden layer 4 had mean - 0.000306 and std 0.357108 hidden layer 5 had mean 0.000142 and std 0.320917 hidden layer 6 had mean -0.000389 and std 0.292116 hidden layer 6 had mean -0.000389 and std 0.292116 hidden layer 7 had mean -0.000228 and std 0.273387 hidden layer 9 had mean 0.000361 and std 0.239266 hidden layer 9 had mean 0.000361 and std 0.239266
hidden layer 10 had mean 0.000139 and std 0.228008

W = np. random. randn(fan in, fan out) / np.sqrt(fan in) \# layer initialization
"Xavier initialization"
[Glorot et al., 2010]

Reasonable initialization. (Mathematical derivation assumes linear activations)

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-60 20 Jan 2016

Weight initialization

input layer had mean $0.0005 \theta 1$ and std 0.999444 hidden layer 1 had mean 0.398623 and std 0.582273 hidden layer 2 had mean 0.272352 and std 0.403795 hidden layer 3 had mean 0.186076 and std 0.276912 hidden layer 4 had mean 0.136442 and std 0.198685 hidden layer 5 had mean 0.099568 and std 0.140299 hidden layer 6 had mean 0.072234 and std 0.103280 hidden layer 7 had mean 0.049775 and std 0.072748 hidden layer 8 had mean 0.035138 and std 0.051572 hidden layer 9 had mean 0.025404 and std 0.038583 hidden layer 10 had mean 0.018408 and std 0.026076

W = np. random. randn(fan in, fan out) / np.sqrt(fan in) \# layer initialization

but when using the ReLU nonlinearity it breaks.

Variance calibration for ReLU

Note that it doesn't work when the activation layer is ReLU. But... ${ }^{1}$

$$
\begin{aligned}
\operatorname{Var}\left(y^{(l)}\right) & =\operatorname{Var}\left(\sum_{i}^{n} w_{i}^{(l)} x_{i}^{(l)}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i}^{(l)} x_{i}^{(l)}\right)=n \operatorname{Var}\left(w^{(l)} x^{(l)}\right) \\
& =n E\left(w^{(l)}\right)^{2} \operatorname{Var}\left(x^{(l)}\right)+n E\left(x^{(l)}\right)^{2} \operatorname{Var}\left(w^{(l)}\right)+n \operatorname{Var}\left(x^{(l)}\right) \operatorname{Var}\left(w^{(l)}\right)
\end{aligned}
$$

${ }^{1}$ Note that $y^{(l)}$ now denotes the sum of input before going through the activation function.

Variance calibration for ReLU

Note that it doesn't work when the activation layer is ReLU. But... ${ }^{1}$

$$
\begin{aligned}
\operatorname{Var}\left(y^{(l)}\right) & =\operatorname{Var}\left(\sum_{i}^{n} w_{i}^{(l)} x_{i}^{(l)}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i}^{(l)} x_{i}^{(l)}\right)=n \operatorname{Var}\left(w^{(l)} x^{(l)}\right) \\
& =n E\left(w^{(l)}\right)^{2} \operatorname{Var}\left(x^{(l)}\right)+n E\left(x^{(l)}\right)^{2} \operatorname{Var}\left(w^{(l)}\right)+n \operatorname{Var}\left(x^{(l)}\right) \operatorname{Var}\left(w^{(l)}\right) \\
& =n E\left(x^{(l)}\right)^{2} \operatorname{Var}\left(w^{(l)}\right)+n \operatorname{Var}\left(x^{(l)}\right) \operatorname{Var}\left(w^{(l)}\right)
\end{aligned}
$$

[^6]
Variance calibration for ReLU

Note that it doesn't work when the activation layer is ReLU. But... ${ }^{1}$

$$
\begin{aligned}
\operatorname{Var}\left(y^{(l)}\right) & =\operatorname{Var}\left(\sum_{i}^{n} w_{i}^{(l)} x_{i}^{(l)}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i}^{(l)} x_{i}^{(l)}\right)=n \operatorname{Var}\left(w^{(l)} x^{(l)}\right) \\
& =n E\left(w^{(l)}\right)^{2} \operatorname{Var}\left(x^{(l)}\right)+n E\left(x^{(l)}\right)^{2} \operatorname{Var}\left(w^{(l)}\right)+n \operatorname{Var}\left(x^{(l)}\right) \operatorname{Var}\left(w^{(l)}\right) \\
& =n E\left(x^{(l)}\right)^{2} \operatorname{Var}\left(w^{(l)}\right)+n \operatorname{Var}\left(x^{(l)}\right) \operatorname{Var}\left(w^{(l)}\right) \\
& =n E\left(\left(x^{(l)}\right)^{2}\right) \operatorname{Var}\left(w^{(l)}\right)
\end{aligned}
$$

[^7]
Variance calibration for ReLU

Note that it doesn't work when the activation layer is ReLU. But... ${ }^{1}$

$$
\begin{aligned}
\operatorname{Var}\left(y^{(l)}\right) & =\operatorname{Var}\left(\sum_{i}^{n} w_{i}^{(l)} x_{i}^{(l)}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i}^{(l)} x_{i}^{(l)}\right)=n \operatorname{Var}\left(w^{(l)} x^{(l)}\right) \\
& =n E\left(w^{(l)}\right)^{2} \operatorname{Var}\left(x^{(l)}\right)+n E\left(x^{(l)}\right)^{2} \operatorname{Var}\left(w^{(l)}\right)+n \operatorname{Var}\left(x^{(l)}\right) \operatorname{Var}\left(w^{(l)}\right) \\
& =n E\left(x^{(l)}\right)^{2} \operatorname{Var}\left(w^{(l)}\right)+n \operatorname{Var}\left(x^{(l)}\right) \operatorname{Var}\left(w^{(l)}\right) \\
& =n E\left(\left(x^{(l)}\right)^{2}\right) \operatorname{Var}\left(w^{(l)}\right) \\
& =n\left[\operatorname{Var}\left(y^{(l-1)}\right) / 2\right] \operatorname{Var}\left(w^{(l)}\right)=\left[\frac{n}{2} \operatorname{Var}\left(w^{(l)}\right)\right] \operatorname{Var}\left(y^{(l-1)}\right)
\end{aligned}
$$

Variance of y conserved across a layer if $\frac{n}{2} \operatorname{Var}(w)=1$

[^8]
Weight initialization

nput layer had mean 0.000501 and std 0.999444 hidden layer 1 had mean 0.562488 and std 0.82523 hidden layer 2 had mean 0.553614 and std 0.827835 hidden layer 3 had mean 0.545867 and std 0.813855 hidden layer 4 had mean 0.565396 and std 0.826902 hidden layer 5 had mean 0.547678 and std 0.834092 hidden layer 6 had mean 0.587103 and std 0.860035 hidden layer 7 had mean 0.596867 and std 0.870610 hidden layer 8 had mean 0.623214 and std 0.889348 hidden layer 9 had mean 0.567498 and std 0.845357 hidden layer 10 had mean 0.552531 and std 0.844523

```
W = np.random.randn(fan in, fan out) / np.sqrt(fan in/2) # layer initialization
```

He et al., 2015 (note additional /2)

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-62 20 Jan 2016

Weight initialization

nput layer had mean 0.000501 and std 0.999444 hidden layer 1 had mean 0.562488 and std 0.82523 hidden layer 2 had mean 0.553614 and std 0.827835 hidden layer 3 had mean 0.545867 and std 0.813855 hidden layer 4 had mean 0.565396 and std 0.826902 hidden layer 5 had mean 0.547678 and std 0.834092 hidden layer 6 had mean 0.587103 and std 0.860035 hidden layer 7 had mean 0.596867 and std 0.870610 hidden layer 8 had mean 0.623214 and std 0.889348 hidden layer 9 had mean 0.567498 and std 0.845357 hidden layer 10 had mean 0.552531 and std 0.844523

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-63 20 Jan 2016

Weight initialization

Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015
All you need is a good init, Mishkin and Matas, 2015

$$
\text { Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-64 } 20 \text { Jan } 2016
$$

Batch normalization

Batch Normalization

"you want unit gaussian activations? just make them so."
consider a batch of activations at some layer. To make each dimension unit gaussian, apply:

$$
\widehat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

this is a vanilla differentiable function...

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-65 20 Jan 2016

Batch normalization

Batch Normalization

[loffe and Szegedy, 2015]
"you want unit gaussian activations?
just make them so."

1. compute the empirical mean and variance independently for each dimension.
[^9]
Batch normalization

Batch Normalization

[loffe and Szegedy, 2015]

Usually inserted after Fully
Connected / (or Convolutional, as we'll see soon) layers, and before nonlinearity.
 tanh layer?

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-67 20 Jan 2016

Batch normalization

Batch Normalization

[loffe and Szegedy, 2015]

Normalize:
$\widehat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}$
And then allow the network to squash the range if it wants to:

$$
y^{(k)}=\gamma^{(k)} \widehat{x}^{(k)}+\beta^{(k)}
$$

Note, the network can learn:
$\gamma^{(k)}=\sqrt{\operatorname{Var}\left[x^{(k)}\right]}$
$\beta^{(k)}=\mathrm{E}\left[x^{(k)}\right]$
to recover the identity mapping.

Batch normalization

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$; Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{array}{rlr}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} & \text { // mini-batch mean } \\
\sigma_{\mathcal{B}}^{2} & \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} & \text { // mini-batch variance } \\
\widehat{x}_{i} & \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} & \text { // normalize } \\
y_{i} & \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \operatorname{BN}_{\gamma, \beta}\left(x_{i}\right) & \text { // scale and shift }
\end{array}
$$

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe

Batch normalization

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$; Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{array}{rlr}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} & \text { // mini-batch mean } \\
\sigma_{\mathcal{B}}^{2} & \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} & \text { // mini-batch variance } \\
\widehat{x}_{i} & \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} & \text { // normalize } \\
y_{i} & \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \operatorname{BN}_{\gamma, \beta}\left(x_{i}\right) & \text { // scale and shift }
\end{array}
$$

[loffe and Szegedy, 2015]

Note: at test time BatchNorm layer functions differently:

The mean/std are not computed based on the batch. Instead, a single fixed empirical mean of activations during training is used.
(e.g. can be estimated during training with running averages)

Reducing testing error

How to improve single-model performance?

Ensemble trick

1. Train multiple independent models
 2. At test time average their results

Enjoy 2\% extra performance

Ensemble trick

Fun Tips/Tricks:

- can also get a small boost from averaging multiple model checkpoints of a single model.

Ensemble trick

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Ensemble trick

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016
Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Cyclic learning rate schedules can make this work even better!

Ensemble trick

Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a moving average of the parameter vector and use that at test time (Polyak averaging)

```
while True:
    data_batch = dataset.sample_data_batch()
    loss = network.forward(data_batch)
    dx = network.backward()
    x += - learning_rate * dx
    x_test = 0.995*x_test + 0.005*x # use for test set
```


Dropout

Regularization: Dropout

"randomly set some neurons to zero in the forward pass"

(a) Standard Neural Net

(b) After applying dropout.

