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@ Need your presentation preference by the end of this class. Again,
please give me three package names with order of preference. The
final decision will be computed by minimizing the following cost
function :)

® > ctudent Student cost +Zpackage package cost
0, first priority

e student cost = ¢ 2.5, second priority
5, third priority

o package cost = a - o(num presentations covered)
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function :)

® > ctudent Student cost +Zpackage package cost
0, first priority

e student cost = ¢ 2.5, second priority
5, third priority

o package cost = a - 2(num presentations covered)

e Most popular package (in terms of first priority pick) will be
presented first. If there is a tie, I will break it with popularity
based all choices regardless of priority. If there is a tie, I will break
it by random
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@ Need your presentation preference by the end of this class. Again,
please give me three package names with order of preference. The
final decision will be computed by minimizing the following cost
function :)

® > ctudent Student cost +Zpackage package cost
0, first priority

e student cost = ¢ 2.5, second priority
5, third priority

o package cost = a - 2(num presentations covered)

e Most popular package (in terms of first priority pick) will be
presented first. If there is a tie, I will break it with popularity
based all choices regardless of priority. If there is a tie, I will break
it by random

e Students presenting the same packages will be ordered randomly
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Logistics

o HW1 due this Thursday
o Package choice due this Thursday
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Review

Review

In the last couple classes, we discussed

@ Basic concepts of regression and classification

e Examples of regularization such as ridge (l2) regression and lasso

()

e Linear classifiers including logistic regression and softmax classifier
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Review
Review

In the last couple classes, we discussed

@ Basic concepts of regression and classification

e Examples of regularization such as ridge (l2) regression and lasso

()

e Linear classifiers including logistic regression and softmax classifier

e We introduced loss functions and the concept of training a classifier
through minimizing the loss function

o We described stochastic gradient descent and momentum trick for
classification

e We also briefly went through SVM and hinge loss

ng (OU-ECE) Neural Networks Jan 2018 5/ 235



Review Correction

@ Denote w = ||WT||’ W - X1
(W-x_1) is the distance of the
boundary line of x; (x_1)
from the origin
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Review

@ Denote w = ||WT||’ W - X1
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2 . (W-x_1) is the distance of the
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Review

@ Denote w = ||WT||’ W - X1
(W-x_1) is the distance of the
. boundary line of x; (x_1)
{ from the origin

& //,\/ o Thus, the distance between
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Review Correction

@ Denote w = ||WT||’ W - X1
%2 . (W-x_1) is the distance of the
NG boundary line of x; (x_1
o hd 4 Y
o o ° s+ 4 from the origin
7/ AN .
“ 7 & //,\/ o Thus, the distance between
L ~ gf" the two boundary lines is
7/
P _ 2
/// % x1 70O W'(Xl—X_l)—W
L 0 O o e SVM: for all x;
/ /
O 2
. s O max—— St y(w-x; —b)>1
/ ‘ [[wll
’
%87 e X Equivalently,

min||w| st y(w-x;—b)>1
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Review = Co

Soft-margin SVM and hinge loss

o Hard-margin SVM
min||w|| st yi(w-x;—b)—1>0

e Soft-margin SVM (allow constrain to be
violate)

e Define “hinge” loss function
h(z) = max(0, z)
e Want to minimize hinge loss

Zh(l —y;(w-x; — b))

e Soft-margin SVM

min A|w|* + > h(l = yi(w - x; — b))
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Review = Correctio

Multi-class SVM

o We can easily extend soft-margin SVM to multi-class case. Let

s(x) = wy ! Ll(] be the score for class I.
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Review = Correction

Multi-class SVM

o We can easily extend soft-margin SVM to multi-class case. Let
si(x) = wi Ll(] be the score for class [. We can define the hinge
loss for sample x as

S h(si(x) — 55(x) + A) = 3 max(0, sy(x) — s5(x) + A),
I#] I#]

where j is the true label of x and A contributes a margin ensuring
that the true label score has to be at least A more than the rest to
be penalty free
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Review = C

Multi-class SVM

o We can easily extend soft-margin SVM to multi-class case. Let
si(x) = wi Ll(] be the score for class [. We can define the hinge
loss for sample x as

S h(si(x) — 55(x) + A) = 3 max(0, sy(x) — s5(x) + A),
I#] I#]

where j is the true label of x and A contributes a margin ensuring
that the true label score has to be at least A more than the rest to
be penalty free

e Multi-class SVM:

min \|w|? + Z Z h(si(xi) — 8j(x,)(Xi) + A)
©l#j(xs)
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Review = Perceptro

Perceptron

@ Perceptron is an artificial neuron with
step function as activation function

Inputs _
— W, Output
3 4 sum  Activation
, Function
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https://www.youtube.com/watch?v=0OP1vyTiGsM

Review = Perceptro

Perceptron

@ Perceptron is an artificial neuron with
step function as activation function

e It is impossible to extend perceptron
to multilayer. Multilayer perceptron
(MLP) is a misnomer. Step activation

, function is never used multilayer

s @,/ o neural networks (not trainable)

sum  Activation
Function
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Review Perceptron

Perceptron

@ Perceptron is an artificial neuron with
step function as activation function

e It is impossible to extend perceptron
to multilayer. Multilayer perceptron
(MLP) is a misnomer. Step activation
function is never used multilayer

s @,/;;/ o neural networks (not trainable)

sum - Achaten @ According to Hinton, perceptrons are
still used in systems with large
number (millions) of features. Other
than that, it has relatively limited use
since most problems are not linearly
separable
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Review = Perceptro

Perceptron

@ In most cases, perceptron would be
useful if only one manages to
handcode inputs into separable
features

Inputs )
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Review = Perceptro

Perceptron

@ In most cases, perceptron would be
useful if only one manages to
handcode inputs into separable
features

e That was the main area of research in
many machine learning

" @ o applications—finding efficient ways to
: Sum Achaton generate good features

Function
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Review Perceptron

Perceptron

@ In most cases, perceptron would be
useful if only one manages to
handcode inputs into separable
features

e That was the main area of research in
many machine learning

" @ o applications—finding efficient ways to
: Sum Achaton generate good features

Function

o One attractive characteristic of deep
learning (neural networks) is that we
not only can train the classifier but
also can learn the appropriate
features automatically
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Review  Network architectures

Nomenclature of basic network architectures

Neural Networks: Architectures

output layer
input layer input layer
hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net” “Fully-connected” layers

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 77 13 Jan 2016
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Review  Network architectures

Caveat: don’t go too far for the brain analogy

Biological neurons:

o Many different types

Dendrite can perform complex non-linear operations

@ Synapses are not a single weight but a complex non-linear
dynamical system

Rate code may not be adequate

Also see London 2005 (Slide credit: CS231n)

S. Cheng (OU-ECE) Neural Networks Jan 2018
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http://www.indiana.edu/~p1013447/dictionary/neucode.htm
http://www.cogsci.ucsd.edu/~sereno/201/readings/02.08-DendriteComp.pdf

@ As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters
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Back-propagation and computational graph

@ As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters

OL(w;x)
0

e For neural networks, it is thus necessary to find for a

weight in each layer
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As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters

OL(w;x)
0

For neural networks, it is thus necessary to find for a

weight in each layer

Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain

9L _ OL Oy :
rule or = oy ox 11 calculus

It is often easier to explain BP in terms of computational graph
o Computational graph can be interpreted as generalization of a
neural networks
e Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)
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As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some

parameters

OL(w;x)
0

For neural networks, it is thus necessary to find for a

weight in each layer

Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain

9L _ OL Oy :
rule or = oy ox 11 calculus

It is often easier to explain BP in terms of computational graph

o Computational graph can be interpreted as generalization of a
neural networks

e Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

o Let me try to explain through an example
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Multi-class SVM

Computational graphs

f = Wax| [Li =>,., max(0,s; — sy, + 1)

s (scores) i ge
Ioss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -8 April 13, 2017
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-pror

More complex example

Convolutional network

(AlexNet)
input image
weig hts
loss s
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -9 April 13, 2017
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A simple BP example

X 2
f(@,y,2) = (z + )z .
eg.x=-2,y=5,z=-4 y 5 —
z -4

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 10 13 Jan 2016
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A simple BP

X 2
f@,3,2) = (z + )= N
eg.x=-2,y=5,z=-4 y 5 r
o dqg @_ z -4

of af
f=ar L2y
of of of

Want: 9z By 0z

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 11 13 Jan 2016
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A simple BP example

X 2
f(z,9,2) = (z + 1)z »
eg.x=-2,y=5,z=-4 y 5 r
O 15 7 =
q:$+y %q: ’aq:l 4 /
of
of af o7
f=gqz o~ %9 4 d
. Of of of
Want: 9z By 0z

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 12 13 Jan 2016
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A simple BP example

X 2
f(z,9,2) = (z + 1)z »
eg.x=-2,y=5,z=-4 y 5 r
.
O 15 7 =
q:$+y %q: ’aq:l 4 /
of
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 13 Jan 2016
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A simple BP example

X 2
f(@.y.2) = (= + )z y
eg.x=-2,y=5,z=-4 y 5 r
:
ad 1s) z -
g=x+Yy %q: ,%:1 4 il
of
of af =4
f:qz B_q:zaazq Oz
. Of of of
Want: 9z By 0z

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 14 13 Jan 2016
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A simple BP example

X 2
f(@.y.2) = (= + )z y
eg.x=-2,y=5,z=-4 y 5 r
:
ad 1s) z -
g=x+Yy %q: ,%:1 34 il
of
of af =4
f:qz B_q:zaazq 0z
. 9f o &f
Want: 9z By 0z

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 15 13 Jan 2016
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A simple BP example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

— 9 . 9

=2ty H =15 =1

of _ _ of _

f=ez 3 =%% =4
. 9f oFf of
Want: 5 90 02

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 16 13 Jan 2016
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A simple BP example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

— 9 . 9

=2ty H =15 =1

of _ _ of _

f=ez 3 =%% =4
. 9f oFf of
Want: 5 90 02

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 18 13 Jan 2016
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f(@,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

— o _ 4 B0

af  _ of

f=az =57 4
. Of of of
Want: 9z By 0z

Fei-Fei Li & Andrej Karpathy & Justin Johnson

S. Cheng (OU-ECE)

Neural Networks

Chain rule:
9f _ of &
Oy 0q By

Lecture 4 - 19
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A simple BP example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

— 9 . 9

=2ty H =15 =1

of _ _ of _

f=ez 3 =%% =4
. 9f oFf of
Want: 5 90 02

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 20 13 Jan 2016
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f(@,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ d . 9g

¢=z+y FZ=13=1

of _ _ of

f=qz - %19
. 9f o &f
Want: 5 90 02

Fei-Fei Li & Andrej Karpathy & Justin Johnson

S. Cheng (OU-ECE) Neural Networks

Chain rule:
of _ 0k
Or  Oq Ox

Lecture 4 - 21

Jan 2018

13 Jan 2016
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 22 13 Jan 2016
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“local gradient”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 23 13 Jan 2016
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“local gradient”

oL
Oz

gradients

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 24 13 Jan 2016
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“local gradient”

oL
Oz

gradients

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 25 13 Jan 2016
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“local gradient”

oL
Oz
gradients

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 26 13 Jan 2016
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“local gradient”

oL
Oz
gradients
O
“ei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 27 13 Jan 2016
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Yet another BP ex

1

1 + e (wozo+wizy+uwn)

Another example:  f(w,z) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 28 13 Jan 2016
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Yet another BP ex

1

1 + e (wozo+wizy+uwn)

Another example:  f(w,z) =

flz)=e* + i fla) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 29 13 Jan 2016
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Yet another BP ex

1

1 + e (wozo+wizy+uwn)

Another example:  f(w,z) =

flz)=e* + i fla) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 30 13 Jan 2016
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Yet another BP ex

) 1
Another example: flw,z) = e v

w0 2.00

ﬁ;)a.oo) =—-0.53

flz)=e* - = S fz) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 31 13 Jan 2016
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Yet another BP ex

1

1 + e (wozo+wizy+uwn)

Another example:  f(w,z) =

flz)=e* + i fla) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 32
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Yet another BP ex