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-50 25 Jan 2016

Dropout

$\mathrm{p}=0.5$ \# probability of keeping a unit active. higher = less dropout
def train_step (X):
""" X contains the data """
\# forward pass for example 3-layer neural network
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 $=$ np. random. rand(*H1.shape) $<\mathrm{p}$ \# first dropout mask
H1 *= U1 \# drop!
H2 = np.maximum(0, np. dot(W2, H1) + b2)
$\mathrm{U} 2=\mathrm{np}$. random. rand $(* \mathrm{H} 2$. shape $)<\mathrm{p} \#$ second dropout mask
H2 *= U2 \# drop!
out $=$ np.dot (W3, H2) + b3
\# backward pass: compute gradients... (not shown)
\# perform parameter update... (not shown)

Example forward pass with a 3layer network using dropout

Dropout

Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

Dropout

Regularization: Dropout

How can this possibly be a good idea?

Another interpretation:
Dropout is training a large ensemble of models (that share parameters).

Each binary mask is one model
An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks!
Only $\sim 10^{82}$ atoms in the universe...

[^10]
Dropout

Dropout: Test time

Dropout makes our output random!

Output (label)	$\begin{gathered} \text { Input } \\ \text { (image) } \end{gathered}$
$y=$	(x, 2

Want to "average out" the randomness at test-time

$$
y=f(x)=E_{z}[f(x, z)]=\int p(z) f(x, z) d z
$$

But this integral seems hard ...

[^11]
Dropout

Dropout: Test time

Want to approximate the integral

$$
y=f(x)=E_{z}[f(x, z)]=\int p(z) f(x, z) d z
$$

Consider a single neuron.

Dropout

Dropout: Test time

Want to approximate the integral

$$
y=f(x)=E_{z}[f(x, z)]=\int p(z) f(x, z) d z
$$

Consider a single neuron.

At test time we have: $E[a]=w_{1} x+w_{2} y$

Dropout

Dropout: Test time

Want to approximate the integral

$$
y=f(x)=E_{z}[f(x, z)]=\int p(z) f(x, z) d z
$$

Consider a single neuron.

At test time we have: $E[a]=w_{1} x+w_{2} y$ During training we have: $E[a]=\frac{1}{4}\left(w_{1} x+w_{2} y\right)+\frac{1}{4}\left(w_{1} x+0 y\right)$

$$
\begin{aligned}
& +\frac{1}{4}(0 x+0 y)+\frac{1}{4}\left(0 x+w_{2} y\right) \\
= & \frac{1}{2}\left(w_{1} x+w_{2} y\right)
\end{aligned}
$$

Dropout

Dropout: Test time

Want to approximate the integral

$$
y=f(x)=E_{z}[f(x, z)]=\int p(z) f(x, z) d z
$$

Consider a single neuron.

At test time we have: $E[a]=w_{1} x+w_{2} y$
During training we have: $\quad E[a]=\frac{1}{4}\left(w_{1} x+w_{2} y\right)+\frac{1}{4}\left(w_{1} x+0 y\right)$

At test time, multiply
by dropout probability

$$
\begin{aligned}
& +\frac{1}{4}(0 x+0 y)+\frac{1}{4}\left(0 x+w_{2} y\right) \\
= & \frac{1}{2}\left(w_{1} x+w_{2} y\right)
\end{aligned}
$$

Dropout

Dropout: Test time

```
def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```

At test time all neurons are active always
=> We must scale the activations so that for each neuron: output at test time $=$ expected output at training time

[^12]
Dropout

```
""" Vanilla Dropout: Not recommended implementation (see notes below) """
p = 0.5 # probability of keeping a unit active. higher = less dropout
Dropout Summary
def train_step(X):
    """ X contains the data """
    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot (W1, X) + bl)
    U1 = np.random. rand(*H1.shape) < p # first dropout mask
    H1 *= U1 # drop!
H2 = np.max1mum(0, np.dot(W2, H1) + b2)
    U2 = np, random, rand(*H2.shape) < p # second dropout mask
    H2 *= U2 # drop!
    out = np.dot(W3,H2) + b3
    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)
def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2 * p # NOTE: scale the activations
    scale at test time
    out = np.dot(W3, H2) + b3
```


Dropout

More common: "Inverted dropout"

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):
    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + bl)
    U1 = (np.random. rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
H1 *= U1 # drop!
H2 = np.maximum(0, np.dot(W2, H1) + b2)
U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!
    out = np.dot(W3,H2) + b3
    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)
                                    test time is unchanged!
def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
    H2 = np.maximum(0, np.dot (W2,H1) + b2)
    out = np.dot(W3,H2) + b3
```


Data augmentation

Regularization: Data Augmentation

[^13]
Data augmentation

Regularization: Data Augmentation

Transform image
Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 7-75 April 25, 2017

Data augmentation

Data Augmentation Horizontal Flips

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 7-76 April 25, 2017

Data augmentation

Data Augmentation
 Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range $[256,480]$
2. Resize training image, short side $=\mathrm{L}$
3. Sample random 224×224 patch

[^14]
Data augmentation

Data Augmentation
 Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range $[256,480]$
2. Resize training image, short side $=\mathrm{L}$
3. Sample random 224×224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales: $\{224,256,384,480,640\}$
2. For each size, use 10224×224 crops: 4 corners + center, + flips
Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 7-78 April 25, 2017

Data augmentation

Data Augmentation
 Color Jitter

Simple: Randomize contrast and brightness

Fei-Fei Li \& Justin Johnson \& Serena Yeung
Lecture 7-79 April 25, 2017

Data augmentation

Data Augmentation Color Jitter

Simple: Randomize contrast and brightness

More Complex:

1. Apply PCA to all $[R, G, B]$ pixels in training set
2. Sample a "color offset" along principal component directions
3. Add offset to all pixels of a training image
(As seen in [Krizhevsky et al. 2012], ResNet, etc)
[^15]
Data augmentation

Data Augmentation
 Get creative for your problem!

Random mix/combinations of :

- translation
- rotation
- stretching
- shearing,
- lens distortions, ... (go crazy)

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 7-81 April 25, 2017

Other regularization techniques

Regularization: A common pattern

Training: Add some kind of randomness

$$
y=f_{W}(x, z)
$$

Testing: Average out randomness (sometimes approximate)
$y=f(x)=E_{z}[f(x, z)]=\int p(z) f(x, z) d z$

Other regularization techniques

Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout
Batch Normalization
Data Augmentation

Other regularization techniques

Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization Data Augmentation DropConnect

Wan et al, "Regularization of Neural Networks using DropConnect", ICML 2013
Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 7-83 April 25, 2017

Other regularization techniques

Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation DropConnect
Fractional Max Pooling

Graham, "Fractional Max Pooling", arXiv 2014

$$
\text { Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 7-84 April 25, } 2017
$$

Other regularization techniques

Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling Stochastic Depth

[^16]
Optimizers

Optimization

```
# Vanilla Gradient Descent
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Optimizers

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large

[^17]
Optimizers

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large

[^18]
Optimizers

Optimization: Problems with SGD

What if the loss
function has a
local minima or saddle point?

Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 7-17 April 25, 2017

Optimizers

Optimization: Problems with SGD

What if the loss
function has a
local minima or saddle point?

Zero gradient, gradient descent gets stuck

Fei-Fei Li \& Justin Johnson \& Serena Yeung
Lecture 7-18 April 25, 2017

Optimizers

Optimization: Problems with SGD

What if the loss
function has a
local minima or saddle point?

Saddle points much more common in high dimension

Optimizers

Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)
\end{aligned}
$$

Exponential moving average

- $S_{t}= \begin{cases}Y_{1}, & t=1 \\ \alpha \cdot Y_{t}+(1-\alpha) \cdot S_{t-1}, & t>1\end{cases}$

Exponential moving average

- $S_{t}= \begin{cases}Y_{1}, & t=1 \\ \alpha \cdot Y_{t}+(1-\alpha) \cdot S_{t-1}, & t>1\end{cases}$
- $S_{t}=\alpha\left[Y_{t-1}+(1-\alpha) Y_{t-2}+(1-\alpha)^{2} Y_{t-3}+\cdots\right]$

Exponential moving average

- $S_{t}= \begin{cases}Y_{1}, & t=1 \\ \alpha \cdot Y_{t}+(1-\alpha) \cdot S_{t-1}, & t>1\end{cases}$
- $S_{t}=\alpha\left[Y_{t-1}+(1-\alpha) Y_{t-2}+(1-\alpha)^{2} Y_{t-3}+\cdots\right]$
$=\frac{Y_{t-1}+(1-\alpha) Y_{t-2}+(1-\alpha)^{2} Y_{t-3}+\cdots}{1+(1-\alpha)+(1-\alpha)^{2}+\cdots}$

Optimizers

Momentum update

```
# Gradient descent update
x += - learning_rate * dx
```


- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu $=$ usually $\sim 0.5,0.9$, or 0.99 (Sometimes annealed over time, e.g. from $0.5->0.99$)

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-17 25 Jan 2016

Optimizers

Momentum update

- Allows a velocity to "build up" along shallow directions
- Velocity becomes damped in steep direction due to quickly changing sign

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-18 25 Jan 2016

Optimizers

Optimizers

Nesterov Momentum update

```
# Momentum update
v = mu * v - learning_rate * dx # integrate velocity
x += v # integrate position
```

Ordinary momentum update:

gradient
step

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-20 25 Jan 2016

Optimizers

Nesterov Momentum update

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-21 25 Jan 2016

Optimizers

Nesterov Momentum update

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-22 25 Jan 2016

Optimizers

Nesterov Momentum update

$$
\begin{gathered}
v_{t}=\mu v_{t-1}-\epsilon \nabla f\left(\theta_{t-1}+\mu v_{t-1}\right) \\
\theta_{t}=\theta_{t-1}+v_{t}
\end{gathered}
$$

Slightly inconvenient... usually we have :

$$
\theta_{t-1}, \nabla f\left(\theta_{t-1}\right)
$$

Optimizers

Nesterov Momentum

$$
\begin{aligned}
v_{t+1} & =\rho v_{t}-\alpha \nabla f\left(x_{t}+\rho v_{t}\right) \\
x_{t+1} & =x_{t}+v_{t+1}
\end{aligned}
$$

Annoying, usually we want update in terms of $x_{t}, \nabla f\left(x_{t}\right)$

Change of variables $\tilde{x}_{t}=x_{t}+\rho v_{t}$ and rearrange:

$$
\begin{aligned}
v_{t+1} & =\rho v_{t}-\alpha \nabla f\left(\tilde{x}_{t}\right) \\
\tilde{x}_{t+1} & =\tilde{x}_{t}-\rho v_{t}+(1+\rho) v_{t+1} \\
& =\tilde{x}_{t}+v_{t+1}+\rho\left(v_{t+1}-v_{t}\right)
\end{aligned}
$$

[^19]
Optimizers

AdaGrad update

[Duchi et al., 2011]

```
# Adagrad update
cache += dx**2
x += - learning_rate * dx / (np.sqrt(cache) + le-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

Optimizers

AdaGrad update

```
# Adagrad update
cache += dx**2
x += - learning_rate * dx / (np.sqrt(cache) + le-7)
```


Q: What happens with AdaGrad?
Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-28 25 Jan 2016

Optimizers

AdaGrad update

```
# Adagrad update
cache += dx**2
x += - learning_rate * dx / (np.sqrt(cache) + le-7)
```


Q2: What happens to the step size over long time?
Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-29 25 Jan 2016

Optimizers

number of steps $=10$

Optimizers

RMSProp update

[Tieleman and Hinton, 2012]
\# Adagrad update

cache $+=\mathrm{dx} * * 2$	
$\mathrm{x}+=-$ learning_rate $* \mathrm{dx} /(\mathrm{np} . \operatorname{sqrt}($ cache $)+1 \mathrm{e}-7)$	

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-30
25 Jan 2016

Optimizers

rmsprop: A mini-batch version of rprop

- rprop is equivalent to using the gradient but also dividing by the size of the gradient.
- The problem with mini-batch rprop is that we divide by a different number for each mini-batch. So why not force the number we divide by to be very similar for adjacent mini-batches?
- rmsprop: Keep a moving average of the squared gradient for each weight $\operatorname{MeanSquare}(w, t)=0.9 \operatorname{MeanSquare}(w, t-1)+0.1(\partial E / \partial w(t))^{2}$
- Dividing the gradient by $\sqrt{\operatorname{MeanSquare}(w, t)}$ makes the learning work much better (Tijmen Tieleman, unpublished).