) 1
Another example: flw,z) = o T )

w0 2.00

(1)(—0.53) = —0.53

flz)=e* - = S fz) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 33 13 Jan 2016
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Yet another BP ex

1

1 + e (wozo+wizy+uwn)

Another example:  f(w,z) =

flz)=e* + i fla) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 34 13 Jan 2016
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Yet another BP ex

1

1 + e (wozo+wizy+uwn)

Another example:  f(w,z) =

flz)=e* + i fla) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 35 13 Jan 2016
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Yet another BP ex

1

1 + e (wozo+wizy+uwn)

Another example:  f(w,z) =

flz)=e* + i fla) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 36

ng (OU-ECE) Neural Networks

13 Jan 2016
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Yet another BP ex

1

1 + e (wozo+wizy+uwn)

Another example:  f(w,z) =

(-1) * (-0.20) = 0.20

flz)=e* + i fla) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 37 13 Jan 2016
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Yet another BP ex

1

1 + e (wozo+wizy+uwn)

Another example:  f(w,z) =

flz)=e* + i fla) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 38 13 Jan 2016
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Yet another BP ex

1

1 + e (wozo+wizy+uwn)

Another example:  f(w,z) =

[local gradient] x [its gradient]
[11x[0.2]=0.2
[11x[0.2] = 0.2 (both inputs!)

flz)=e* + i fla) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 39 13 Jan 2016
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Yet another BP ex

1

1 + e (wozo+wizy+uwn)

Another example:  f(w,z) =

flz)=e* + i fla) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 40 13 Jan 2016
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Yet another BP ex

1

1 + e (wozo+wizy+uwn)

Another example:  f(w,z) =

[local gradient] x [its gradient]
x0:[2] x[0.2] = 0.4
wO: [-1] x [0.2] =-0.2

flz)=e* + i fla) =

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 41 13 Jan 2016
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Breaking down at different granularities

1 1
flw,z) = 1 + e~ (wozotwizi+wy) o(z) = 1+ e-z| sigmoid function
do(x) e® l1+e®—1 1
dr  (1+e)? ( lte?® ) (1+e”) = (L-&(al)uiz)

sigmoid gate

)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 42 13 Jan 2016
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Breaking down at different granularities

1 1
flw,z) = 1 + e~ (wozotwizi+wy) o(z) = 1+ e-z| sigmoid function
do(x) e® l1+e®—1 1
dr  (1+e)? ( lte?® ) (1+e”) = (L-&(al)uiz)

sigmoid gate
oS-l

R

(0.73)* (1-0.73) = 0.2

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 43 13 Jan 2016
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Think, pair, share

add gate: gradient distributor

1000 G5 | -20.00
200 \__/ 100

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 46 April 13, 2017
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Think, pair, share

add gate: gradient distributor
Q: What is a max gate?

1000 G5 | -20.00
200 \__/ 100

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -47 April 13, 2017
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Think, pair, share

add gate: gradient distributor
max gate: gradient router

1000 G5 | -20.00
200 \__/ 100

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -48 April 13, 2017
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Think, pair, share

add gate: gradient distributor
max gate: gradient router

Q: What is a mul gate?

1000 G5 | -20.00
200 \__/ 100

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -49 April 13, 2017
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Think, pair, share

add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

1000 G5 | -20.00
200 \__/ 100

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 50 April 13, 2017
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Merging gradients

Gradients add at branches

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 51 April 13, 2017
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Gradients for vectorized code (xy.zare This is now the
now vectors)  Jacobian matrix

(derivative of each

element of z w.r.t. each

“local gradient” element of x)
.0
Y[

o [ o

Oz oL
a 0z
gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 52 April 13, 2017
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Handing vector variables

Vectorized operations

4096-d —— 2 f(x) = max(0,x) —= 4096-d
inputvector - (elementwise) ——  output vector

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 53 April 13, 2017
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Handing vector variables

Vectorized operations oL _ |of|aL
oxr ~ |Oxz|of

Jacobian matrix

4096-d —— 2 f(x) = max(0,x) —= 4096-d
inputvector - (elementwise) ——  output vector
Q: what is the
size of the

Jacobian matrix?
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Handing vector variables

Vectorized operations oL _ |of|aL
oxr ~ |Oxz|of

Jacobian matrix

4096-d —— 2 f(x) = max(0,x) —= 4096-d
inputvector - (elementwise) ——  output vector

Q: what is the
size of the
Jacobian matrix?
[4096 x 4096!]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 55 April 13, 2017
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TOL

Handing vector variables

Vectorized operations

4096-d —— 2 f(x) = max(0,x) —= 4096-d
inputvector - (elementwise) ——  output vector
Q: what is the in practice we process an

. entire minibatch (e.g. 100)
size of the

of examples at one time:

. 0
Jacobian matrix? i.e. Jacobian would technically be a
[4096 x 4096!] [409,600 x 409,600] matrix :\

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 2017
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Handing vector variables

Vectorized operations oL _ |of|aL
oxr ~ |Oxz|of

Jacobian matrix

4096-d —— 2 f(x) = max(0,x) —= 4096-d
inputvector - (elementwise) ——  output vector
Q: what is the
size of the Q2: what does it
Jacobian matrix? look like?
[4096 x 4096!]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 2017
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Handing vector vauables

A vectorized example: f(z, W) = ||W - z||? = Y (W - x)?
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Handing vector vauables

A vectorized example: f(z, W) = ||W - z||? = Y (W - x)?

€ R* € R™*»
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Handing vector vauables

A vectorized example: f(z, W) = ||W - z||? = Y (W - x)?

w
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TOL

Handing vector variables

A vectorized example: f(z, W) = ||[W - z||?> = Y1, (W - z)?

01 05 =1
—0.3 0.8
A%

kA

Wiiz1+ -+ Wintn
q=W .z = :
Whaiz1 + -+ Wy pzp
f@=laP=qf + -+

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -61 April 13, 2017
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TOL

Handing vector variables

A vectorized example: f(z, W) = ||[W - z||?> = Y1, (W - z)?

01 05 =1
—0.3 0.8
A%

Wiiz1+ -+ Wintn
q=W .z = :
Whaiz1 + -+ Wy pzp
f@=laP=qf + -+
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TOL

Handing vector variables

A vectorized example: f(z, W) = ||[W - z||?> = Y1, (W - z)?

01 05 =1
—0.3 0.8
A%

Wiiz1+ -+ Wintn
q=W .z = :
Whaiz1 + -+ Wy pzp
f@=laP=qf + -+
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TOL

Handing vector variables

A vectorized example: f(z, W) = ||[W - z||?> = Y1, (W - z)?

01 05 =1
—0.3 0.8
A%

o~

Wiz + -+ Winn BQJ_ = 2q;
W'n,,la"l +-+ Wn,nl'n vqf = 2q

f@=ldP=¢+ +q

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 64 April 13, 2017

ng (OU-ECE) Neural Networks Jan 2018 68 / 235



TOL

Handing vector variables

A vectorized example: f(z, W) = ||[W - z||?> = Y1, (W - z)?

01 05 =1
—0.3 0.8
A%

Wiz + -+ Winn BQJ_ = 2q;
W'n,,la"l +-+ Wn,nl'n vqf = 2q

f@=ldP=¢+ +q
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TOL

Handing vector variables

A vectorized example: f(z, W) = ||[W - z||?> = Y1, (W - z)?

01 05 =1
—0.3 0.8
A%

Wiiz1+ -+ Wintn
q=W .z = :
Whaiz1 + -+ Wy pzp
f@=laP=qf + -+

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 66 April 13, 2017
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ror

Handing vector variables

- . _ 2 _ \n 2
Aveé:tlon%?d example: f(z, W) = ||W - z||* = D). (W - z);
{ —0.3 08 }
0.2 '
0.4
X
— 1 T
ow,,;
Wiiz1+ -+ Wintn of _ Z Of Bqx
g=W-.z= : W5 k Oqr Wi,
Whaz1 + - + Wynty = Z(zqk)(1k=i$j)
k
= 2qi$_,-

f@=ldP=¢+ +q

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 67

Neural Networks Jan 2018

ng (OU-ECE)

April 13, 2017

71 / 235



ror

Handing vector variables

i : _ 2 _\n 2
Aveé:tlon%?d example: f(z, W) = ||W - z||* = D). (W - z);
{ ~0.3 0.8 }
0.088 0.176
0.104 0.208 [ o }
0.2
0.4
X
oW, ; = iy
Wiz + -+ Winn of _ Z Of Bqn
g=W-.z= : W5 k Oqr Wi,
Whiz1 + - + WhnZn = Z(z%)(lk:ﬂj)
k
fQ=lldP=a+ - +a; = 2z,

Lecture 4 - 68

Fei-Fei Li & Justin Johnson & Serena Yeung

Neural Networks Jan 2018

ng (OU-ECE)

April 13, 2017
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Handing vector vauables

= 21—1 (W - 33)2

A vectorized example: f(xz, W) = ||W - z||?

[ 0.1 05 }
—0.3 0.8 T
0.088 0.176 - Vwf=2q-z
0.104 0.208 [ . } T
0.2 -0
0.4
=1z ;T
aWi,j k=ilj
Wiiz1+ -+ Wintn of _ Z Of Bqx
g=W.z= . W, ; k Oqr OW,,;
' = (2qx) (Lg—izy)

W'n,,la"l + -+ Wn,nl'n

k
“+q = 2qi$_,-

f@=1llgP=a+--

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 69 April 13, 2017
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Handing vector vauables

A vectorized example: f(z, W) = ||[W - z||*> = Y1, (W - z)?

{ 0.1 05 }
—-0.3 0.8 -
{ 0.088 0.176 }W - Vwf=2q¢ z
0104 0,208 |: 26 } 0.116 Always check: The
0.2 gradient with
{ 0.4 } respect to a variable
’ X should have the
-1 same shape as the
aWi = Lk=iTj variable
Wiz + -+ Winen Z _Ogqy
g=W.z= : 3Wu kquBW”
Whaiz1 + -+ Wy pzp = Z(zqk 1k=i$j)
k
f@=ldP=d¢+ +dq = 20,z

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -70 April 13, 2017
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TOL

Handing vector variables

A vectorized example: f(z, W) = ||[W - z||?> = Y1, (W - z)?

01 05 =1
—0.3 0.8

0.088 0.176
0.104 0.208

0.2
0.4
X

Wiz + -+ Winn oz; ’

W'n,,la"l + -+ Wn,nl'n
f@=ldP=¢+ +q

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 71 April 13, 2017
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TOL

Handing vector variables

A vectorized example: f(z, W) = ||W - z||? = Y (W - x)?