Introduced in a slide in Geoff Hinton's Coursera class, lecture 6

Optimizers

rmsprop: A mini-batch version of rprop

- rprop is equivalent to using the gradient but also dividing by the size of the gradient.
- The problem with mini-batch rprop is that we divide by a different number for each mini-batch. So why not force the number we divide by to be very similar for adjacent mini-batches?
- rmsprop: Keep a moving average of the squared gradient for each weight $\operatorname{MeanSquare}(w, t)=0.9 \operatorname{MeanSquare}(w, t-1)+0.1(\partial E / \partial w(t))^{2}$
- Dividing the gradient by $\sqrt{\operatorname{MeanSquare}(w, t)}$ makes the learning work much better (Tijmen Tieleman, unpublished).

Introduced in a slide in Geoff Hinton's Coursera class, lecture 6

Cited by several papers as:
[52] T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude., 2012.

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-32 25 Jan 2016

Optimizers

number of steps=10

Optimizers

Adam update

[Kingma and Ba , 2014]
(incomplete, but close)

```
# Adam
m = betal*m + (1-betal)*dx # update first moment
v = beta2*v + (1-beta2)*(dx**2) # update second moment
x += - learning_rate * m / (np.sqrt(v) + le-7)
```


Optimizers

Adam update

[Kingma and Ba, 2014]
(incomplete, but close)

\#\# $\mathrm{m}=$ betal*m + (1-betal)*dx \# update first mome														
$\mathrm{v}=\mathrm{beta}^{*} \mathrm{v}+(1-\mathrm{beta2}) *(\mathrm{dx} * * 2)$ \# update second moment														
x += - learning_rate * m / (np.sqrt(v) + le-7)														

Looks a bit like RMSProp with momentum

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-35 25 Jan 2016

Optimizers

Adam update

[Kingma and Ba, 2014]
(incomplete, but close)

\# Adam
$\mathrm{m}=$ beta ${ }^{*} \mathrm{~m}+(1$-betal $) * \mathrm{dx} \#$ update first moment $\mathrm{V}=$ beta $2 * \mathrm{v}+(1-$ beta 2$) *(\mathrm{dx*2}) ~$ update second moment $\mathrm{x}+=-$ learning_rate $* \mathrm{~m} /(\mathrm{np} . \operatorname{sqrt}(\mathrm{v})+1 \mathrm{e}-7)$

momentum
$\mathrm{V}=\mathrm{beta}^{*} \mathrm{~V}+(1$-beta2 $) *(\mathrm{dX} * * 2)$ \# update second moment
x += - learning_rate * m / (np.sqrt(v) + le-7)
RMSProp-like

Looks a bit like RMSProp with momentum

```
# RMSProp
cache = decay_rate * cache + (1 - decay_rate) * dx**2
x += - learning_rate * dx / (np.sqrt(cache) + le-7)
```

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-36 25 Jan 2016

Optimizers

Adam (full form)

```
    first_moment = 0
    second_moment = 0
    for t in range(1, num_iterations):
    dx = compute gradient (x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
```


Momentum

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta1 $=0.9$, beta $2=0.999$, and learning_rate $=1 e-3$ or $5 e-4$ is a great starting point for many models!

Optimizers

number of steps $=10$

Optimizers

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter.

Q: Which one of these learning rates is best to use?

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-38 25 Jan 2016

Optimizers

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter.

=> Learning rate decay over time!
step decay:
e.g. decay learning rate by half every few epochs.
exponential decay:

$$
\alpha=\alpha_{0} e^{-k t}
$$

1/t decay:

$$
\alpha=\alpha_{0} /(1+k t)
$$

Optimizers

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter.

[^20]
Optimizers

Second order optimization methods

second-order Taylor expansion:

$$
J(\boldsymbol{\theta}) \approx J\left(\boldsymbol{\theta}_{0}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{\top} \nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}_{0}\right)+\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{\top} \boldsymbol{H}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)
$$

Solving for the critical point we obtain the Newton parameter update:

$$
\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{0}-\boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}_{0}\right)
$$

Q: what is nice about this update?

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-40 25 Jan 2016

Optimizers

Second order optimization methods

$$
\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{0}-\boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}_{0}\right)
$$

- Quasi-Newton methods (BGFS most popular): instead of inverting the Hessian ($O\left(n^{\wedge} 3\right)$), approximate inverse Hessian with rank 1 updates over time (O($n^{\wedge} 2$) each).
- L-BFGS (Limited memory BFGS): Does not form/store the full inverse Hessian.

Quasi-Newton methods (watch this)

- Ref:
(1) https://www.youtube.com/watch?v=uo2z0AT_83k
(2) Nocedal \& Wright - Numerical Optimization $(B \leftrightarrow H)$
(3) http://users.ece.utexas.edu/ cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
- The inverse of Hessian H is expensive to compute. Want to approximate it iteratively instead

Quasi-Newton methods (watch this)

- Ref:
(1) https://www.youtube.com/watch?v=uo2z0AT_83k
(2) Nocedal \& Wright - Numerical Optimization $(B \leftrightarrow H)$
(3) http://users.ece.utexas.edu/ cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
- The inverse of Hessian H is expensive to compute. Want to approximate it iteratively instead
- Quasi-Newton methods:
(1) Approximate Newton direction

$$
d_{k}=-B_{k} g_{k},
$$

where $B_{k} \approx H^{-1}$ and $g_{k}=\nabla J\left(\theta_{k}\right)$

Quasi-Newton methods (watch this)

- Ref:
(1) https://www.youtube.com/watch?v=uo2z0AT_83k
(2) Nocedal \& Wright - Numerical Optimization $(B \leftrightarrow H)$
(3) http://users.ece.utexas.edu/ cm-
caram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
- The inverse of Hessian H is expensive to compute. Want to approximate it iteratively instead
- Quasi-Newton methods:
(1) Approximate Newton direction

$$
d_{k}=-B_{k} g_{k},
$$

where $B_{k} \approx H^{-1}$ and $g_{k}=\nabla J\left(\theta_{k}\right)$
(2) Line search: $\theta_{k+1}=\theta_{k}+\alpha_{k} d_{k}$

Quasi-Newton methods (watch this)

- Ref:
(1) https://www.youtube.com/watch?v=uo2z0AT_83k
(2) Nocedal \& Wright - Numerical Optimization $(B \leftrightarrow H)$
(3) http://users.ece.utexas.edu/ cm-
caram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
- The inverse of Hessian H is expensive to compute. Want to approximate it iteratively instead
- Quasi-Newton methods:
(1) Approximate Newton direction

$$
d_{k}=-B_{k} g_{k},
$$

where $B_{k} \approx H^{-1}$ and $g_{k}=\nabla J\left(\theta_{k}\right)$
(2) Line search: $\theta_{k+1}=\theta_{k}+\alpha_{k} d_{k}$
(3) Update $g_{k+1}=\nabla J\left(\theta_{k+1}\right)$

Quasi-Newton methods (watch this)

- Ref:
(1) https://www.youtube.com/watch?v=uo2z0AT_83k
(2) Nocedal \& Wright - Numerical Optimization $(B \leftrightarrow H)$
(3) http://users.ece.utexas.edu/ cm-
caram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
- The inverse of Hessian H is expensive to compute. Want to approximate it iteratively instead
- Quasi-Newton methods:
(1) Approximate Newton direction

$$
d_{k}=-B_{k} g_{k},
$$

where $B_{k} \approx H^{-1}$ and $g_{k}=\nabla J\left(\theta_{k}\right)$
(2) Line search: $\theta_{k+1}=\theta_{k}+\alpha_{k} d_{k}$
(3) Update $g_{k+1}=\nabla J\left(\theta_{k+1}\right)$
(9) Approximate inverse Hessian

$$
B_{k+1}=\text { update_formula }\left(B_{k}, \theta_{k+1}-\theta_{k}, g_{k+1}-g_{k}\right)
$$

Approximation with rank-1 update

- As Hessian is essentially the "derivative" of ∇J, we have $\nabla J\left(\theta_{k+1}\right) \approx \nabla J\left(\theta_{k}\right)+H\left(\theta_{k+1}-\theta_{k}\right)$

Approximation with rank-1 update

- As Hessian is essentially the "derivative" of ∇J, we have $\nabla J\left(\theta_{k+1}\right) \approx \nabla J\left(\theta_{k}\right)+H\left(\theta_{k+1}-\theta_{k}\right)$
- We may assume the above is satisfied and use this to iteratively approximate H.

Approximation with rank-1 update

- As Hessian is essentially the "derivative" of ∇J, we have $\nabla J\left(\theta_{k+1}\right) \approx \nabla J\left(\theta_{k}\right)+H\left(\theta_{k+1}-\theta_{k}\right)$
- We may assume the above is satisfied and use this to iteratively approximate H. That is (known as secant equation) $H p_{k}=q_{k}$, where $p_{k}=\theta_{k+1}-\theta_{k}$ and $q_{k}=\nabla J\left(\theta_{k+1}\right)-\nabla J\left(\theta_{k}\right)$

Approximation with rank-1 update

- As Hessian is essentially the "derivative" of ∇J, we have $\nabla J\left(\theta_{k+1}\right) \approx \nabla J\left(\theta_{k}\right)+H\left(\theta_{k+1}-\theta_{k}\right)$
- We may assume the above is satisfied and use this to iteratively approximate H. That is (known as secant equation) $H p_{k}=q_{k}$, where $p_{k}=\theta_{k+1}-\theta_{k}$ and $q_{k}=\nabla J\left(\theta_{k+1}\right)-\nabla J\left(\theta_{k}\right)$
- Let $H_{k+1}=H_{k}+u v^{T}$

Approximation with rank-1 update

- As Hessian is essentially the "derivative" of ∇J, we have $\nabla J\left(\theta_{k+1}\right) \approx \nabla J\left(\theta_{k}\right)+H\left(\theta_{k+1}-\theta_{k}\right)$
- We may assume the above is satisfied and use this to iteratively approximate H. That is (known as secant equation) $H p_{k}=q_{k}$, where $p_{k}=\theta_{k+1}-\theta_{k}$ and $q_{k}=\nabla J\left(\theta_{k+1}\right)-\nabla J\left(\theta_{k}\right)$
- Let $H_{k+1}=H_{k}+u v^{T} \Rightarrow\left(H_{k}+u v^{T}\right) p_{k}=q_{k}$

Approximation with rank-1 update

- As Hessian is essentially the "derivative" of ∇J, we have $\nabla J\left(\theta_{k+1}\right) \approx \nabla J\left(\theta_{k}\right)+H\left(\theta_{k+1}-\theta_{k}\right)$
- We may assume the above is satisfied and use this to iteratively approximate H. That is (known as secant equation) $H p_{k}=q_{k}$, where $p_{k}=\theta_{k+1}-\theta_{k}$ and $q_{k}=\nabla J\left(\theta_{k+1}\right)-\nabla J\left(\theta_{k}\right)$
- Let $H_{k+1}=H_{k}+u v^{T} \Rightarrow\left(H_{k}+u v^{T}\right) p_{k}=q_{k}$ $\Rightarrow u\left(v^{T} p_{k}\right)=q_{k}-H_{k} p_{k}$

Approximation with rank-1 update

- As Hessian is essentially the "derivative" of ∇J, we have $\nabla J\left(\theta_{k+1}\right) \approx \nabla J\left(\theta_{k}\right)+H\left(\theta_{k+1}-\theta_{k}\right)$
- We may assume the above is satisfied and use this to iteratively approximate H. That is (known as secant equation) $H p_{k}=q_{k}$, where $p_{k}=\theta_{k+1}-\theta_{k}$ and $q_{k}=\nabla J\left(\theta_{k+1}\right)-\nabla J\left(\theta_{k}\right)$
- Let $H_{k+1}=H_{k}+u v^{T} \Rightarrow\left(H_{k}+u v^{T}\right) p_{k}=q_{k}$
$\Rightarrow u\left(v^{T} p_{k}\right)=q_{k}-H_{k} p_{k} \Rightarrow u=\frac{1}{v^{T} p_{k}}\left(q_{k}-H_{k} p_{k}\right)$

Approximation with rank-1 update

- As Hessian is essentially the "derivative" of ∇J, we have $\nabla J\left(\theta_{k+1}\right) \approx \nabla J\left(\theta_{k}\right)+H\left(\theta_{k+1}-\theta_{k}\right)$
- We may assume the above is satisfied and use this to iteratively approximate H. That is (known as secant equation) $H p_{k}=q_{k}$, where $p_{k}=\theta_{k+1}-\theta_{k}$ and $q_{k}=\nabla J\left(\theta_{k+1}\right)-\nabla J\left(\theta_{k}\right)$
- Let $H_{k+1}=H_{k}+u v^{T} \Rightarrow\left(H_{k}+u v^{T}\right) p_{k}=q_{k}$
$\Rightarrow u\left(v^{T} p_{k}\right)=q_{k}-H_{k} p_{k} \Rightarrow u=\frac{1}{v^{T} p_{k}}\left(q_{k}-H_{k} p_{k}\right)$
- We are free to pick v. But since we know H has to be symmetric, let's pick $v=q_{k}-H_{k} p_{k}$.

Approximation with rank-1 update

- As Hessian is essentially the "derivative" of ∇J, we have $\nabla J\left(\theta_{k+1}\right) \approx \nabla J\left(\theta_{k}\right)+H\left(\theta_{k+1}-\theta_{k}\right)$
- We may assume the above is satisfied and use this to iteratively approximate H. That is (known as secant equation) $H p_{k}=q_{k}$, where $p_{k}=\theta_{k+1}-\theta_{k}$ and $q_{k}=\nabla J\left(\theta_{k+1}\right)-\nabla J\left(\theta_{k}\right)$
- Let $H_{k+1}=H_{k}+u v^{T} \Rightarrow\left(H_{k}+u v^{T}\right) p_{k}=q_{k}$
$\Rightarrow u\left(v^{T} p_{k}\right)=q_{k}-H_{k} p_{k} \Rightarrow u=\frac{1}{v^{T} p_{k}}\left(q_{k}-H_{k} p_{k}\right)$
- We are free to pick v. But since we know H has to be symmetric, let's pick $v=q_{k}-H_{k} p_{k}$. Thus

$$
H_{k+1}=H_{k}+\frac{1}{v^{T} p_{k}} v v^{T}
$$

with $v=q_{k}-H_{k} p_{k}$

Updating B

- Recall that we need $B_{k}=H_{k}^{-1}$ to approximate the Newton direction $\left(d_{k}=-B_{k} g_{k}\right)$

Updating B

- Recall that we need $B_{k}=H_{k}^{-1}$ to approximate the Newton direction $\left(d_{k}=-B_{k} g_{k}\right)$
- We don't need to invert the matrix H_{k} directly. Note that $H p_{k}=q_{k}$ give us $H_{k+1}=H_{k}+\frac{1}{v^{T} p_{k}} v v^{T}$ and $v=q_{k}-H_{k} p_{k}$

Updating B

- Recall that we need $B_{k}=H_{k}^{-1}$ to approximate the Newton direction $\left(d_{k}=-B_{k} g_{k}\right)$
- We don't need to invert the matrix H_{k} directly. Note that $H p_{k}=q_{k}$ give us $H_{k+1}=H_{k}+\frac{1}{v^{T} p_{k}} v v^{T}$ and $v=q_{k}-H_{k} p_{k}$
- Similarly, given $B q_{k}=p_{k}$, we have

$$
B_{k+1}=B_{k}+\frac{1}{w^{T} q_{k}} w w^{T}
$$

with $w=p_{k}-B_{k} q_{k}$

Rank-2 approximation

- BFGS utilizes rank-2 approximation update for H. There are other variations (such as DFP). But BFGS is considered the state of the art

Rank-2 approximation

- BFGS utilizes rank-2 approximation update for H. There are other variations (such as DFP). But BFGS is considered the state of the art
- Recall our rank-1 approximation that

$$
H_{k+1}=H_{k}+\frac{1}{v^{T} p_{k}} v v^{T} \text { and } v=q_{k}-H_{k} p_{k}
$$

Rank-2 approximation

- BFGS utilizes rank-2 approximation update for H. There are other variations (such as DFP). But BFGS is considered the state of the art
- Recall our rank-1 approximation that

$$
H_{k+1}=H_{k}+\frac{1}{v^{T} p_{k}} v v^{T} \text { and } v=q_{k}-H_{k} p_{k}
$$

- Consider update $H_{k+1}=H_{k}+\frac{1}{\alpha} u u^{T}+\frac{1}{\beta} w w^{T}$ instead.

Rank-2 approximation

- BFGS utilizes rank-2 approximation update for H. There are other variations (such as DFP). But BFGS is considered the state of the art
- Recall our rank-1 approximation that

$$
H_{k+1}=H_{k}+\frac{1}{v^{T} p_{k}} v v^{T} \text { and } v=q_{k}-H_{k} p_{k}
$$

- Consider update $H_{k+1}=H_{k}+\frac{1}{\alpha} u u^{T}+\frac{1}{\beta} w w^{T}$ instead.
- Need to pick u and w, q_{k} and $H_{k} p_{k}$ are reasonable choice

Rank-2 approximation

- BFGS utilizes rank-2 approximation update for H. There are other variations (such as DFP). But BFGS is considered the state of the art
- Recall our rank-1 approximation that

$$
H_{k+1}=H_{k}+\frac{1}{v^{T} p_{k}} v v^{T} \text { and } v=q_{k}-H_{k} p_{k}
$$

- Consider update $H_{k+1}=H_{k}+\frac{1}{\alpha} u u^{T}+\frac{1}{\beta} w w^{T}$ instead.
- Need to pick u and w, q_{k} and $H_{k} p_{k}$ are reasonable choice
- Again, we want $H_{k+1} p_{k}=q_{k}$
$\Rightarrow H_{k} p_{k}+\frac{1}{\alpha} q_{k} q_{k}^{T} p_{k}+\frac{1}{\beta} H_{k} p_{k} p_{k}^{T} H_{k}^{T} p_{k}=q_{k}$.

Rank-2 approximation

- BFGS utilizes rank-2 approximation update for H. There are other variations (such as DFP). But BFGS is considered the state of the art
- Recall our rank-1 approximation that

$$
H_{k+1}=H_{k}+\frac{1}{v^{T} p_{k}} v v^{T} \text { and } v=q_{k}-H_{k} p_{k}
$$

- Consider update $H_{k+1}=H_{k}+\frac{1}{\alpha} u u^{T}+\frac{1}{\beta} w w^{T}$ instead.
- Need to pick u and w, q_{k} and $H_{k} p_{k}$ are reasonable choice
- Again, we want $H_{k+1} p_{k}=q_{k}$ $\Rightarrow H_{k} p_{k}+\frac{1}{\alpha} q_{k} q_{k}^{T} p_{k}+\frac{1}{\beta} H_{k} p_{k} p_{k}^{T} H_{k}^{T} p_{k}=q_{k}$. By inspection, this can be satisfied if we pick $\alpha=q_{k}^{T} p_{k}$ and $\beta=-p_{k}^{T} H_{k}^{T} p_{k}$.

Rank-2 approximation

- BFGS utilizes rank-2 approximation update for H. There are other variations (such as DFP). But BFGS is considered the state of the art
- Recall our rank-1 approximation that

$$
H_{k+1}=H_{k}+\frac{1}{v^{T} p_{k}} v v^{T} \text { and } v=q_{k}-H_{k} p_{k}
$$

- Consider update $H_{k+1}=H_{k}+\frac{1}{\alpha} u u^{T}+\frac{1}{\beta} w w^{T}$ instead.
- Need to pick u and w, q_{k} and $H_{k} p_{k}$ are reasonable choice
- Again, we want $H_{k+1} p_{k}=q_{k}$
$\Rightarrow H_{k} p_{k}+\frac{1}{\alpha} q_{k} q_{k}^{T} p_{k}+\frac{1}{\beta} H_{k} p_{k} p_{k}^{T} H_{k}^{T} p_{k}=q_{k}$. By inspection, this can be satisfied if we pick $\alpha=q_{k}^{T} p_{k}$ and $\beta=-p_{k}^{T} H_{k}^{T} p_{k}$. Thus we have

$$
H_{k+1}=H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}-\frac{H_{k} p_{k} p_{k}^{T} H_{k}}{p_{k}^{T} H_{k}^{T} p_{k}}
$$

Sherman-Morrison-formula

- But we are interested in $B_{k}=H_{k}^{-1}$
- Sherman-Morrison-formula:

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

Proof.