0.1 0.5
—-0.3 0.8
0.088 0.176
0.104 0.208
0.2
0.4
X
Wiz + -+ Winn gi}?z c';f 5
: qk
= W ) = . = —J7
! ’ ' ox; Z 8qk o0x;
Whaiz1 + -+ Wy pzp k
f((Z):”(Z|I2:(Z%+"'+q% :;ZQka,i

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -72 April 13, 2017
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Handing vector vauables

A vectorized example: f(z, W) = ||W - z||? =

21—1 (W - 33)

{ 01 05 ]
—-0.3 0.8 | B =
0.088 0.176 1™ 099 V.f=2W" .q
0.104 0.208 | [ 2 }
0.2 ]
0.4 |
—0.112 ]
0.636 | '
Wiz + -+ Winn gi}?z c';f 5
: dk
= W = M = A
! ’ ) Ox; Z Oqr, 0z;
Whaiz1 + -+ Wy pzp k
= 9 )
f@=NdP=a+ - +q; Xk: @ Wi

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -73
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Handing vector vauables

A vectorized example: f(z, W) = ||W - z||? =

21—1 (W - 33)

{ 01 05 ]
—-0.3 0.8 | B =
0.088 0.176 1™ 099 V.f=2W" .q
0.104 0.208 | [ 2 }
0.2 ]
0.4 |
—0.112 ]
0.636 | '
Wiz + -+ Winn gi}?z c';f 5
: dk
= W = M = A
! ’ ) Ox; Z Oqr, 0z;
Whaiz1 + -+ Wy pzp k
= 9 )
f@=NdP=a+ - +q; Xk: @ Wi

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -74
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Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

() class ComputationalGraph(object):
) #..
: o N def forward(inputs):

S # 1. [pass inputs to input gates...]
# 2. forward the computational graph:
for gate in self.graph.nodes_topologically sorted():

gate.forward()

return loss # the final gate in the graph outputs the loss

backward():

for gate in reversed(self.graph.nodes_topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs_gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -75 April 13, 2017
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1entation

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
\ z = x*y

V4
return z
def backward(dz):

# dx = ... #todo
y

#dy = ... #todo gL
return [dx >
(x,y,z are scalars) ldx, dy]

N
oL
oz

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -76 April 13, 2017
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nentation

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):

\ z = Xty

4 self.x = x # must keep these around!
self.y = y
return z

y def backward(dz):

(X,y,Z are Sca|arS) dx = self.y * dz # [dz/dx * dL/dz]

dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -77 April 13, 2017
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Remark of BP

@ During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs
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Remark of BP

@ During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

@ During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives
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Remark of BP

@ During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

@ During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

e For a large network, there can be a large spike of memory
consumption during the forward pass
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Remark of BP

@ During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

@ During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

e For a large network, there can be a large spike of memory
consumption during the forward pass

e Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-ECE) Neural Networks Jan 2018 82 / 235



Al ation functions

Activation functions

Activation Functions

Zo wo
synapse
WoTo

—».
axon from a neuron

cell body

i (Zw,—wi +b)
Zwl‘l'i + b '

output axon

activation
function

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 28 20 Jan 2016
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Activation functions

Activation functions

. : : Leaky RelLU
Activation Functions max(0.1%, X)
Sigmoid

olz)=1/(1+e=) /"

i

Maxout max(w!z + by, wlz +by)

tanh tanh(x
( ) ELU @) = {n (exp(z) — 1) 1:123

ReLU max(0,x)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 29 20 Jan 2016
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Activation functions oid function

Activation functions

Activation Functions o(z)=1/(1+e7%)
- Squashes numbers to range [0,1]
. /“” - Historically popular since they
Y have nice interpretation as a
oay saturating “firing rate” of a neuron
of
4
I - ‘// 1 1
Sigmoid

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 30 20 Jan 2016
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Activation functions

Activation functions

Activation Functions

oid function

o(z) =1/(1+e %)

Squashes numbers to range [0,1]
Historically popular since they
have nice interpretation as a

/
oay saturating “firing rate” of a neuron
n/
8 3 problems:
I - ‘// 1 1 p
- ) Saturated neurons “kill” the
Sigmoid gradients

Fei-Fei Li & Andrej Karpathy & Justin Johnson

S. Cheng (OU-ECE)

Neural Networks

Lecture 5 - 31

Jan 2018

20 Jan 2016
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ration functions igmoid function

Activation functions

X 5] sigmoid o(2) =1/(L+e7) salf
-— 5 gate of
oL _ 9o oL b
0z 0z 00 gesapdlshcmssng

What happens when x = -107?
What happens when x = 07?
What happens when x = 10?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 32 20 Jan 2016
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Activation functions oid function

Activation functions

Activation Functions ofz) =1/(1+ )

- Squashes numbers to range [0,1]
/ - - Historically popular since they

5 / have nice interpretation as a

: saturating “firing rate” of a neuron

b2 N
/ 3 problems:

1. Saturated neurons “kill” the
Sigmoid gradients
2. Sigmoid outputs are not zero-
centered

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 33 20 Jan 2016
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ration functions igmoid function

Activation functions

Consider what happens when the input to a neuron (x)
is always positive:

Lo Wo
synapse
woxg

— g
axon from a neuron

cell body

Zw,z, +b

F (2 wiz; + b)

output axon
activation
function

f Zwi$i+b

What can we say about the gradients on w?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 34 20 Jan 2016
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ration functions igmoid function

Activation functions

Consider what happens when the input to a neuron is

always positive... allowed
gradient
update
directions
f E wz {I?z + b allowed 2ig zag path
- gradient \
7 update v
directions N 7
hypothetical
What can we say about the gradients on w? optimal w
Always all positive or all negative :( veator

(this is also why you want zero-mean data!)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 35 20 Jan 2016
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Activation functions

Activation functions

oid function

Activation Functions

o(z) =1/(1+e %)

Squashes numbers to range [0,1]
Historically popular since they
have nice interpretation as a

/
oay saturating “firing rate” of a neuron
(l/
4 3 problems:
I - ‘// 1 p
B ‘ 1. Saturated neurons “kill” the
Sigmoid gradients
2. Sigmoid outputs are not zero-
centered
3. exp() is a bit compute expensive

Fei-Fei Li & Andrej Karpathy & Justin Johnson

S. Cheng (OU-ECE)

Neural Networks

Lecture 5 - 36

Jan 2018

20 Jan 2016

91 / 235



ration functions Tanh function

Activation functions

Activation Functions

v
o] - Squashes numbers to range [-1,1]
‘ - zero centered (nice)
7 ] ‘ - still kills gradients when saturated :(
—0.45
e
tanh(x)

[LeCun et al., 1991]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 37 20 Jan 2016
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ation functions ReLU

Activation functions

Activation Functions - Computes f(x) = max(0,x)

p - Does not saturate (in +region)
e - Very computationally efficient
. - Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

~10 -5 5 10

RelLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 38 20 Jan 2016
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Activation functions ReLU

Activation functions

Activation Functions - Computes f(x) = max(0,x)
p - Does not saturate (in +region)
e - Very computationally efficient
. - Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

~10 -5 5 10

- Not zero-centered output

ReLU - An annoyance:

(Rectified Linear Unit) hint: what is the gradient when x < 0?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 39 20 Jan 2016
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ration functions ReLU

Activation functions

7
X 6
—_—
- 4
oL _ oo oL
oz 9z do )

What happens when x = -107?
What happens when x = 07?
What happens when x = 10?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 40 20 Jan 2016
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ivation functions = ReLU

Activation functions

active RelLU
DATA CLOUD

\

dead RelLU
will never activate
=> never update

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 41 20 Jan 2016
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ation functions ReLU

AL

Activation functions

DATA CLOUD active RelLU
=> people like to initialize
ReLU neurons with slightly dead RelLU
positive biases (e.g. 0.01) will never activate
=> never update

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 42 20 Jan 2016
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ation functions ReLU

Activation functions

[Mass et al., 2013]

Activation Functions [He etal., 2015]

- Does not saturate
g / - Computationally efficient
. - Converges much faster than
. sigmoid/tanh in practice! (e.g. 6x)
g - will not “die”.

m},_f-%”- l 10

Leaky RelLU

f(z) = max(0.01z, z)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 -43 20 Jan 2016
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ation functions ReLU

Activation functions

[Mass et al., 2013]

Activation Functions [He etal., 2015]
- Does not saturate
g / - Computationally efficient
. - Converges much faster than
. sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PReLU)
Leaky RelLU f(a:) — max(a:v, :13)
f(z) = max(0.01z, z)

backprop into \alpha
(parameter)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 44 20 Jan 2016
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Activation functions ReLU

Activation functions

Activation Functions [Clevert et al., 2015]

Exponential Linear Units (ELU)

eELL)

1] - All benefits of ReLU
o - Does not die
P - Closer to zero mean outputs
oo e >0 Computation requires exp()
#ad = a(exp(z) —1) ifz <0

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 45 20 Jan 2016
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ration functions Maxout neurons

Activation functions

Maxout ”Neurons” [Goodfellow et al., 2013]
o Try to generalize ReLU and leaky ReLU

max (W1 x + by, Wi x + by)
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ration functions Maxout neurons

Activation functions

Maxout ”Neurons” [Goodfellow et al., 2013]
o Try to generalize ReLU and leaky ReLU

max (W1 x + by, Wi x + by)

Pros

o Linear regime
@ Does not saturate

@ Does not die
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ration functions Maxout neurons

Activation functions

Maxout ”Neurons” [Goodfellow et al., 2013]
o Try to generalize ReLU and leaky ReLU

max (W1 x + by, Wi x + by)

Pros Cons
o Linear regime e Double amount of parameters

@ Does not saturate

@ Does not die

ng (OU-ECE) Neural Networks Jan 2018 101 / 235



Activation functions Lesson Learned

Activation functions

TLDR: In practice:

Use RelLU. Be careful with your learning rates
Try out Leaky RelLU / Maxout / ELU

Try out tanh but don’t expect much

Don’t use sigmoid

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 47 20 Jan 2016
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Init on Input prepr

Input preprocessing

Step 1: Preprocess the data

original data zero-centered data normalized data

E e = B % = g

X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 49 20 Jan 2016
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Initializa

Input preprocessing

Step 1: Preprocess the data

In practice, you may also see PCA and Whitening of the data

original data decorrelated data whitened data

Y £y = g £ = B

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 50 20 Jan 2016
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Initialization Input preproc

Input preprocessing

TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 51 20 Jan 2016
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Initialization Weight initialization

Weight initialization

- Q: what happens when W=0 init is used?

output layer
input layer
hidden layer

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 53 20 Jan 2016
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Initialization Weight initialization

Weight initialization

- Firstidea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W = 0.01* np.random.randn(D,H)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 54 20 Jan 2016
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Initialization Weight initialization

Weight initialization

- Firstidea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W = 0.01* np.random.randn(D,H)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 55 20 Jan 2016
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Weight initialization

Initialization

Weight initialization

Lets look at
some
activation
statistics

E.g. 10-layer net with
500 neurons on each
layer, using tanh non-
linearities, and
initializing as
described in last slide.

Fei-Fei Li & Andrej Karpathy & Justin Johnson

gaussian 16-D input data
np. -randn (1000, 560)

hidden layer sizes = [560]*10

nonlinearities = ['tanh']*len(hidden layer sizes)

act = (‘relu‘:lambda x:np.maximum(0,x), ‘tanh’:lambda x:np.tanh(x)}

Hs =

for ; m xrange(len(hidden layer_sizes)
X =D if i == 0 else Hs[i-1] # in

this

1
W = np.random. randn(fan_in, fan out) * 0.01 # laye

H
H i
Hs[i] = H # cache result
# look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))

layer means = [np.mean(H) for i,H in Hs.iteritems()]
layer_stds = [np.std(H) for i,H in Hs.iteritems()]
for i,H in Hs.iteritems():

print 'hidden layer %d had mean %f and std %f' layer_means[i], layer stds[i])

% (i#1,

# plot the means and standard devia

plt.figure()

plt.subplot(121)

plt.plot(Hs.keys(), layer means, 'ob-')

plt.title('layer mean')

plt.subplot(122)

plt.plot(Hs.keys(), layer stds, ‘or-')

plt.title('layer std*)

# plot the raw distributions

plt.figure()

for i,H in Hs.iteritems():
plt.subplot(1,len(Hs),i+1)
plt.hist(H.ravel(), 30, range=(-1,1))

Lecture 5 - 56
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Ini

Weight initialization

input layer had mean 0.600927 and std 0.998388
ha

hidden layer 1 .000117 and std 0.213081
hidden layer 2 had mean .000001 and std ©.047551
hidden layer 3 had mean .000002 and std 0.010630
hidden layer 4 had mean ©.000001 and std ©.002378
hidden layer 5 had mean ©.000002 and std ©.600532
hidden layer 6 had mean -0.000000 and std 0.000119
hidden layer 7 had mean ©.000000 and std ©.600026
hidden layer 8 had mean -6.0600000 and std 0.000006
hidden layer 9 had mean ©.600000 and std ©.606001
hidden layer 10 had mean -0.000000 and std 0.600000
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Initie

Weight initialization

zation Weight initialization

input layer had mean 0.600927 and std 0.998388
hidden layer 1 had mean -0.000117 and std 0.213081
hidden layer 2 had mean -0.000001 and std 0.047551
hidden layer 3 had mean -0.000002 and std 0.010630
hidden layer 4 had mean ©.000001 and std ©.002378
hidden layer 5 had mean ©.000002 and std ©.000532
hidden layer 6 had mean -0.000000 and std 0.000119
hidden layer 7 had mean ©.000000 and std ©.000026
hidden layer 8 had mean -0.000000 and std 0.000006
hidden layer 9 had mean ©.600000 and std ©.600001
hidden layer 10 had mean -0.000000 and std ©.000000

(OU-ECE)

Neural Netv

All activations
become zero!

Q: think about the
backward pass.
What do the
gradients look like?

Hint: think about backward
pass for a W*X gate.

Lecture 5 - 58 20 Jan 20

Jan 2018



Initialization Weight initialization

Weight initialization

w =7np.random. raﬁdn(faﬁiin, fan out) * 1.0 # layer initialization

\ Almost all neurons
hidden layer 1 had mean -0.000430 and std ©.981879

hidden layer 2 had mean -6.000849 and std ©.981649

hidd 1 3 had 6.0800566 and std ©.981601

Masentaves 2 hed s sees nd Gutleismise, I . completely

hidd it 5 had -0.000682 d std ©.981614

lsderlare  budmeen4it06es2 st sy 1.0 instead of *0.01 .

hidde )t 7 had -0.000237 d std ©.981520 -
B s et Sl saturated, either -1
haseno\aver o b moenvs oseos ondceloideiray and 1. Gradients

I

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 59 20 Jan 20
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Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var Z wiz; | = ZVar(wixi)
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1t initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var <Z wm) = Zn: Var(w;z;)

= Z 1?Var(z;) + E[(x;)]?Var(w;) + Var(z;) Var(w;)
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Initialization Weight initialization

Var(XY) =

E[X|*Var(X) + E[Y]*Var(Y) + Var(X)Var(Y)

Var(XY) = E[(XY)? — E[XY]?
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Initialization Weight initialization

Var(XY) =

E[X|*Var(X) + E[Y]*Var(Y) + Var(X)Var(Y)

Var(XY) = E[(XY)? — E[XY]?
= E[X?|E[Y?] — E[X]?E[Y]?
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Initialization Weight initialization

Var(XY) =

E[X|*Var(X) + E[Y]*Var(Y) + Var(X)Var(Y)

Var(XY) = E[(XY)? — E[XY]?
= E[X?|E[Y?] — E[X]?E[Y]?

Var(X)Var(Y)
= (E[X?] - BIX*)(E[Y?] - B[Y])
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Var(XY) =

E[X|*Var(X) + E[Y]*Var(Y) + Var(X)Var(Y)

Var(XY) = E[(XY)? — E[XY]?
= E[X?|E[Y?] — E[X]?E[Y]?

Var(X)Var(Y)
= (E[X?] - E[XP*)(E[Y?] - E[Y]?)
= E[X?|E[Y? - E[X)?E[Y? — E[X?|E[Y)? + E[X)?E[Y]?

S. Cheng (OU-ECE) eural Networks Jan 2018 114 / 235



Initialization Weight initialization

Var(XY) =

E[X|*Var(X) + E[Y]*Var(Y) + Var(X)Var(Y)

Var(XY) = E[(XY)? — E[XY]?
= E[X?|E[Y?] — E[X]?E[Y]?

Var(X)Var(Y)

(E[X2] E[X]Q)(E[Y2 - E[Y]?)

E[X*E[Y?] ~ — BEIX?|B[Y] + E[X]?E[Y]?
E[X*|E[Y?| - E

E[Y]Q(E[XQ] E[X]?) - E[X]*E[Y]?
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Initialization Weight initialization

Var(XY) =

E[X|*Var(X) + E[Y]*Var(Y) + Var(X)Var(Y)

Var(XY) = E[(XY)? — E[XY]?
= E[X?|E[Y?] — E[X]?E[Y]?

Var(X)Var(Y
= (B[X?] - E[X])(E[Y?] - E[Y])
= E[XYE[Y? - EX]?E[Y? - E[X?|E[Y]? + E[X]?E[Y]?
= E[XYE[Y) -E
E[Y*(E[X? — E[X]?) — E[X]?E[Y)?
=Var(XY) - E[X]*Var(Y) — E[Y*Var(X)
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1t initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var (Z wlxl> = Z Var(w;z;)

= Z 1?Var(z;) + E[(x;)]*Var(w;) + Var(z;) Var(w;)
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1t initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var (Z wlxl> = Z Var(w;z;)
= Z 1?Var(z;) + E[(x;)]*Var(w;) + Var(z;) Var(w;)

= Z Var(z;) Var(w;)

= (nVar(w)) Var(z)
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1t initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var (Z wlxl> = Z Var(w;z;)
= Z 1?Var(z;) + E[(x;)]*Var(w;) + Var(z;) Var(w;)
= Z Var(z;) Var(w;)

= (nVar(w)) Var(z)

Thus, output will have same variance as input if nVar(w) =1
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ght initialization

Weight initialization

input layer had mean ©.601800 and std 1.001311 = = = : e rosm ==
hidden layer 1 had mean 0.001198 and std 0.627953 | W = NP. random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization
hidden layer 2 had mean -0.000175 and std ©.486051
hidden layer 3 had mean ©.000055 and std 0.467723 “Xavi initialization”
hidden layer 4 had mean -0.000306 and std ©.357108

hidden layer 5 had mean ©.600142 and std 6.320917 aVIer Inl Ia Iza Ion
hidden layer 6 had mean -0.000389 and std ©.292116

hidden layer 7 had mean -0.600228 and std ©.273387 [GIOI"Ot et al,, 201 0]
hidden layer 8 had mean -6.000291 and std ©.254935

hidden layer 9 had mean ©.600361 and std 6.239266

hidden layer 10 had mean ©.000139 and std ©.228008

Reasonable initialization.
(Mathematical derivation
. assumes linear activations)

Neural Net



Initi

Weight initialization

input layer had mean 0.000501 and std 0.999444 = e B : A PR
hidden Loyer 1 had mean 6.398623 and std 6582273 w np.random.randn(fan_in, fan out) / np.sqrt(fan in) # layer initialization |

hidden layer 2 had mean ©.272352 and std 0.403795

hidden layer 3 had mean ©.186076 and std ©.276912

hidden layer 4 had mean 0.136442 and std ©.198685 .

hidden layer 5 had mean ©.099568 and std 0.140299 b t h th R LU
hidden Layer © had nean 0.072234 and 5t 0.103280 ut wnen using the e
hidden layer 7 had mean ©.049775 and std 0.072748

hidden layer 8 had mean 6.035138 and std ©.651572

b ever  ho i . aaes o s o-c3003 nonlinearity it breaks.

hidden layer 10 had mean ©.018468 and std 0.026676

layer mean layer sta

j Karpathy & Justin

Neural Netv



Weight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...!

= nE(w)*Var(z®) + nE(zW)?Var(w®) + nVar(zV)Var(w®)

!'Note that y(l) now denotes the sum of input before going through the activation
function.
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eight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...!

= nE(w)*Var(z®) + nE(zW)?Var(w®) + nVar(zV)Var(w®)
= nBE(zV)?Var(w®) + nVar(z®)Var(w®)

!'Note that y(l) now denotes the sum of input before going through the activation
function.
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Initialization Weight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...!

Var(y'") = Var (Z w(l x; ) = ZVar(wgl)xl(l)) = nVar(w®Wz®)
nE(w)?Var(2) + nE(z")?Var(w®) + nVar(zV)Var(w®)
E(zW)2?Var(w®) + nVar(z®)Var(w®)

nE((z®)?)Var(w®)

I
N

!'Note that y(l) now denotes the sum of input before going through the activation
function.
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Initialization Weight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...!

Var(y'") = Var (Z w(l x; ) = ZVar(wgl)xl(l)) = nVar(w®Wz®)
nE(w)?Var(2) + nE(z")?Var(w®) + nVar(zV)Var(w®)
nE(x®)?Var(w) + nVar(2) Var(w®)

nB((«")*)Var(w")

= n[Var(y~V) /2] Var(w®) = [gVar(wU))] Var(y=D)

Variance of y conserved across a layer if §Var(w) = 1

!'Note that y(l) now denotes the sum of input before going through the activation

function.
Jan 2018 118 / 235
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1t initialization

input layer had mean 0.600501 and std 6.999444 |W = np.random.randn(fan in, fan out) / np.sqrt(fan_in/2) # layer initialization
hidden layer 1 had mean ©.562488 and std ©.825232 e = =
.553614 and std 0.827835
.545867 and std 0.813855
.565396 and std 0.826902
hidden layer 5 had mean

)
3
:
= .547678 and std 0.834092
He et al., 2015
C
8
9
:

hidden layer 2 had mean
hidden layer 3 had mean

hidden layer 4 had mean

cooooo00®

hidden layer had mean ©.596867 and std ©.870610

hidden layer had mean ©.623214 and std ©.889348 g

hidden layer 9 had mean 0.567498 and std 0.845357 t dd t I /2
e e o:567458 o 34 0802357 (note additiona

hidden layer

EEREEEEEE]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 62 20 Jan 2016
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Ini

n 0.562488 and std 0

input layer had mean 6.600501 and std 0.999444 |W =_np.random.raﬁdn(faﬁ in, fan out) / np.sqrt(fan_in/2) # layer initialization
hidden layer 1 had meal 825232 o — e

hidden layer 2 had mean 6.553614 and std .827835

2 o
hidden layer 3 had mean 0.545867 and std ©.813855

hidden layer 4 had mean 0.565396 and std ©.82692

hidden layer 5 had mean .547678 and std 0.834092 H t I 2 1
Nt I e ¢ sl v e eetal.,

hidden layer 7 had mean 0.596867 and std ©.870610

hidden layer 8 had mean ©.623214 and std ©.889348 age

M e te additional /2
e B e (note additiona

i Es
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Initialization Weight initialization

Weight initialization

Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbihl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 64 20 Jan 2016
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Regularization Batch normalization

Batch normalization

Batch Normalization [loffe and Szegedy, 2015]

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

(B) _ g[,(k)

Var[z(F)] this is a vanilla
differentiable function...

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 65 20 Jan 2016
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Regularization Batch normalization

Batch normalization

Batch Normalization [loffe and Szegedy, 2015]

“you want unit gaussian activations?
just make them so.”

1. compute the empirical mean and
variance independently for each
dimension.

2. Normalize
S8 _ k) _ E[x(k)]

D ) \/ Var[z(#)]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 66 20 Jan 2016
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Regularization Batch normalization

Batch normalization

Batch Normalization [loffe and Szegedy, 2015]

FC Usually inserted after Fully
Connected / (or Convolutional, as
we’ll see soon) layers, and before

i 0 11

tanh nonlinearity.
FC
Problem:.do we _|pk) — M
]
tanh layer?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 67 20 Jan 2016
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Regularization Batch normalization

Batch normalization

Batch Normalization [loffe and Szegedy, 2015]

Normalize:

(8 _ k) _ E[a;(’“)]
Var[z(F)]

Note, the network can learn:
And then allow the network to squash 7(’“) — /Var[;p(k)]
the range if it wants to:

to recover the identity
mapping.

Y6 = AR50 4 g(k)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 5 - 68 20 Jan 2016
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Regularization Batch normalization

Batch normalization

Batch Normalization [loffe and Szegedy, 2015]
Input: Values of z over a mini-batch: B = {1 }; - Improves gradient flow through
Parameters to be learned: v, 3 the network
Output: {y; = BN, 5(z:)} - Allows higher learning rates
L - Reduces the strong dependence
s — > // mini-batch mean on initialization
=1 - Acts as a form of regularization
2, 1< 2 - ! in a funny way, and slightly
— — i — // -batch ’
75T m ;(x #s) e laans reduces the need for dropout,
_ maybe
B M // normalize y
Vog +e
Yi < YT + B = BN, g(;) // scale and shift

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 69 20 Jan 2016
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Batch normalization

Batch Normalization [loffe and Szegedy, 2015]

Input: Values of z over a mini-batch: B = {1 }; Note: at test time BatchNorm layer
Parameters to be learned: v, 3 functions differently:
Output: {y; = BN, 5(z;)}
L The mean/std are not computed
B — — Zrz // mini-batch mean | based on the batch. Instead, a single
=1 fixed empirical mean of activations

m

0% — — Z(Il — ug)? // mini-batch variance during training is used.
m =1
s Ti — UB i " (e.g. can be estimated during training
i Jo% + ¢ normalize| \vith running averages)
Yi < YT + B = BN, g(;) // scale and shift

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5-70 20 Jan 2016
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Regularization Dropout

Reducing testing error

How to improve single-model performance?