$\left(A+u v^{T}\right)\left(A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}\right)$

Sherman-Morrison-formula

- But we are interested in $B_{k}=H_{k}^{-1}$
- Sherman-Morrison-formula:

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

Proof.

$\left(A+u v^{T}\right)\left(A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}\right)$
$=A A^{-1}+u v^{T} A^{-1}-\frac{A A^{-1} u v^{T} A^{-1}+u v^{T} A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}$

Sherman-Morrison-formula

- But we are interested in $B_{k}=H_{k}^{-1}$
- Sherman-Morrison-formula:

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

Proof.

$\left(A+u v^{T}\right)\left(A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}\right)$
$=A A^{-1}+u v^{T} A^{-1}-\frac{A A^{-1} u v^{T} A^{-1}+u v^{T} A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}$
$=I+u v^{T} A^{-1}-\frac{u v^{T} A^{-1}+u v^{T} A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}$

Sherman-Morrison-formula

- But we are interested in $B_{k}=H_{k}^{-1}$
- Sherman-Morrison-formula:

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

Proof.

$\left(A+u v^{T}\right)\left(A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}\right)$
$=A A^{-1}+u v^{T} A^{-1}-\frac{A A^{-1} u v^{T} A^{-1}+u v^{T} A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}$
$=I+u v^{T} A^{-1}-\frac{u v^{T} A^{-1}+u v^{T} A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}$
$=I+u v^{T} A^{-1}-\frac{u\left(1+v^{T} A^{-1} u\right) v^{T} A^{-1}}{1+v^{T} A^{-1} u}$

Sherman-Morrison-formula

- But we are interested in $B_{k}=H_{k}^{-1}$
- Sherman-Morrison-formula:

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

Proof.

$\left(A+u v^{T}\right)\left(A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}\right)$
$=A A^{-1}+u v^{T} A^{-1}-\frac{A A^{-1} u v^{T} A^{-1}+u v^{T} A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}$
$=I+u v^{T} A^{-1}-\frac{u v^{T} A^{-1}+u v^{T} A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}$
$=I+u v^{T} A^{-1}-\frac{u\left(1+v^{T} A^{-1} u\right) v^{T} A^{-1}}{1+v^{T} A^{-1} u}=I+u v^{T} A^{-1}-u v^{T} A^{-1}=I$

Inverse Hessian update for BFGS

- Recall $H_{k+1}=\underbrace{H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}}_{D}-\frac{H_{k} p_{k} p_{k}^{T} H_{k}}{p_{k}^{T} H_{k}^{T} p_{k}}$ and

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

Inverse Hessian update for BFGS

- Recall $H_{k+1}=\underbrace{H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}}_{D}-\frac{H_{k} p_{k} p_{k}^{T} H_{k}}{p_{k}^{T} H_{k}^{T} p_{k}}$ and

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

- $D^{-1}=\left(H+\frac{q q^{T}}{q^{T} p}\right)^{-1}=H^{-1}+\frac{H^{-1} q q^{T} H^{-1}}{\left(q^{T} p\right)\left(1-q^{T} H^{-1} q /\left(q^{T} p\right)\right)}=B+\frac{B q q^{T} B}{q^{T} p-q^{T} B q}$

Inverse Hessian update for BFGS

- Recall $H_{k+1}=\underbrace{H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}}_{D}-\frac{H_{k} p_{k} p_{k}^{T} H_{k}}{p_{k}^{T} H_{k}^{T} p_{k}}$ and

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

- $D^{-1}=\left(H+\frac{q q^{T}}{q^{T} p}\right)^{-1}=H^{-1}+\frac{H^{-1} q q^{T} H^{-1}}{\left(q^{T} p\right)\left(1-q^{T} H^{-1} q /\left(q^{T} p\right)\right)}=B+\frac{B q q^{T} B}{q^{T} p-q^{T} B q}$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H^{T} p\left(1-p^{T} H D^{-1} H p /\left(p^{T} H^{T} p\right)\right)}$

Inverse Hessian update for BFGS

- Recall $H_{k+1}=\underbrace{H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}}_{D}-\frac{H_{k} p_{k} p_{k}^{T} H_{k}}{p_{k}^{T} H_{k}^{T} p_{k}}$ and

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

- $D^{-1}=\left(H+\frac{q q^{T}}{q^{T} p}\right)^{-1}=H^{-1}+\frac{H^{-1} q q^{T} H^{-1}}{\left(q^{T} p\right)\left(1-q^{T} H^{-1} q /\left(q^{T} p\right)\right)}=B+\frac{B q q^{T} B}{q^{T} p-q^{T} B q}$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H^{T} p\left(1-p^{T} H D^{-1} H p /\left(p^{T} H^{T} p\right)\right)}$
$=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H p-p^{T} H D^{-1} H p}$

Inverse Hessian update for BFGS

- Recall $H_{k+1}=H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}-\frac{H_{k} p_{k} p_{k}^{T} H_{k}}{p_{k}^{T} H_{k}^{T} p_{k}}$ and

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

- $D^{-1}=\left(H+\frac{q q^{T}}{q^{T} p}\right)^{-1}=H^{-1}+\frac{H^{-1} q q^{T} H^{-1}}{\left(q^{T} p\right)\left(1-q^{T} H^{-1} q /\left(q^{T} p\right)\right)}=B+\frac{B q q^{T} B}{q^{T} p-q^{T} B q}$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H^{T} p\left(1-p^{T} H D^{-1} H p /\left(p^{T} H^{T} p\right)\right)}$
$=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H p-p^{T} H D^{-1} H p}$
- $D^{-1} H p=\left(B H p+\frac{B q q^{T} B H p}{q^{T} p-q^{T} B q}\right)=\left(p+\frac{B q q^{T} p}{q^{T} p-q^{T} B q}\right)$

Inverse Hessian update for BFGS

- Recall $H_{k+1}=H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}-\frac{H_{k} p_{k} p_{k}^{T} H_{k}}{p_{k}^{T} H_{k}^{T} p_{k}}$ and

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

- $D^{-1}=\left(H+\frac{q q^{T}}{q^{T} p}\right)^{-1}=H^{-1}+\frac{H^{-1} q q^{T} H^{-1}}{\left(q^{T} p\right)\left(1-q^{T} H^{-1} q /\left(q^{T} p\right)\right)}=B+\frac{B q q^{T} B}{q^{T} p-q^{T} B q}$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H^{T} p\left(1-p^{T} H D^{-1} H p /\left(p^{T} H^{T} p\right)\right)}$
$=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H p-p^{T} H D^{-1} H p}$
- $D^{-1} H p=\left(B H p+\frac{B q q^{T} B H p}{q^{T} p-q^{T} B q}\right)=\left(p+\frac{B q q^{T} p}{q^{T} p-q^{T} B q}\right)$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} q q^{T} p\left(q^{T} p-q^{T} B q\right)}$

Inverse Hessian update for BFGS

- Recall $H_{k+1}=H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}-\frac{H_{k} p_{k} p_{k}^{T} H_{k}}{p_{k}^{T} H_{k}^{T} p_{k}}$ and

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

- $D^{-1}=\left(H+\frac{q q^{T}}{q^{T} p}\right)^{-1}=H^{-1}+\frac{H^{-1} q q^{T} H^{-1}}{\left(q^{T} p\right)\left(1-q^{T} H^{-1} q /\left(q^{T} p\right)\right)}=B+\frac{B q q^{T} B}{q^{T} p-q^{T} B q}$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H^{T} p\left(1-p^{T} H D^{-1} H p /\left(p^{T} H^{T} p\right)\right)}$
$=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H p-p^{T} H D^{-1} H p}$
- $D^{-1} H p=\left(B H p+\frac{B q q^{T} B H p}{q^{T} p-q^{T} B q}\right)=\left(p+\frac{B q q^{T} p}{q^{T} p-q^{T} B q}\right)$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} q q^{T} p\left(q^{T} p-q^{T} B q\right)} \cdots$

Inverse Hessian update for BFGS

- Recall $H_{k+1}=H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}-\frac{H_{k} p_{k} p_{k}^{T} H_{k}}{p_{k}^{T} H_{k}^{T} p_{k}}$ and

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

- $D^{-1}=\left(H+\frac{q q^{T}}{q^{T} p}\right)^{-1}=H^{-1}+\frac{H^{-1} q q^{T} H^{-1}}{\left(q^{T} p\right)\left(1-q^{T} H^{-1} q /\left(q^{T} p\right)\right)}=B+\frac{B q q^{T} B}{q^{T} p-q^{T} B q}$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H^{T} p\left(1-p^{T} H D^{-1} H p /\left(p^{T} H^{T} p\right)\right)}$
$=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H p-p^{T} H D^{-1} H p}$
- $D^{-1} H p=\left(B H p+\frac{B q q^{T} B H p}{q^{T} p-q^{T} B q}\right)=\left(p+\frac{B q q^{T} p}{q^{T} p-q^{T} B q}\right)$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} q q^{T} p\left(q^{T} p-q^{T} B q\right)} \cdots$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=\left(I-\frac{p q^{T}}{q^{T} p}\right) B\left(I-\frac{q p^{T}}{q^{T} p}\right)+\frac{p p^{T}}{q^{T} p}$
$\Rightarrow B_{k+1}=\left(I-\frac{p_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}\right) B_{k}\left(I-\frac{q_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}\right)+\frac{p_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}$

Inverse Hessian update for BFGS

- Recall $H_{k+1}=H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}-\frac{H_{k} p_{k} p_{k}^{T} H_{k}}{p_{k}^{T} H_{k}^{T} p_{k}}$ and

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{T} A^{-1}}{1-v^{T} A^{-1} u}
$$

- $D^{-1}=\left(H+\frac{q q^{T}}{q^{T} p}\right)^{-1}=H^{-1}+\frac{H^{-1} q q^{T} H^{-1}}{\left(q^{T} p\right)\left(1-q^{T} H^{-1} q /\left(q^{T} p\right)\right)}=B+\frac{B q q^{T} B}{q^{T} p-q^{T} B q}$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H^{T} p\left(1-p^{T} H D^{-1} H p /\left(p^{T} H^{T} p\right)\right)}$
$=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} H p-p^{T} H D^{-1} H p}$
- $D^{-1} H p=\left(B H p+\frac{B q q^{T} B H p}{q^{T} p-q^{T} B q}\right)=\left(p+\frac{B q q^{T} p}{q^{T} p-q^{T} B q}\right)$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=D^{-1}-\frac{D^{-1} H p p^{T} H D^{-1}}{p^{T} q q^{T} p\left(q^{T} p-q^{T} B q\right)} \cdots$
- $\left(D-\frac{H p p^{T} H}{p^{T} H^{T} p}\right)^{-1}=\left(I-\frac{p q^{T}}{q^{T} p}\right) B\left(I-\frac{q p^{T}}{q^{T} p}\right)+\frac{p p^{T}}{q^{T} p}$
$\Rightarrow B_{k+1}=\left(I-\frac{p_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}\right) B_{k}\left(I-\frac{q_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}\right)+\frac{p_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}$
- Bounty: 3% bonus to complete the algebra

Summary of BFGS

Initialize Initialize inverse Hessian approximation $B \leftarrow B_{0}$. Can set $B \leftarrow I$ if no initial estimate; $k \leftarrow 0$; Pick a random starting point θ_{0}
Loop (1) Get search direction $d_{k}=-B_{k} \nabla J\left(\theta_{k}\right)$
(2) Conduct line search to find optimum

$$
\theta_{k+1}=\theta_{k}+\alpha_{k} d_{k}
$$

(3) $p_{k} \leftarrow \theta_{k+1}-\theta_{k} ; q_{k} \leftarrow \nabla J\left(\theta_{k+1}\right)-\nabla J\left(\theta_{k}\right)$; $B_{k+1}=\left(I-\frac{p_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}\right) B_{k}\left(I-\frac{q_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}\right)+\frac{p_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}$
(1) $k \leftarrow k+1$; Exit if $\left\|\nabla J\left(\theta_{k}\right)\right\|>\epsilon$

Inverse Hessian update for BFGS

- Like rank-1 update, we can also rearrange the variables to obtain an update rule for $B=H^{-1}$
- Instead of $H_{k+1} p_{k}=q_{k}$, we want $B_{k+1} q_{k}=p_{k}$.