Train Loss Accuracy

09 —e— train
«— val

ar W a

06
000000000000000000¢ Looooooooooed
©0o

05 {evee

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
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Regularization Dropout

Ensemble trick

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 46 25 Jan 2016
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Regularization Dropout

Ensemble trick

Fun Tips/Tricks:

- can also get a small boost from averaging multiple
model checkpoints of a single model.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 47 25 Jan 2016
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Dropout

Ensemble trick

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

05y Single Model A
o4/ Standard LR Schedule /)
|

03

)
2] W
TS 2

20 S "

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free’, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 55 April 25, 2017
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Regularization Dropout

Ensemble trick

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

11 Cifar10 (L=100,k=24, B=300 epochs)

05+ Single Model A\ ] Snapshot Ensemble A
044 \ Standard LR Schedule /) \ 044 Cyclic LR Schedule =/ W -— sn ndard Ir

sdl\q

nealing with restart Ir 0.1
1

0sd 034 f 10°

) )

1, \_f)/ ] ’j V\A
i
]

Y% 107
-02 e 02 L
03 034 10° ! f
04 = sl k] Model | Model | Model | Model | Model | Model
50 > 2 50 50 — 50 1 2 3 4 5 6
Py g N 0 w0 10 1 L 1 L
0 s o ™ 0 T~ % 0 50 100 150 200 250 300
- - e 8 Epochs

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 Cyclic learning rate schedules can
Huang et al, “Snapshot ensembles: train 1, get M for free’, ICLR 2017 make this work even better!

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 56 April 25, 2017
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Dropout

Ensemble trick

Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

True:
data batch = dataset.sample data batch()
loss = network.forward(data batch)
dx = network.backward()
x += - learning rate * dx
x_test = 0.995*x_test + 0.005%x

Polyak and Juditsky, *Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 57 April 25, 2017
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Dropout

Dropout

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

(a) Standard Neural Net (b) After applying dropout. [Srivastava et al., 2014]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 50 25 Jan 2016
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ization Dropout

Dropout

p = 0.5 # probabilit

Example forward

def train_step(X): pass with a 3-

""" X contains the data

Gt layer network
using dropout

# forward pass for example 3-layer neural

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # first dropout mast
H1 *= Ul # drop

H2 = np.maximum(©, np.dot(W2, H1l) + b2)

U2 = np.random.rand(*H2.shape) < p # second di
H2 *= U2 # drop

out = np.dot(W3, H2) + b3

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 51
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Regularization Dropout

Dropout

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail ﬂ(—\\‘

is furry —X———_ cat
" score

has claws +/
mischievous

look

T

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 62 April 25, 2017
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Regularization Dropout

Dropout

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model
An FC layer with 4096 units has

240% ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 63 April 25, 2017
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ization Dropout

Dropout

Dropout: Test time

Output Input
(label) (image)

Dropout makes our output random! : Jw R;r;iim

Want to “average out” the randomness at test-time
y=1@) = E:[f(2,2)] = [ pe)f(e, 20z

But this integral seems hard ...

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 64 April 25, 2017
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Regularization Dropout

Dropout

Dropout: Test time

Want to approximate

the integral y=f(z) = E:[f(z,2)] = /p(Z)f(f&Z)dZ

Consider a single neuron.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 65 April 25, 2017
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Regularization Dropout

Dropout

Dropout: Test time

Want to approximate

the integral y=f(z) = E:[f(z,2)] = /p(Z)f(f&Z)dZ

Consider a single neuron.

At test time we have: £ [a] = wW1T + w2y

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 66 April 25, 2017
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Regularization Dropout

Dropout

Dropout: Test time

Want to approximate

the integral y=f(z) = E:[f(z,2)] = /p(Z)f(f&Z)dZ

Consider a single neuron.

At test time we have: £[a] = wiz +way
During training we have: g1, :711(“’“” +way) + 411(’””” +0y)

1 1
+ Z(U:c +0y) + Z(Ox + way)

1
:§(w11+w2y)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 67 April 25, 2017
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ization Dropout

Dropout

Dropout: Test time

Want to approximate

the integral y=f(z) = E:[f(z,2)] = /p(Z)f(%Z)dZ

Consider a single neuron.
Attest time we have: £ [a] = w1z + way
During training we have: g4 :i(wlz +way) + 411(““‘” +0y)

1 1
+ Z(U:c +0y) + Z(Ox + way)

At test time, multiply

1
by dropout probability :E(wlz + way)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 68 April 25, 2017
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Regularization Dropout

Dropout

Dropout: Test time

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p # NO
H2 = np.maximum(®, np.dot(W2, H1) + b2) * p #
out = np.dot (W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 69 April 25, 2017
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zation

Dropout

""" Yanilla Dropout: Not recommended implementation (see notes below) """

p=0.5#

def train_step(X):
""" X contains the data """

np.maximum(e, np.dot(Wl, X) + bl)

Dropout Summary

Hl =
Ul = np.random.rand (*H1.shape) < p
Hl *= Ul [

TP . Max Lmum p.dot (W2, HI) + b2)

U2 = np.random.rand(*H2.shape) < p # nd dropout mask
H2 *= U2

drop in forward pass

out = np.dot(W3, H2) + b3

rfc

def predict(X):

Hl = np.maximum(®, np.dot(Wl, X) + bl)|* p NOTE
H2 = np.maximum(@, np.dot(W2, H1) + b2) * p # N scale th

scale at test time

out = np.dot(W3, H2) + b3

7-70 April 25, 2017
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ation Dropout

Dropout

th

More common: “Inverted dropout

p=0.5
def train_step(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl)
(np.random. rand(*H1.shape) < p) / p drog Notic ‘

= np.maximum(©, np.dot(W2, H1) + b2)

| = (np.random.rand(*H2.shape) < p) / p # sec dropout k. Not 0 |
H2 *= U2

out = np.dot(W3, H2) + b3

o test time is unchanged!
def predict(X): /

H1 = np.maximum(®, np.dot(Wl, X) + bl)
H2 = np.maximum(, np.dot(W2, H1) + b2)
out = np.dot(W3, H2) + b3

April 25, 2017
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Regularization Dropout

Data augmentation

Regularization: Data Augmentation

Load image
and label

Compute
loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 74 April 25, 2017
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Regularization Dropout

Data augmentation

Regularization: Data Augmentation

Load image
and label

Compute
loss

Transform image

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 75 April 25, 2017
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Regularization Dropout

Data augmentation

Data Augmentation
Horizontal Flips

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 76 April 25, 2017
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Regularization Dropout

Data augmentation

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 77 April 25, 2017
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Regularization Dropout

Data augmentation

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 78 April 25, 2017
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Regularization Dropout

Data augmentation

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 79 April 25, 2017
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Regularization Dropout

Data augmentation

Data Augmentation  pore complex:

Color Jitter 1. Apply PCA to all [R, G, B]

Simple: Randomize pixels in training set
contrast and brightness
2. Sample a “color offset”

along principal component
directions

" 3. Add offset to all pixels of a
| training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 80 April 25, 2017
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Regularization Dropout

Data augmentation

Data Augmentation
Get creative for your problem!

Random mix/combinations of :

translation

rotation

stretching

shearing,

lens distortions, ... (go crazy)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 81 April 25, 2017
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Regularization Dropout

Other regularization techniques

Regularization: A common pattern

Training: Add some kind
of randomness

y = fw(z,?)

Testing: Average out randomness
(sometimes approximate)

y= f() = E.[f(z,2)] = / p(2)f (2, 2)dx

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 72 April 25, 2017
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Regularization Dropout

Other regularization techniques

Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 82 April 25, 2017
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Regularization Dropout

Other regularization techniques

Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 83 April 25, 2017
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Regularization Dropout

Other regularization techniques

Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 84 April 25, 2017
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Regularization Dropout

Other regularization techniques

Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 85 April 25, 2017
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Optimization Optimizers

Optimizers

Optimization

while le:
weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step size * weights grad # perfo yarameter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 14
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Optimizers

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 15 April 25, 2017
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Optimizers

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

i e
C e _—>>

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 16 April 25, 2017
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Optimization Optimizers

Optimizers

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 17 April 25, 2017
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Optimization Optimizers

Optimizers

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 18 April 25, 2017
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Optimization Optimizers

Optimizers

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 19 April 25, 2017
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Optimization Optimizers

Optimizers

Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

N
1
i=1

Vw L(W ZVWL (@i, 93, W)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 20 April 25, 2017
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Optimization Optimizers

Exponential moving average

Y1, t=1
a-Vi+(1—a) S, t>1
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Optimization Optimizers

Exponential moving average

Y1, t=1
OSt:
a-Vi+(1—a) S, t>1

° St:a[Y;i—l_'_(1—a)}/t_2+(1—a)2Y;§_3+---]
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Optimization Optimizers

Exponential moving average

Y1, t=1
a-Vi+(1—a) S, t>1
)

° St:a[Y%—1+(1—oz }Q_Q—i-(l—a)ZY}_g—i—---]
_ Y +(1-a)Yi—o+(1—a)?Yi_3+--
= T (o)t (I—a)? i

OStZ
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on Optimizers

Optimizers

Momentum update

learning rate * dx

- learning rate * dx

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 17 25 Jan 2016
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Optimization Optimizers

Optimizers

Momentum update

X += - learning rate * dx
OU

- learning rate dx

- Allows a velocity to “build up” along shallow directions
- Velocity becomes damped in steep direction due to quickly changing sign

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 18 25 Jan 2016
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Optimizers

Optimization Optimizers

number of steps=10

T
| — sod
—  momentum
5
O
-5
_10 1 T
-10 -5 0

Neural Networks
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on Optimizers

Optimizers

Nesterov Momentum update

- learning rate dx

Ordinary momentum update:

momentum
step
actual step

gradient
step

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 20 25 Jan 2016
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Optimization Optimizers

Optimizers

Nesterov Momentum update

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum momentum

step step
actual step

actual step

gradient
step

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 21 25 Jan 20
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Optimization Optimizers

Optimizers

Nesterov Momentum update

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than

momentum momentum original)
step step
actual step
actual step
gtradient Nesterov: the only difference...
step
v = uve—1 — €V (01 H pvi—1)

0: = 61 + vy

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 22 25 Jan 2016
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Optimization Optimizers

Optimizers

Nesterov Momentum update

w= g — VS T ) Skt enenen.

O = 01 + vy 0:-1, Vf(6:i1)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 23 25 Jan 2016
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Optimization Optimi

Optimizers

Nesterov Momentum

Ut+1 = PVt — O{Vfl’t + p?Jt Annoying, usually we want

update in terms of ¢, V f(x¢)
Ti+1 = Tt + V41

Change of variables :Z't = Tt + pv¢ and
rearrange:

Vi+1 = PpUt — Osz(:i't) dx = compute_gradient(x)

~ o~ old v = v
xt+1 = It pvt + (1 + ’O)vt+1 v = rho * v - learning_rate * dx

= Ty +F Vgi1 +P(Ut+1 — Ut) X += -rho * old_v + (1 + rho) * v

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 27 April 25, 2017
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Optimizers

Optimization Optimizers

number of steps=10

T
| — sod
—  momentum

5L 4 — nag

O
-5
_10 1 T

-10 -5 0
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on Optimizers

Optimizers

AdaGrad update [Duchi et al., 2011]

cache += dx**2

X += learning rate dx / (np.sqrt(cache) + 1le-7)

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 27 25 Jan 2016
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Optimization Optimizers

Optimizers

AdaGrad update

cache += dx**2

X += learning rate dx / (np.sqrt(cache) + 1le-7)

Q: What happens with AdaGrad?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 28 25 Jan 2016
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Optimization Optimizers

Optimizers

AdaGrad update

cache += dx**2

X += learning rate dx / (np.sqrt(cache) + 1le-7)

Q2: What happens to the step size over long time?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 29 25 Jan 2016
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Optimization Optimizers

Optimizers
number of steps=10
— nag
— adagrad
5
of i
-5
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Optimization Optimizers

Optimizers

RMSProp update [Tieleman and Hinton, 2012]

learning rate dx / (np.sqrt(cache) + 1le-7)

= decay rate * cache + (1 decay rate) dx
learning_rate * dx / (np.sqrt(cache) + 1le-7)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 30 25 Jan 2016
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Optimization Optimizers

Optimizers

rmsprop: A mini-batch version of rprop

= rprop is equivalent to using the gradient but also dividing by the size of the
gradient.