Inverse Hessian update for BFGS

- Like rank-1 update, we can also rearrange the variables to obtain an update rule for $B=H^{-1}$
- Instead of $H_{k+1} p_{k}=q_{k}$, we want $B_{k+1} q_{k}=p_{k}$. Thus we have

$$
B_{k+1}=B_{k}+\frac{p_{k} p_{k}^{T}}{p_{k}^{T} q_{k}}-\frac{B_{k} q_{k} q_{k}^{T} B_{k}}{q_{k}^{T} B_{k}^{T} q_{k}}
$$

- Note that this update rule of B is different from before. Actually this is the update rule of DFP. An older approach that is considered worse compared with BFGS

Some theoretical notes

- A prettier but more technical explanation of BFGS/DFP involves weighted matrix norm

Some theoretical notes

- A prettier but more technical explanation of BFGS/DFP involves weighted matrix norm
- Comparing with rank-1 update, we have more degree of freedom and thus can impose more requirement. Besides
(1) $B_{k+1} q_{k}=p_{k}$ (secant equation)
(2) $B_{k+1} \succ 0$ (symmetric and positive definite),
we also require each update to be small.

Some theoretical notes

- A prettier but more technical explanation of BFGS/DFP involves weighted matrix norm
- Comparing with rank-1 update, we have more degree of freedom and thus can impose more requirement. Besides
(1) $B_{k+1} q_{k}=p_{k}$ (secant equation)
(2) $B_{k+1} \succ 0$ (symmetric and positive definite),
we also require each update to be small. Namely,

$$
\left\|B_{k+1}-B_{k}\right\|_{W} \rightarrow \min
$$

where $\|A\|_{W}=\left\|W^{1 / 2} A W^{1 / 2}\right\|_{F}$ is the weighted Frobenius norm

Some theoretical notes

- A prettier but more technical explanation of BFGS/DFP involves weighted matrix norm
- Comparing with rank-1 update, we have more degree of freedom and thus can impose more requirement. Besides
(1) $B_{k+1} q_{k}=p_{k}$ (secant equation)
(2) $B_{k+1} \succ 0$ (symmetric and positive definite),
we also require each update to be small. Namely,

$$
\left\|B_{k+1}-B_{k}\right\|_{W} \rightarrow \min
$$

where $\|A\|_{W}=\left\|W^{1 / 2} A W^{1 / 2}\right\|_{F}$ is the weighted Frobenius norm
$\bullet \Rightarrow \begin{cases}\text { BFGS } & W=H \\ \text { DFP } & W=H^{-1}\end{cases}$

LBFGS

- BFGS requires us to store the complete estimate of the Hessian or inverse Hessian

LBFGS

- BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
- The matrix is too big to be stored in deep learning setting (millions of variables)

LBFGS

- BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
- The matrix is too big to be stored in deep learning setting (millions of variables)
- Recall that $B_{k+1}=\left(I-\frac{p_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}\right) B_{k}\left(I-\frac{q_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}\right)+\frac{p_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}$, size of p_{k} and q_{k} are much smaller

LBFGS

- BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
- The matrix is too big to be stored in deep learning setting (millions of variables)
- Recall that $B_{k+1}=\left(I-\frac{p_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}\right) B_{k}\left(I-\frac{q_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}\right)+\frac{p_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}$, size of p_{k} and q_{k} are much smaller
- Instead of storing B_{k}, we can store the previous last several p and q to estimate B_{k+1}

LBFGS

- BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
- The matrix is too big to be stored in deep learning setting (millions of variables)
- Recall that $B_{k+1}=\left(I-\frac{p_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}\right) B_{k}\left(I-\frac{q_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}\right)+\frac{p_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}$, size of p_{k} and q_{k} are much smaller
- Instead of storing B_{k}, we can store the previous last several p and q to estimate B_{k+1}
- Let say we store the last r pairs, we need to iterate r times (instead of just once) and the estimate is less accurate

LBFGS

- BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
- The matrix is too big to be stored in deep learning setting (millions of variables)
- Recall that $B_{k+1}=\left(I-\frac{p_{k} q_{k}^{T}}{q_{k}^{T} p_{k}}\right) B_{k}\left(I-\frac{q_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}\right)+\frac{p_{k} p_{k}^{T}}{q_{k}^{T} p_{k}}$, size of p_{k} and q_{k} are much smaller
- Instead of storing B_{k}, we can store the previous last several p and q to estimate B_{k+1}
- Let say we store the last r pairs, we need to iterate r times (instead of just once) and the estimate is less accurate
- Storage requirement decreases drastically

Optimizers

L-BFGS

- Usually works very well in full batch, deterministic mode i.e. if you have a single, deterministic $f(x)$ then L-BFGS will probably work very nicely
- Does not transfer very well to mini-batch setting. Gives bad results. Adapting L-BFGS to large-scale, stochastic setting is an active area of research.

$$
\text { Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 6-43 } 25 \text { Jan } 2016
$$

Optimizers

In practice:

- Adam is a good default choice in most cases
- If you can afford to do full batch updates then try out L-BFGS (and don't forget to disable all sources of noise)

Babysitting learning process

Step 1: Preprocess the data

(Assume $\mathrm{X}[\mathrm{NxD}]$ is data matrix, each example in a row)

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-72 20 Jan 2016

Babysitting learning process

Step 2: Choose the architecture: say we start with one hidden layer of 50 neurons:

Babysitting learning process

Double check that the loss is reasonable:

```
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden_size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```


Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-74 20 Jan 2016

Debugging optimizer

Double check that the loss is reasonable:

```
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden_size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```

model = init_two_layer_model $(32 * 32 * 3,50,10)$ \# input size, hidden size, number of classes
loss, grad =-two_layer_net (X_train, model, y_train, 1e3) crank up regularization
loss, grad = two_layer_net (X_train, model, y_train, 1e3) crank up regularization
print loss
3.06859716482

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-75 20 Jan 2016

Debugging optimizer

Lets try to train now...

Tip: Make sure that you can overfit very small portion of the training data

```
model = init two layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes
```

trainer $=$ ClāssifierTräner()

X_tiny $=$ X_train $[: 20]$ \#take 20 examples
y tiny $=y$ train [:20]
 mōdel, twō_layer_net,
num epochs $=200, \bar{r} \mathrm{eg}=0.0$,
updāte='sgd', learning rate decay=1,
sample batches $=$ False,
learning_rate $=1 e-3$, verbose=True)

The above code:

- take the first 20 examples from CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla 'sgd'

Debugging optimizer

Lets try to train now...

Tip: Make sure that you can overfit very small portion of the training data

> Very small loss, train accuracy 1.00, nice!
model $=$ init two layer model $(32 * 32 * 3,50,10)$ input size, hidden size, number of classes trainer $=$ ClāssifierTräiner()
X_tiny $=$ X_train $[: 20]$ \#take 20 examples
$y \operatorname{tin} y=y \operatorname{train}[: 20]$
best_model, stats = trainer. train (X_tiny, y_tiny, X_tiny, y_tiny, mōdel, twō layer net,
num_epochs $=200, \bar{r} \mathrm{reg}=0.0$,
updāte='sgd', learning rate decay=1,
sample batches $=$ False,
learning rate=1e-3, verbose=True)
Finished epoch $1 / 200:$ cost 2.302603 , train: 0.400000 , val 0.400000 , lr $1.000000 \mathrm{e}-03$ Finished epoch $2 / 200:$ cost 2.302258, train: 0.450000 , val 0.450000 , lr $1.000000 \mathrm{e}-03$ Finished epoch $3 / 200$: cost 2.301849, train: 0.600000 , val 0.600000 , lr $1.000000 \mathrm{e}-03$ Finished epoch $4 / 200$: cost 2.301196 , train: 0.650000 , val 0.650000 , lr $1.000000 \mathrm{e}-03$ Finished epoch $5 / 200$: cost 2.300044 , train: 0.650000 , val 0.650000 , lr $1.000000 \mathrm{e}-03$ Finished epoch $6 / 200:$ cost 2.297864 , train: 0.550000 , val 0.550600 , lr $1.000000 \mathrm{e}-03$ Finished epoch $7 / 200$: cost 2.293595, train: 0.600000 , val 0.600000, lr 1.000000e-03 Finished epoch $8 / 200$; cost 2.285096 , train: 0.550000 , val 0.550000 , ir $1.000000 \mathrm{e}-03$ Finished epoch $9 / 200$: cost 2.268094 , train: 0.550000 , val 0.550000 , ir $1.000000 e-03$ Finished epoch $10 / 200$: cost 2.234787 , train: 0.500000 , val 0.500000 , Ir $1.000000 e-03$ Finished epoch $11 / 200:$ cost 2.173187, train: 0.500000 , val 0.500000 , lr $1.000000 e-03$ Finished epoch $12 / 200$: cost 2.076862 , train: 0.500000 , val 0.500000 , lr $1.000000 \mathrm{e}-03$ Finished epoch $13 / 200$: cost 1.974090 , train: 0.400000 , val 0.400000 , lr $1.000000 \mathrm{e}-03$ Finished epoch $14 / 200$: cost 1.895885 , train: 0.400000 , val 0.400000 , ir $1.000000 \mathrm{e}-03$ Finished epoch $15 / 200:$ cost 1.820876 , train: 0.450000 , val 0.450000 , lr $1.000000 \mathrm{e}-03$ Finished epoch $16 / 200$: cost 1.737430 , train: 0.450000 , val 0.450000 , lr $1.000000 \mathrm{e}-03$ Finished epoch $17 / 200$: cost 1.642356 , train: 0.500000 , val 0.500000 , lr $1.000000 e-03$ Finished epoch $18 / 200$: cost 1.535239 , train: 0.600000 , val 0.600000 , lr $1.000000 \mathrm{e}-03$ Finished epoch 19/, 200: cost 1.421527, train: 0.600000, val 0.600000, ir 1.000000e-03 Finished epoch 195 / 200 : cost 0.002694 , train: 1.000000, val 1.000000, lr $1.000000 \mathrm{e}-03$ Finished epoch $196 / 200$: cost 0.002674 , train: 1.000000 , val 1.000000 , lr $1.000000 \mathrm{e}-03$ Finished epoch 197 / 200 : cost 0.002655 , train: 1.000000 , val 1.000000 , ir $1.000000 e-03$ Finished epoch $198 / 200$: cost 0.002635 , train: 1.000000, val 1.000000, ir 1.000000e-03 Finished epoch 199 / 200 : cost 0.002617 , train: 1.000000, val 1.000000, Ir 1.000000e-03 Finished epoch 200 / 200 : cost 0.002597 , train: 1.000000, val 1.000000, ir $1.000000 e-03$ finished optimization. best validation accuracy: 1.000000

Debugging optimizer

Lets try to train now...

I like to start with small regularization and find learning rate that makes the loss go down.

mōdel, two_layer_net̄, num epochs $\overline{=}=10$, $\overline{\mathrm{re}} \mathrm{g}=0.000001$,
update='sgd', learning_rate_decay=1, sample batches $=$ True,
learning_rate $=1 \mathrm{e}-6$, verbose=True)

Debugging optimizer

Lets try to train now...

I like to start with small regularization and find learning rate that makes the loss go down.

model $=$ init two layer_model $(32 * 32 * 3,50,10)$ \# input size, hidden size, number of classes trainer $=$ ClāssifierTräner()
best_model, stats = trainer.train(X_train, y_train, x_{-}val, y_val, mōdel, two_layer_nē, num epochs $=10$, reg=0.000001, update='sgd', learning_rate_decay=1, sampte batches - True,
learning_rate $=1 e-6$, verbose=True)
Finished epoch 1 / 10:
Finished epoch $2 / 10$: Finished epoch 3 / 10 : Finished epoch 4 / 10: Finished epoch 5 / 10 : Finished epoch 6/10: Finished epoch $7 / 10$: Finished epoch 8/10: Finished epoch 9/10: Finished epoch $10 / 10$: cost 2.302420 train: 0.206000 , yal $0.192000, \operatorname{lr} 1.000000 \mathrm{e}-06$ finished optimization. best validation accuracy: 0.192000

Loss barely changing

Debugging optimizer

Lets try to train now...

> I like to start with small regularization and find learning rate that makes the loss go down.
model $=$ init two layer_model $(32 * 32 * 3,50,10)$ \# input size, hidden size, number of classes trainer = ClassifierTrainer()
best_model, stats $=$ trainer. $\operatorname{train}\left(X_{_}\right.$train, $y _t r a i n, ~ X _v a l, ~ y _v a l, ~$ módel, two_layer_net, num_epochs=10, reg=0.000001, update='sgd', learning_rate_decay=1, sampte batehes - True,

Finished epoch $1 / 10$:
Finished epoch 2 / 10: Finished epoch 3/10: Finished epoch 4 / 10 : Finished epoch 5 / 10 : Finished epoch 6/10: Finished epoch 7 / 10: Finished epoch 8/10: Finished epoch 9/10: finished optimization. best validation accuracy: 0.192000
learning_rate $=1 \mathrm{e}-6$, verbose $=$ True) Finished epoch $9 / 10:$ cost 2.302459 , train: 0.206000, y y 0.192000 , $\operatorname{lr} 1.000000 \mathrm{e}-06$
Finished epoch $10 / 10$, cost 2.302420 train: 0.190000 , val 0.192000 , $\operatorname{lr} 1.000000 \mathrm{e}-06$
trai 0.08000,

cost 2.302576 , train: 0.080000, yal 0.103000, lr 1.000000e-06

 cost 2.302582, train: 0.121000, yal 0.124000, lr 1.000000e-06 cost 2.302558, trair: 0.119000, yal 0.138000, ir 1.000000e-06 cost 2.302519, train: 0.127000, yal 0.151000, lr 1.000000e-06 cost 2.302517, train: 0.158000, yal 0.171000, lr 1.000000e-06 cost 2.302518, trair: 0.179000, yal 0.172000, ir 1.000000e-06 cost 2.302466, train: 0.180000, yal 0.176000, lr 1.000000e-06 cost 2.302452, trair: 0.175000, yal 0.185000, lr 1.000000e-06 cost 2.302459, train: 0.206000, yal 0.192000, ir 1.000000e-06

Loss barely changing: Learning rate is probably too low

loss not going down: learning rate too low

Debugging optimizer

Lets try to train now...

> I like to start with small regularization and find learning rate that makes the loss go down.
model $=$ init two layer_model $(32 * 32 * 3,50,10)$ \# input size, hidden size, number of classes trainer = ClassifierTrainer()
best_model, stats $=$ trainer. $\operatorname{train}\left(X_{_}\right.$train, $y _t r a i n, ~ X _v a l, ~ y _v a l, ~$ model, two_layer_net, num epochs=10, reg=0.000001, update='sgd', learning_rate_decay=1, sample batches - True,
learning_rate $=1 e-6$, verbose $=$ True)
Finished epoch 1 / 10:
Finished epoch 2/10: Finished epoch 3/10: Finished epoch 4 / 10 : Finished epoch 5 / 10 : Finished epoch 6/10: Finished epoch $7 / 10$: Finished epoch 8/10: Finished epoch 9/10: Finished epoch $10 / 10$; cost 2.302420 train: 0.190000 , val 0.192000 , $\operatorname{lr} 1.000000 \mathrm{e}-06$ finished optimization. best validation accuracy: 0.192000

Loss barely changing: Learning rate is

loss not going down: learning rate too low

probably too low

Notice train/val accuracy goes to 20% though, what's up with that? (remember this is softmax)

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-81 20 Jan 2016
S. Cheng (OU-ECE)

Neural Networks
Jan 2018
$215 / 235$

Debugging optimizer

Lets try to train now...
I like to start with small regularization and find learning rate that makes the loss go down.
model $=$ init two layer model $(32 * 32 * 3,50,10) \#$ input size, hidden size, number of classes trainer = ClassifierTrainer()
best model, stats $=$ trainer, train (x train, y train, X val, y val,
model, two layer net,
num epochs $=10$, $\mathrm{reg}=0.000001$,
update='sgd', learning_rate_decay=1,
sample batches $=$ True,
learning_rate=le6, verbose=True)
\uparrow
Okay now lets try learning rate 1 e . What could possibly go wrong?

loss not going down: learning rate too low

Debugging optimizer

Lets try to train now...
I like to start with small regularization and find learning rate that makes the loss go down.
model $=$ init two layer model $(32 * 32 * 3,50,10) \#$ input size, hidden size, number of classes trainer $=$ clāssif̄ierTräiner()
best model, stats $=$ trainer. $\operatorname{train}(X$ train, y train, x val, y val,
model, two_layer_net,
num epochs $=10$, reg=0.000001,
update='sgd', learning_rate_decay=1,
sample batches $=$ True,
learning_rate=le6, verbose=True)
/home/karpathy/cs 231 n /code/cs231n/classifiers/neural_net.py:50: RuntimeWarning: divide by zero en countered in \log
data loss $=-n p . \operatorname{sum}(n p . \log ($ probs $[$ range $(N), y])) / N$
/home/karpathy/cs231n/code/cs231n/classifiers/neural_net.py:48: RuntimeWarning: invalid value enc ountered in subtract
probs $=n p . \exp (s c o r e s ~-n p . \max (s c o r e s, ~ a x i s=1$, keepdims=True))
Finished epoch $1 / 10:$ cost nan, train: 0.091000, val 0.087000, $\operatorname{lr} 1.000000 \mathrm{e}+66$ Finished epoch $2 / 10:$ cost nan, train: 0.095000 , val 0.087000 , lr $1.000000 \mathrm{e}+06$ Finished epoch $3 / 10$: cost nan, train: 0.100000 , val 0.087000 , $\operatorname{lr} 1.000000 \mathrm{e}+06$
loss not going down: learning rate too low loss exploding: learning rate too high

cost: NaN almost always means high learning rate...

Debugging optimizer

Lets try to train now...

I like to start with small regularization and find learning rate that makes the loss go down.

loss not going down: learning rate too low loss exploding: learning rate too high

model $=$ init two layer model (32*32*3, 50, 10) \# input size, hidden size, number of classes trainer = ClassifierTräiner()
best model, stats $=$ trainer. train $(X$ train, y train, X val, y val,
model, two_layer_net,
num_epochs=10, reg=0.000001,
update='sgd', learning_rate_decay=1,
sample_batches $=$ True,
learning_rate $=3 \mathrm{e}-3$, verbose $=$ True)

Finished epoch $1 / 10:$ cost 2.186654, train: 0.308000, val 0.306000, lr 3.000000e-03

 Finished epoch 2 / 10: cost 2.176230, train: 0.330000, val 0.350000, lr 3.000000e-03 Finished epoch $3 / 10$: cost 1.942257, train: 0.376000, val 0.352000, Ir 3.000000e-03 Finished epoch 4 / 10: cost 1.827868 , train: 0.329000, val 0.310000, lr 3.000000e-03 Finished epoch 5 / 10: cost inf, train: 0.128000, val 0.128000, lr 3.000000e-03 Finished epoch $6 / 10$: cost inf, train: 0.144000 , val 0.147000 , lr $3.000000 \mathrm{e}-03$$3 \mathrm{e}-3$ is still too high. Cost explodes....
=> Rough range for learning rate we should be cross-validating is somewhere [1e-3 ... 1e-5]

```
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5-84 20 Jan 2016
```


Hyperparameter optimization

Hyperparameter Optimization

Hyperparameter optimization

Cross-validation strategy

I like to do coarse -> fine cross-validation in stages
First stage: only a few epochs to get rough idea of what params work Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

$$
\text { Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-86 } 20 \text { Jan } 2016
$$