— The problem with mini-batch rprop is that we divide by a different number
for each mini-batch. So why not force the number we divide by to be very
similar for adjacent mini-batches?

* rmsprop: Keep a moving average of the squared gradient for each weigl’;t
MeanSquare(w, t) =0.9 MeanSquare(w, t-1) + 0.1 (H%W(t))

* Dividing the gradient by /MeanSquare(w, t) makes the learning work much

better (Tijmen Tieleman, unpublished).

Introduced in a slide in
Geoff Hinton’s Coursera
class, lecture 6

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 31 25 Jan 20
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Optimization Optimizers

Optimizers

rmsprop: A mini-batch version of rprop

= rprop is equivalent to using the gradient but also dividing by the size of the
gradient.

— The problem with mini-batch rprop is that we divide by a different number
for each mini-batch. So why not force the number we divide by to be very
similar for adjacent mini-batches?

* rmsprop: Keep a moving average of the squared gradient for each weigl’;t
MeanSquare(w, t) =0.9 MeanSquare(w, t-1) + 0.1 (H%W(t))

* Dividing the gradient by /MeanSquare(w, t) makes the learning work much

better (Tijmen Tieleman, unpublished).

Introduced in a slide in
Geoff Hinton’s Coursera
class, lecture 6

Cited by several papers as: [52] T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.,

2012.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 32 25 Jan 20
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Optimization Optimizers

Optimizers
number of steps=10

nag
adagrad

5F— rmsprop

O

-5
_10 i | | |
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Optimization Optimizers

Optimizers

[Kingma and Ba, 2014]

Adam update

(incomplete, but close)

m = betal*m + (1l-betal)*dx
v = beta2*v (1-beta2)*(dx**2)
X += - learning rate * m / (np.sqrt(v) + le-7)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 34 25 Jan 2016
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on Optimizers

Optimizers

[Kingma and Ba, 2014]

Adam update

(incomplete, but close)

momentum
m = betal*m + (1l-betal)*dx
v = beta2*v (1-beta2)* (dx**2)
X += - learning rate * m / (np.sqrt(v) + le-7)
RMSProp-like

Looks a bit like RMSProp with momentum

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 35 25 Jan 2016
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Optimization Optimizers

Optimizers

[Kingma and Ba, 2014]

Adam update

(incomplete, but close)

momentum
m = betal*m + (1l-betal)*dx
v = beta2*v + (1l-beta2)*(dx**2)
X += - learning rate * m / (np.sqrt(v) + le-7) l

RMSProp-like

Looks a bit like RMSProp with momentum

= decay rate * cache + (1 - decay rate) dx*x2
- learning rate dx / (np.sgrt(cache) + le-7)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 36 25 Jan 2016
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Optimization Optimizers

Optimizers

Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute_gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - betal ** t) . .
second_unbias = second_moment / (1 - beta2 ** t) BIaS correction

x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + le-7))
AdaGrad / RMSProp

Bias correction for the fact that Adam with beta1 = 0.9,

firs.t and second moment beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
estimates start at zero is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Serena Yeung Lecture 7 - 37 April 25, 2017
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Optimization Optimizers

Optimizers

number of steps=10

T

I
— hag
— rmsprop
5s|— — adam
0 i
-5
_10 I T 1
-10 -5 0 5
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Optimization Optimizers

Optimizers

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

loss

low learning rate

Q: Which one of these
learning rates is best to use?

high learning rate

good learning rate

epoch

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 38 25 Jan 2016
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Optimizers

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

loss

good learning rate

low learning rate

high learning rate

epoch

=> Learning rate decay over time!
step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

a=qpe ™

1/t decay:
a=ay/(1+kt)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 39 25 Jan 2016
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Optimizers

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Loss .
loss Learning rate decay!

low learning rate

high learning rate

More critical with SGD+Momentum,
less common with Adam

epoch >
Epoch

good learning rate

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 42 April 25, 2017
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Optimization Optimizers

Optimizers

Second order optimization methods

second-order Taylor expansion:

J(0) =~ J(8)+ (6 —&) VaJ(8) + % (0 —6y) H(O - 6)

Solving for the critical point we obtain the Newton parameter update:

\9* =0y — H 'VgJ(8,)

Q: what is nice about this update?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 40 25 Jan 2016
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Optimization Optimizers

Optimizers

Second order optimization methods

0* =0y — H 'VoJ(6,)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n3)), approximate
inverse Hessian with rank 1 updates over time (O(n"2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 42 25 Jan 2016
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Optimization Optimizers

Quasi-Newton methods (watch this)

o Ref:
@ https://www.youtube.com/watch?v=u02z0AT_83k
© Nocedal & Wright - Numerical Optimization (B <> H)
@ http://users.ece.utexas.edu/ cm-
caram/EE381V_2012F /Lecture_10_Scribe_Notes.final.pdf
@ The inverse of Hessian H is expensive to compute. Want to
approximate it iteratively instead
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Optimization Optimizers

Quasi-Newton methods (watch this)

o Ref:
@ https://www.youtube.com/watch?v=u02z0AT_83k
© Nocedal & Wright - Numerical Optimization (B <> H)
@ http://users.ece.utexas.edu/ cm-
caram/EE381V_2012F /Lecture_10_Scribe_Notes.final.pdf
@ The inverse of Hessian H is expensive to compute. Want to
approximate it iteratively instead
e Quasi-Newton methods:
@ Approximate Newton direction

dx = —Bxgr,
where By, ~ H~! and g, = VJ(6},)
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Optimization Optimizers

Quasi-Newton methods (watch this)

o Ref:
@ https://www.youtube.com/watch?v=u02z0AT_83k
© Nocedal & Wright - Numerical Optimization (B <> H)
@ http://users.ece.utexas.edu/ cm-
caram/EE381V_2012F /Lecture_10_Scribe_Notes.final.pdf
@ The inverse of Hessian H is expensive to compute. Want to
approximate it iteratively instead
e Quasi-Newton methods:
@ Approximate Newton direction

dy, = —Bygr,

where By, ~ H~! and g, = VJ(6},)
@ Line search: 641 = 0 + axdy,
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Optimization Optimizers

Quasi-Newton methods (watch this)

o Ref:
@ https://www.youtube.com/watch?v=u02z0AT_83k
© Nocedal & Wright - Numerical Optimization (B <> H)
@ http://users.ece.utexas.edu/ cm-
caram/EE381V_2012F /Lecture_10_Scribe_Notes.final.pdf
@ The inverse of Hessian H is expensive to compute. Want to
approximate it iteratively instead
e Quasi-Newton methods:
@ Approximate Newton direction

dy, = —Bygr,

where By, ~ H~! and g, = VJ(6},)
@ Line search: 641 = 0 + axdy,
@ Update gxy1 = VJ(0r11)
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Optimization Optimizers

Quasi-Newton methods (watch this)

o Ref:
@ https://www.youtube.com/watch?v=u02z0AT_83k
© Nocedal & Wright - Numerical Optimization (B <> H)
@ http://users.ece.utexas.edu/ cm-
caram/EE381V_2012F /Lecture_10_Scribe_Notes.final.pdf
@ The inverse of Hessian H is expensive to compute. Want to
approximate it iteratively instead
e Quasi-Newton methods:
@ Approximate Newton direction

dy, = —Bygr,

where By, ~ H~! and g, = VJ(6},)
@ Line search: 641 = 0 + axdy,
@ Update gxy1 = VJ(0r11)
@ Approximate inverse Hessian

By,+1 = update_formula(By, Ox+1 — Ok, gr+1 — gk)
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Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VJ(Or41) = VI (Or) + H(Ok+1 — k)
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Optimizers

Approximation with 1a11k—1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VI (Or11) = VJ(0r) + H(O+1 — Ok)

e We may assume the above is satisfied and use this to iteratively
approximate H.
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VI (Or11) = VJ(0r) + H(O+1 — Ok)

e We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpy = gy,
where py = 011 — 0k and g = VJ (Ok41) — VJ(6k)
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VI (Or11) = VJ(0r) + H(O+1 — Ok)

e We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpy = gy,
where py = 011 — 0k and g = VJ (Ok41) — VJ(6k)

o Let Hypq = Hy +uwv”
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VI (Or11) = VJ(0r) + H(O+1 — Ok)

e We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpy = gy,
where py = 011 — 0k and g = VJ (Ok41) — VJ(6k)

o Let Hyy = Hy +uwv! = (Hp + uwl)pr = g
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VI (Or11) = VJ(0r) + H(O+1 — Ok)

e We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpy = gy,
where py = 011 — 0k and g = VJ (Ok41) — VJ(6k)

o Let Hyy = Hy +uwv! = (Hp + uwl)pr = g
= u(vpr) = g — Hppy,

S. Cheng (OU-ECE) Neural Networks Jan 2018 195 / 235



Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VI (Or11) = VJ(0r) + H(O+1 — Ok)

e We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpy = gy,
where py = 011 — 0k and g = VJ (Ok41) — VJ(6k)

o Let Hyy = Hy +uwv! = (Hp + uwl)pr = g
= u(v'pr) = g — Hypr = u = jr—(ar — Hypr)
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Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of V.J, we have

VI (Or11) = VJ(0r) + H(O+1 — Ok)

e We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpy = gy,
where p = 041 — 0 and qx = VJ(Op 1) — VJ(0r)

Let Hy 1 = Hy, +uwvl = (Hp + wD)pr = qi

= u(v'pr) = g — Hypr = u = jr—(ar — Hypr)

o We are free to pick v. But since we know H has to be symmetric,
let’s pick v = qi — Hypg.
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VI (Or11) = VJ(0r) + H(O+1 — Ok)

e We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpy = gy,
where p = 041 — 0 and qx = VJ(0p41) — VJ(6k)

o Let Hyy = Hy +uwv! = (Hp + uwl)pr = g
= u(v'pr) = g — Hypr = u = jr—(ar — Hypr)

o We are free to pick v. But since we know H has to be symmetric,
let’s pick v = qi — Hgpg. Thus

T

Hy1 = Hi + VU

UTpk

with v = q — Hip
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Optimization Optimizers

Updating B

@ Recall that we need By = H;~ ! to approximate the Newton
direction (dx = —Bygx)
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Optimization Optimizers

Updating B

@ Recall that we need By = H;~ ! to approximate the Newton
direction (dx = —Bygx)

o We don’t need to invert the matrix Hj directly. Note that
Hpr = qx give us Hi 1 = Hi + ﬁva and v = qi — Hips
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Optimization Optimizers

Updating B

@ Recall that we need By = H;~ ! to approximate the Newton
direction (dx = —Bygx)

o We don’t need to invert the matrix Hj directly. Note that
Hpr = qx give us Hi 1 = Hi + ﬁva and v = qi — Hips

e Similarly, given Bqi = pg, we have

T

By41 = B + ww

wTQk

with w = pr — Brqy
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Optimization Optimizers

Rank-2 approximation

o BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art
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Optimization Optimizers

Rank-2 approximation

o BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art

@ Recall our rank-1 approximation that
Hypp1 = Hy + —+—vv" and v = g, — Hypy,

vTpy
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Optimization Optimizers

Rank-2 approximation

o BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art

@ Recall our rank-1 approximation that
Hypp1 = Hy + —+—vv" and v = g, — Hypy,

vTpy

e Consider update Hy1 = Hy + éuuT + %wa instead.
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Optimization Optimizers

Rank-2 approximation

o BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art

@ Recall our rank-1 approximation that
Hypp1 = Hy + —+—vv" and v = g, — Hypy,

vTpy

e Consider update Hy1 = Hy + éuuT + %wa instead.

e Need to pick v and w, ¢ and Hpy are reasonable choice
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Optimization Optimizers

Rank-2 approximation

o BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art

@ Recall our rank-1 approximation that
Hypp1 = Hy + —+—vv" and v = g, — Hypy,

vTpy

e Consider update Hy1 = Hy + éuuT + %wa instead.