Hyperparameter optimization

For example: run coarse search for 5 epochs

\max count $=100$
for count in xrange(max_count) :
reg $=10^{* *}$ uniform($-5,5$)
$\mathrm{lr}=10^{* *}$ uniform $(-3,-6)$
trainer = ClassifierTrainer()
model $=$ init two layer_model $(32 * 32 * 3,50,10)$ \# input size, hidden size, number of classes trainer = ClāssifierTrāiner()
best_model_local, stats = trainer.train(X_train, y_train, X_val, y_val, model, two_layer_net, num epochs=5, reg=reg, update $=$ 'momentum', learning_rate_decay $=0.9$, sample batches $=$ True, batch siz $\overline{\mathrm{e}}=100$, learning rate=lr, verbose=False)

| val_acc: | $0.412000, \operatorname{lr}: 1.405206 \mathrm{e}-04$, reg: $4.793564 \mathrm{e}-01,(1 / 100)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| val_acc: $0.214000, \operatorname{lr}: 7.231888 \mathrm{e}-06$, reg: $2.321281 \mathrm{e}-04,(2 / 100)$ | |
| val_acc: $0.208000, \operatorname{lr}: 2.119571 \mathrm{e}-06$, reg: $8.011857 \mathrm{e}+01,(3 / 100)$ | |
| val_acc: $0.196000, \operatorname{lr}: 1.551131 \mathrm{e}-05$, reg: $4.374936 \mathrm{e}-05,(4 / 100)$ | |
| val_acc: $0.079000, \operatorname{lr}: 1.753300 \mathrm{e}-05$, reg: $1.200424 \mathrm{e}+03,(5 / 100)$ | |
| val_acc: $0.223000, \operatorname{lr}: 4.215128 \mathrm{e}-05$, reg: $4.196174 \mathrm{e}+01,(6 / 100)$ | |
| val_acc: $0.441000, \operatorname{lr}: 1.750259 \mathrm{e}-04$, reg: $2.110807 \mathrm{e}-04,(7 / 100)$ | |
| val acc: $0.241000, \operatorname{lr}: 6.749231 \mathrm{e}-05$, reg: $4.226413 \mathrm{e}+01,(8 / 100)$ | |
| val_acc: $0.482000, \operatorname{lr}: 4.296863 \mathrm{e}-04$, reg: $6.642555 \mathrm{e}-01,(9 / 100)$ | |
| val_acc: $0.079000, \operatorname{lr}: 5.401602 \mathrm{e}-06$, reg: $1.599828 \mathrm{e}+04,(10 / 100)$ | |
| val_acc: $0.154000, \operatorname{lr}: 1.618508 \mathrm{e}-06$, reg: $4.925252 \mathrm{e}-01,(11 / 100)$ | |

Hyperparameter optimization

Now run finer search...

```
max count = 100
for count in xrange(max_count):
    reg = 10**uniform( }-5,5
    lr = 10**uniform( -3, -6)
```

$\xrightarrow{\text { adjust range }}$

```
max count = 100
for count in xrange(max count):
    reg = 10**uniform( }-4,0
    lr = 10**uniform( -3, -4)
```

val acc: 0.527000, lr: $5.340517 \mathrm{e}-04$, reg: $4.097824 \mathrm{e}-01,(0 / 100)$
val acc: 0.492000 , lr: $2.279484 \mathrm{e}-04$, reg: $9.991345 \mathrm{e}-04,(1 / 100)$
val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val_acc: 0.461000, $\imath r: 1.028377 e-04$, reg: $1.220193 e-02$, ($3 / 100$)
val_acc: 0.460000 , lr: $1.113730 \mathrm{e}-04$, reg: $5.244309 \mathrm{e}-02,(4 / 100)$
val_acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
val acc: 0.469000 , lr: 1.484369e-04, reg: 4.328313e-01, ($6 / 100$)
val_acc: 0.522000, 1r: 5.586261e-04, reg: 2.312685e-04, (7/100)
val acc: 0.530000, $\quad \mathrm{r}: 5.808183 \mathrm{e}-04$, reg: $8.259964 \mathrm{e}-02$, $(8 / 100)$
val_acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
val-acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
val_acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, ($11 / 100$)
val_acc: 0.460000, $\operatorname{lr}: 1.135527 \mathrm{e}-04$, reg: $3.905040 \mathrm{e}-02$, ($12 / 100$)
val acc: $0.515000, \operatorname{lr}: 6.947668 \mathrm{e}-04, \mathrm{reg}: 1.562808 \mathrm{e}-02$, ($13 / 100$)
val acc: 0.531000, $\operatorname{lr}: 9.471549 \mathrm{e}-04$, reg: $1.433895 \mathrm{e}-03$, ($14 / 100$)
val_acc: 0.509000, lr: 3.140888e-04, reg: $2.857518 \mathrm{e}-01,(15 / 100)$
val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100)
val acc: 0.502000, $\mathrm{lr}: 3.921784 \mathrm{e}-04$, reg: $2.707126 \mathrm{e}-04$, (17 / 100)
val_acc: 0.509000, lr: 9.752279e-04, reg: $2.850865 \mathrm{e}-03$, ($18 / 100$)
val_acc: 0.500000, $1 r: 2.412048 \mathrm{e}-04$, reg: $4.997821 \mathrm{e}-04$, ($19 / 100$)
val acc: $0.466000, \operatorname{lr}: 1.319314 \mathrm{e}-04, \mathrm{reg}: 1.189915 \mathrm{e}-02$, ($20 / 100$)
val_acc: 0.516000, $\operatorname{lr}: 8.039527 \mathrm{e}-04, \mathrm{reg}: 1.528291 \mathrm{e}-02,(21 / 100)$
Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-88

Hyperparameter optimization

Now run finer search...

\max count $=100$
for count in xrange(max count): reg $=10 * *$ uniform $(-5,5)$ $1 r=10 * *$ uniform ($-3,-6$)

max count $=100$
for count in xrange(max count):
reg $=10 * *$ uniform $(-4,0)$
lr $=10 * *$ uniform $(-3,-4)$
val_acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100) val_acc: 0.492000 , lr: $2.279484 e-04$, reg: $9.991345 e-04,(1 / 100)$ val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100) val_acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3/100) val_acc: 0.460000, $\mathrm{lr}: 1.113730 \mathrm{e}-04$, reg: $5.244309 \mathrm{e}-02,(4 / 100)$ val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) val_acc: $0.522000, \operatorname{lr}: 5.586261 \mathrm{e}-04$, reg: $2.312685 \mathrm{e}-04,(7 / 100)$ val acc: 0.530000 , $\mathrm{lr}: 5.808183 \mathrm{e}-04$, reg: $8.259964 \mathrm{e}-02,(8 / 100)$ val_acc: 0.489000, lr: 1.979168e-04, reg: $1.010889 \mathrm{e}-04,(9 / 100)$ val-acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, ($10 / 100$) val_acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, ($11 / 100$) val_acc: 0.460000, $\mathrm{lr}: 1.135527 \mathrm{e}-04, \mathrm{reg}: 3.905040 \mathrm{e}-02,(12 / 100)$ val acc: $0.515000, \mathrm{lr}: 6.947668 \mathrm{e}-04$, reg: $1.562808 \mathrm{e}-02,(13 / 100)$ val acc: 0.531000, $\operatorname{lr}: 9.471549 \mathrm{e}-04$, reg: $1.433895 \mathrm{e}-03,(14 / 100)$ val_acc: 0.509000, $\operatorname{lr}: 3.140888 \mathrm{e}-04$, reg: $2.857518 \mathrm{e}-01,(15 / 100)$ val-acc: $0.514000, \operatorname{lr}: 6.438349 \mathrm{e}-04$, reg: 3.033781e-01, (16 / 100) val-acc: 0.502000, $\mathrm{lr}: 3.921784 \mathrm{e}-04$, reg: $2.707126 \mathrm{e}-04,(17 / 100)$ val_acc: 0.509000 , $\operatorname{lr}: 9.752279 \mathrm{e}-04$, reg: $2.850865 \mathrm{e}-03,(18 / 100)$ val_acc: 0.500000, $1 \mathrm{r}: 2.412048 \mathrm{e}-04$, reg: 4.997821e-04, ($19 / 100$) val acc: $0.466000, \mathrm{lr}: 1.319314 \mathrm{e}-04, \mathrm{reg}: 1.189915 \mathrm{e}-02$, $(20 / 100)$ val_acc: $0.516000, \operatorname{lr}: 8.039527 e-04, r e g: 1.528291 e-02,(21 / 100)$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-89 20 Jan 2016

Hyperparameter optimization

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-90 20 Jan 2016

Hyperparameter optimization

Hyperparameters to play with:
 - network architecture
 - learning rate, its decay schedule, update type
 - regularization (L2/Dropout strength)

neural networks practitioner music = loss function

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-91 20 Jan 2016

Hyperparameter optimization

My cross-validation "command center"

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-92

Hyperparameter optimization

Monitor and visualize the loss curve

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-93 20 Jan 2016

Hyperparameter optimization

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-94 20 Jan 2016

Hyperparameter optimization

Hyperparameter optimization

lossfunctions.tumblr.com Loss function specimen

Training Loss

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-96 20 Jan 2016

Hyperparameter optimization

lossfunctions.tumblr.com

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-97 20 Jan 2016

Hyperparameter optimization

lossfunctions.tumblr.com

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-98 20 Jan 2016

Hyperparameter optimization

Monitor and visualize the accuracy:

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-99 20 Jan 2016

Hyperparameter optimization

Track the ratio of weight updates / weight magnitudes:

```
# assume parameter vector W and its gradient vector dW
param_scale = np.linalg.norm(W.ravel())
update = -learning_rate*dW # simple SGD update
update_scale = np.linalg.norm(update.ravel())
W += update # the actual update
print update_scale / param_scale # want ~1e-3
```

ratio between the values and updates: $\sim 0.0002 / 0.02=0.01$ (about okay)
want this to be somewhere around 0.001 or so

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5 -

Conclusions (What we know in 2017)

- BP is just chain rule in calculus
- Use ReLU. Never use Sigmoid (use Tanh instead)
- Input preprocessing is no longer very important
- Do subtract mean
- Whitening and normalizing are not much needed
- Weight initialization on the other hand is extremely important for deep networks
- Use batch normalization if you can
- Use dropout
- Use Adam (or maybe RMSprop) for optimizer. If you don't have much data, can consider LBFGS
- Need to babysit your learning for real-world problems
- Never use grid search for tuning your hyperparameters

[^0]: Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-34 13 Jan 2016

[^1]: Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-35 13 Jan 2016

[^2]: Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-36 13 Jan 2016

[^3]: Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-37 13 Jan 2016

[^4]: Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 4-41 13 Jan 2016

[^5]: Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-39 20 Jan 2016

[^6]: ${ }^{1}$ Note that $y^{(l)}$ now denotes the sum of input before going through the activation function.

[^7]: ${ }^{1}$ Note that $y^{(l)}$ now denotes the sum of input before going through the activation function.

[^8]: ${ }^{1}$ Note that $y^{(l)}$ now denotes the sum of input before going through the activation function.

[^9]: Fei-Fei Li \& Andrej Karpathy \& Justin Johnson Lecture 5-66 20 Jan 2016

[^10]: Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 7-63 April 25, 2017

[^11]: Fei-Fei Li \& Justin Johnson \& Serena Yeung
 Lecture 7-64
 April 25, 2017

[^12]: Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 7-69 April 25, 2017

[^13]: Fei-Fei Li \& Justin Johnson \& Serena Yeung
 Lecture 7-74 April 25, 2017

[^14]: Fei-Fei Li \& Justin Johnson \& Serena Yeung
 Lecture 7-77
 April 25, 2017

[^15]: Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 7-80 April 25, 2017

[^16]: Fei-Fei Li \& Justin Johnson \& Serena Yeung
 Lecture 7-85
 April 25, 2017

[^17]: Fei-Fei Li \& Justin Johnson \& Serena Yeung
 Lecture 7-15
 April 25, 2017

[^18]: Fei-Fei Li \& Justin Johnson \& Serena Yeung
 Lecture 7-16
 April 25, 2017

[^19]: Fei-Fei Li \& Justin Johnson \& Serena Yeung
 Lecture 7-27
 April 25, 2017

[^20]: Fei-Fei Li \& Justin Johnson \& Serena Yeung Lecture 7-42 April 25, 2017