e Need to pick v and w, ¢ and Hpy are reasonable choice
e Again, we want Hy1px = qk
= Hypi + Lawalpr + %HkpkpZngk = Q-
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Optimization Optimizers

Rank-2 approximation

o BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art

@ Recall our rank-1 approximation that
Hypp1 = Hy + —+—vv" and v = g, — Hypy,

vTpy

e Consider update Hy1 = Hy + éuuT + %wa instead.
e Need to pick v and w, ¢ and Hpy are reasonable choice
e Again, we want Hy1px = qk
= Hpprp + éqqu;pk + %HkpkpZngk = q,. By inspection, this can
be satisfied if we pick a = q,{pk and 8 = —p;‘gH,?pk.
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Optimization Optimizers

Rank-2 approximation

o BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art

@ Recall our rank-1 approximation that
Hypp1 = Hy + —+—vv" and v = g, — Hypy,

vTpy

e Consider update Hy1 = Hy + éuuT + %wa instead.
e Need to pick v and w, ¢ and Hpy are reasonable choice
e Again, we want Hy1px = qk
= Hpprp + éqqu;pk + %HkpkpZngk = q,. By inspection, this can
be satisfied if we pick a = q,{pk and 8 = —p;‘gH,?pk. Thus we have

akar  Hiprpf Hy
aipe P HE D

Hy 1 = Hy +
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Op zation Optimizers

Sherman-Morrison-formula

@ But we are interested in By, = H,;l
@ Sherman-Morrison-formula:
A T A1

Ty\—1 —1
(A+UU ) :A +m

_ 1, T A—1
(A + uv™) (A = —f}ﬂuT”Aflu )
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on Optimizers

Sherman-Morrison-formula

@ But we are interested in By, = H,;l
@ Sherman-Morrison-formula:
A T A1

Ty—1 -1
(A+uw') " =4 +m

Proof.
(A + UUT) (A—l _ A*IuvTAfl)

1+vT A—1y
_ -1 T A-1 _ AA ' wwT A= 4T A= luwT A1
=AA" +w' A ATy
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Optimization Optimizers

Sherman-Morrison-formula

@ But we are interested in By, = H,;l

@ Sherman-Morrison-formula:

A lupT AL
(A+ UUT)fl =A"1+ T T Ao
1—ovl A~y
T -1 _ A lwTA?
(A +uw ) (A 1+0vT A1y
_ -1 T A—-1 _ AA T T A= T A= T T AL
=AA " +w' A - imTAly
_ T A—1 _ wlA ' puwT Ayt AL
=T +uv' A 1+vT A1y
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Optimization Optimizers

Sherman-Morrison-formula

@ But we are interested in By, = H,;l

@ Sherman-Morrison-formula:

A T A1
1 —ovT A1y

(A+w) P =41+

(A + uv™) (A‘l — —f};;%iﬁ;l)

— AA T uTA T — AA_luszéi;t)#%;fli_luvTA_l
=T +uwTA ! - uvTA_ll—:%%TAA__lluvTA_l

=T +uwlA 1 - “(Hq{i‘:;:i)ff‘rl
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Optimization Optimizers

Sherman-Morrison-formula

@ But we are interested in By, = H,;l

@ Sherman-Morrison-formula:

A T A1
1 —ovT A1y

(A+w) P =41+

T -1 _ A lwTA?
(A +uw ) (A 1+0vT A1y
_ -1 T A-1 _ AA ' wwT A= 4T A= luwT A1
=AA " +w' A - imTAly
_ T A—1 _ wlA ' puwT Ayt AL
=I+uw'A AT

- 1+07 A1 AL - -

:I—l—uvTAl—“(JFLUTA@fu =T +uwlA'—wTA =1 O
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Wdf  HopplH
@ Recall Hyy 1 = Hy + _ Hiperp Hy g

qfpr  Prlepe
D
—1 T A—1
(A+uwT)y T =A"14 4w A

l—UTAflu
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I T
o Recall Hk+1 = Hk + qqu Hyprpy, Hi

and
T T T
Gepe  PREp

D
(A4 uwwT)1=A"14 A tuwTAT!

1—-vTA-1y

-1 _ g-1 H 'qq"H™!
qu) + (¢Tp)

(1—-qTH=1q/(q"p))

Neural Networks

quTB
qTp—qT Bq
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Optimization Optimizers

Inverse Hessian update for BFGS

GGk HipupTH
@ Recall Hy41 = Hi + quk T pTHIpx and

D
(A4 uwwT)1=A"14 A"y TATE

1—-vTA-1y

T —1 T —1 T
-1 _ 99" \-1 _ -1 H™"qq" H — B Bqq” B
o D™ =(H+ qu) =H "+ (¢Tp)(1—qTH-1q/(qTp)) + qTp—qT Bq
_ HppTH\-1 _ -1 _ D 'HppTHD™!
° (D pTHTp) =D pTHTp(1—pTHD-1Hp/(pT HT p))
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Optimization Optimizers

Inverse Hessian update for BFGS

WaE HepTH
@ Recall Hyy 1 = Hy + _ Hepeng He g
afpr  PeHepe

D
(A4 uwwT)1=A"14 A"y TATE

1—-vTA-1y

T —1 T —1 T
-1 _ 99" \—1 _ rr—1 H”"qq" H _ Bqq” B
e D' =(H+ L~ =H =B+ L=
(H + qu) + (¢Tp)(1—qTH-1q/(qTp)) + qTp—qT Bq
_ HppTH\-1 _ -1 _ D~ 'Hpp"HD™!
° (D pTHTp) =D pTHTp(1—pTHD-1Hp/(pT HT p))

— D! _ D '*Hpp"HD™ !
pTHp—pTHD-1Hp

(OU-ECE) Neural Networks Jan 2018 199 /



Wdf  HopplH
@ Recall Hyy 1 = Hy + _ Hiperp Hy g

T TgT
Gepe  PREp

D
T 1y A lypTA?
(A+uw) ™ =A™+ Sepie
T —1 T —1 T
-1 _ 99" \—1 _ rr—1 H”"qq" H _ Bqq” B
e D' =(H+ %4 =H =B4 24 =
(H + qu) + (¢Tp)(1—qTH-1q/(qTp)) + qTp—qT Bq
_ HppTH\-1 _ -1 _ D~ 'Hpp"HD™!
° (D pTHTp) =D pTHTp(1—pTHD-1Hp/(pT HT p))
— D! _ D '*Hpp"HD™ !

pTHp—pTHD-1Hp

T T
o D~'Hp= (BHp+ g‘f_(ﬁ%@ =+ ngzququ)
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Optimization Optimizers

Inverse Hessian update for BFGS

WaE HepTH
@ Recall Hyy 1 = Hy + _ Hepeng He g
afpr  PeHepe

D
(A4 uwwT)1=A"14 A"y TATE

1—-vTA-1y

T —1 T —1 T
-1 _ 99" \—1 _ rr—1 H”"qq" H _ Bqq” B
e D' =(H+ L~ =H =B+ L=
(H + qu) + (¢Tp)(1—qTH-1q/(qTp)) + qTp—qT Bq
_ HppTH\-1 _ -1 _ D~ 'Hpp"HD™!
° (D pTHTp) =D pTHTp(1—pTHD-1Hp/(pT HT p))

— D! _ D '*Hpp"HD™ !
pTHp—pTHD-1Hp

o D~'Hp = (BHp+ B Blp ) _ () _Deap )

qTp—qT Bq qTp—qT Bq
HppTH\—1 1 D 'Hpp"HD!
o (D — =P == =D —
( pTHTp ) pTqq"p(¢"p—q" Bq)
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Optimization Optimizers

Inverse Hessian update for BFGS

WaE HepTH
@ Recall Hyy 1 = Hy + _ Hepeng He g
afpr  PeHepe

D
(A4 uwwT)1=A"14 A"y TATE

1—-vTA-1y

T —1 T —1 T
-1 _ 99" \—1 _ rr—1 H”"qq" H _ Bqq” B
e D' =(H+ L~ =H =B+ L=
(H + qu) + (¢Tp)(1—qTH-1q/(qTp)) + qTp—qT Bq
_ HppTH\-1 _ -1 _ D~ 'Hpp"HD™!
° (D pTHTp) =D pTHTp(1—pTHD-1Hp/(pT HT p))

— D! _ D '*Hpp"HD™ !
pTHp—pTHD-1Hp

o D~'Hp = (BHp+ B Blp ) _ () _Deap )

qTp—qT Bq qTp—qT Bq
HppTH\—1 1 D 'Hpp"HD!
o (D — =P == =D — .
( pTHTp) pTqq"p(¢"p—q" Bq)
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Optimization Optimizers

Inverse Hessian update for BFGS

WaE HepTH
@ Recall Hyy 1 = Hy + _ Hepeng He g
afpr  PeHepe

D
(A4 uwwT)1=A"14 A"y TATE

1—-vTA-1y

T —1_ T gr—1 T
-1 _ 99" \—1 _ rr—1 H”"qq" H _ Bqq” B
e D' =(H+ L~ =H =B+ L=
(H + qu) + (¢Tp)(1—qTH-1q/(qTp)) + qTp—qT Bq
_ HppTH\-1 _ -1 _ D~ 'Hpp"HD™!
° (D pTHTp) =D pTHTp(1—pTHD-1Hp/(pT HT p))
- D-1_ D '*Hpp"HD™ !
- pTHp—pTHD-1Hp
-1 _ Bqq"BHp\ _ Bqq"p
e D *Hp=(BH e =L E
p=( p+ qu—qTBq) (p+ qu—qTBq)
HppTH\—1 1 D 'Hpp"HD!
o (D — =P == =D ' — .
( pTHTp ) pTqq"p(¢"p—q" Bq)
_ HppTHy\-1 _ (1 _ pd®~ _ ap” pp”
° (D pTHTp) =\ ) B qTp Jqup
T

T T
= By = (I _ péqkk) B, (I — ©pe ) PrDL

q} pr qf pr
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Optimization Optimizers

Inverse Hessian update for BFGS

GGk HipupTH
@ Recall Hy41 = Hi + quk T pTHIpx and

D
(A4 uwwT)1=A"14 A"y TATE

1—-vTA-1y

T —1 T —1 T
-1 99" \—1 _ rr—1 H”"qq" H _ Bqq” B
o — -2 B — — B 244 2
D (H + qu) H™+ (¢Tp)(1—qTH-1q/(qTp)) + qTp—qT Bq
_ HppTHN-1 _ -1 _ D 'HppTHD !
° (D pTHTp) =D pTHTp(1—pTHD-1Hp/(pT HT p))
- D-1_ D '*Hpp"HD™ !
- pTHp—pTHD-1Hp
-1 _ Bqq"BHp\ _ Bqq"p
° D™ Hp= (BHp+ qu—qTBq) =+ qu—qTBq)
° (D— prTH)_l _ -1 _ D_alpTHD_1
pTHTp pTqq"p(¢"p—q" Bq)
HppTH\—1 _ pq” ap” pp”
) — —_ P24 — 4r 2L
(D pTHTp) 1 qTp B qTp + qTp
T T T
_ P4 9Dy PP
— By = If—)B <1f7) pepl
k+1 ( aTp, ) 7k alpr ar vk

@ Bounty: 3% bonus to complete the algebra
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Optimization Optimizers

Summary of BFGS

Initialize Initialize inverse Hessian approximation B <+ By. Can set
B < I if no initial estimate; k < 0; Pick a random
starting point 6

Loop @ Get search direction dy, = — BV .J(6)
@ Conduct line search to find optimum
Ory1 = O + agdy
Q pi + Opy1 — Ok; q < VI (Ok11) — VJI(Or);
_ PraL qpy PrPY
By = (I N qkTpk) By (I N q,fpk) T i Pk

Q k< k+1; Exitif |[VJ(O)| > ¢
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Optimization Optimizers

Inverse Hessian update for BFGS

o Like rank-1 update, we can also rearrange the variables to obtain
an update rule for B = H~!

o Instead of Hyi11px = qx, we want Biy1qr = pk.
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Optimization Optimizers

Inverse Hessian update for BFGS

o Like rank-1 update, we can also rearrange the variables to obtain
an update rule for B = H~!

o Instead of Hy11px = qx, we want Bj1qr = pi. Thus we have
pept Brarai By

Bjt1 =By + -
prae  af Bl

e Note that this update rule of B is different from before. Actually
this is the update rule of DFP. An older approach that is
considered worse compared with BFGS
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Optimization Optimizers

Some theoretical notes

e A prettier but more technical explanation of BEGS/DFP involves
weighted matrix norm
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Optimization Optimizers

Some theoretical notes

e A prettier but more technical explanation of BEGS/DFP involves
weighted matrix norm

o Comparing with rank-1 update, we have more degree of freedom
and thus can impose more requirement. Besides

©Q Bit1qx = pr (secant equation)
@ Biy1 > 0 (symmetric and positive definite),

we also require each update to be small.
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Optimizers

Some theoretical notes

e A prettier but more technical explanation of BEGS/DFP involves
weighted matrix norm

o Comparing with rank-1 update, we have more degree of freedom
and thus can impose more requirement. Besides

©Q Bit1qx = pr (secant equation)
@ Biy1 > 0 (symmetric and positive definite),

we also require each update to be small. Namely,
| Br+1 — Byllw — min,

where ||Ally = |[W'/2AWY2||r is the weighted Frobenius norm
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Optimizers

Some theoretical notes

e A prettier but more technical explanation of BEGS/DFP involves
weighted matrix norm

o Comparing with rank-1 update, we have more degree of freedom
and thus can impose more requirement. Besides

©Q Bit1qx = pr (secant equation)
@ Biy1 > 0 (symmetric and positive definite),

we also require each update to be small. Namely,
| Br+1 — Byllw — min,

where ||Ally = |[W'/2AWY2||r is the weighted Frobenius norm

BFGS W =H
o =
DFP W =H"!
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Optimization Optimizers

@ BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian
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@ BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian

@ The matrix is too big to be stored in deep learning setting
(millions of variables)
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Optimization Optimizers

@ BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian

@ The matrix is too big to be stored in deep learning setting
(millions of variables)
T T T
o Recall that By = (I - M) By, (I - M) PP | size of py

ok o o
and ¢ are much smaller
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Optimization Optimizers

@ BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian

@ The matrix is too big to be stored in deep learning setting
(millions of variables)

T T T
o Recall that By = (I - M) By, (I - M) PP | size of py

ok o o
and ¢ are much smaller

o Instead of storing By, we can store the previous last several p and
q to estimate By
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on Optimizers

BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian

The matrix is too big to be stored in deep learning setting
(millions of variables)

T T T
Recall that By i = (1 - M) By, (I - %) PP give of pi

ok o o
and ¢ are much smaller

Instead of storing By, we can store the previous last several p and
q to estimate By

o Let say we store the last r pairs, we need to iterate  times (instead
of just once) and the estimate is less accurate
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on Optimizers

BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian

The matrix is too big to be stored in deep learning setting
(millions of variables)
T T T

call that B :(I—M)B (I—M) PrPi | si f
Re k+1 aToe ) F i P Tpy O17¢ O Pk
and ¢ are much smaller
Instead of storing By, we can store the previous last several p and
q to estimate By

o Let say we store the last r pairs, we need to iterate  times (instead

of just once) and the estimate is less accurate
e Storage requirement decreases drastically
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Optimization Optimizers

Optimizers

L-BFGS

- Usually works very well in full batch, deterministic mode
i.e. if you have a single, deterministic f(x) then L-BFGS wiill
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting L-BFGS to large-scale, stochastic
setting is an active area of research.
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Optimization Optimizers

Optimizers

In practice:

- Adam is a good default choice in most cases

- If you can afford to do full batch updates then try out
L-BFGS (and don't forget to disable all sources of noise)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 44 25 Jan 2016
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Optimization Babysitting learning process

Babysitting learning process

Step 1: Preprocess the data

original data zero-centered data normalized data

E e = B % = g

X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)
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Optimization Babysitting learning process

Babysitting learning process

Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

50 hidden
neurons =
output layer 10 output
CIFAR-10 input neurons, one
images, 3072 layer hidden layer per class
numbers
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Optimization Babysitting learning process

Babysitting learning process

Double check that the loss is reasonable:

def init two layer model(input s hidden_size, output

model = {}

model['W1'] = 0.6 np.random. randn(input size, hidden size)
model[ ‘bl np.zeros(hidden_size)

model [ 'W: = 0.0001 * np.random.randn(hidden size, output size)
model [ = np.zeros(output size)

model = init two layer model(32%*32+%3, 50, 10) # inpt hidden size, number of classes

;?irs\é %ggg = two_layer_net(X_train, model, y trai disable regularization
2.30261216167 -~ ose ~2;\

“correct “ for returns the loss and the

10 classes gradient for all parameters
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Optimization Babysitting learning process

Debugging optimizer

Double check that the loss is reasonable:

def init two layer model(input s hidden_size, output

model = {}

model['W1'] = 0.6 np.random. randn(input size, hidden size)
model[ ‘bl np.zeros(hidden_size)

model [ 'W: = 0.0001 * np.random.randn(hidden size, output size)
model [ = np.zeros(output size)

model = init two layer model(32#%32*3, 50, 10) # input <ize  hidden size, number of classes
loss, grad = two layer net(X train, model, yitrain crank up regularization

print loss

3.06859716482 \
loss went up, good. (sanity check)
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ugging optimizer

Lets try to train now...

Tip: Make sure that
you can overfit very
small portion of the
training data

model = init_two layer model(32+32+3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
X_tiny = X_train[:20] # take 20 examples
y_tiny = y train[:20]
best_model, stats = trainer.train(X_tiny, y_tiny, X _tiny, y_tiny,
nodel, two_layer net,
num_epochs=200, reg=0.e,
update='sgd’, learning rate decay=1,
sample batches = False,
learning_rate=le-3, verbose=True)

The above code:
- take the first 20 examples from
CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’
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Lets try to train now...

Tip: Make sure that
you can overfit very
small portion of the
training data

Very small loss,
train accuracy 1.00,
nice!

Fei-Fei Li & Andrej Karpathy & Justin Johnson

process

model = init_two_layer model(32+32+3, 50, 10) # input size, hidden size, number of classes

trainer
X_train[:

y_tiny = y train[:20
best_model, stats

ClassifierTrainer()
20] # take 20 examples

odel, two_layer net
num_epochs=260,

= trainer.train(X_tiny, y tiny, X tiny, y tiny,

update='sgd', learning rate decay=1,

sample_batches

False,

learning_rate=le-3, verbose=True)

Finished epoch 1 / 208:
Finished epoch 2 / 208:
Finished epoch 3 / 260:
Finished epoch 4 / 260:
Finished epoch 5 / 208:
Finished epoch 6 / 200:
Finished epoch 7 / 208:
Finished epoch 8 / 260:
Finished epoch 9 / 208:
Finished epoch 10 /
Finished epoch 11 /
Finished epoch 12 /
Finished epoch 13 /
Finished epoch 14 /
Finished epoch 15 /
Finished epoch 16 /
Finished epoch 17 /
Finished epoch 18 /
Finished epoch 19 /

Finished epoch 195
Finished epoch 196
Finished epoch 197
Finished epoch 198
Finished epoch 199
Finished epoch 200

finished optimization.

200:
200:
200:
200:
200:
200:
200:
200:
200:
200:

cost 2.302603, train: 0.400000,
cost 2.302258, train: 0.450000,
cost 2.301849, train: ©.600000,

cost 2.301196,
cost 2.300044,
cost 2.297864,
cost 2.293595,
cost 2.285096,
cost 2.268094,

6.650000,

val 0.400000, lr
val 0.450000, lr
val 0.600000, lr
val 0.650000, lr
val 0.650000, lr
val 0.550000, lr
val 0.600000, lr
val 0.550000, lr
val 0.550000, 1r

1.000000e-03
1.000000€-03
1.000000e-03
1.000000e-03
1.000000e-03
1.000000€-03
1.000000e-03
1.000000e-03
1.000000e-03

cost 2.234787, train: 0.500000, val ©.500000, lr 1.000000e-63
cost 2.173187, train: 0.560000, val 0.500000, lr 1.000000e-03
cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03
cost 1.974090, train: 0.460000, val 0.400000, lr 1.000000e-03
cost 1.895885, in: 0.400000, val ©.400000, lr 1.000800e-03
cost 1.820876, 6.450000, val 0.450000, 1r 1.600000e-63
cost 1.737430, 0.450000, val 0.450000, lr 1.600000e-63
cost 1.642356, 0.500000, val 0.500000, lr 1.600000e-03
cost 1.535239, ©.680000, val 0.600000, lr 1.000000e-03
cost 1.421527, 0.600000, val 0.600000, 1r 1.600000e-63
/ 200: cost 0.002694, train: 1.600000, val 1.600000, lr 1.860006e-063
/ 200: cost 0.002674, train: 1.000000, val 1.000000, lr 1.000000e-03
/ 200: cost 0.062655, train: 1.000000, val 1.600060, lr 1.000000e-03
/ 200: cost 0.002635, train: 1.000000, val 1.000000, lr 1.800006e-03
/ 200: cost 0.002617, train: 1.600000, val 1.000000, lr 1.800000e-063
/ 200: cost 6.002597, train: 1.000000, val 1.000000, lr 1.800006e-03
best validation accuracy: 1.000000
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Optimization

ugging optimizer

model = init_two_layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes

Lets try to train NnOW... trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd’, learning rate decay=1,

| like to start with small Temvnish.rateie-g, werboseeTrue]
regularization and find

learning rate that

makes the loss go

down.
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Babysitting learning proce

Debugging optimizer

Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

model = _two_|

trainer = ClassifierTrainer()

best_model, stats = trainer.train(X_train, y train, X val, y val,
model, two layer net,
num_epochs=18, reg=0.006601,
update='sgd

e,
lear rate=1e-6, [ verbose=True)

init_two_layer_model(32*32*3, 50, 10) # input size, hidden size,

, learning_rate decay=1,

ir
r
ir
ir
J1rid
ir
ir
LTH
ir

1
1
5 ¢
1
1
1
1
1
1

number of classes

.000000e- 06
.000000e-06
.000000e-06
.000000e- 06
.000000e-06
.000000e- 06
.000000e- 06
.000000e- 06
.000000e - 06

Finished epoch 1 / 2.302576, |trairj: ©.080000, Val ©.103000,
Finished epoch 2 / 2.302582, |trair: ©.121000, Val 0.124000,
Finished epoch 3 / 2.302558, [trair]: ©.119600, Jal 6.138000,
Finished epoch 4 / 2.302519, [trairj: ©.127600, jal 6.1516000,
Finished epoch 5 / 2.302517, |trair: 6.158060, Val 0.171000,
Finished epoch 6 / 2.302518, |trair: 0.179000, al 6.172000,
Finished epoch 7 / 2.302466, [trairf: ©.180000, Val 0.176000,
Finished epoch 8 / 2.302452, |traif]: 0.175000, Val ©.185000,
Finished epoch 9 / 10:|cost 2.302459, [trair|: ©.206000, Val 0.192000,
Finished epoch 10 / 10} cost 2.302420] train: ©.190000, |[val ©.192000, 1r 1.000000e-06
finished optimization.lhest validatiod accuracy: 0.192000

Loss barely changing

ej Karpathy & Justin Johnson




Babysitting learning proce

Debugging optimizer

Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

model = _two_|

trainer = ClassifierTrainer()

best_model, stats = trainer.train(X_train, y train, X val, y val,
model, two layer net,

init_two_layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes

1r 1.000000e-06
1r 1.000000e-06
1r 1.060000e-06
1r 1.660000e-06
1r 1.6600000e-06
1r 1.000000e-06
1r 1.000000e-06
1r 1.000000e-06
1r 1.000000e-06

num_epochs=18, reg=0.006601,
update='sgd’, learning rate decay=1,
e,

lear rate=le-6, | verbose=True)
Finished epoch 1 / 2.302576, |trairj: ©.080000, Val ©.103000,
Finished epoch 2 / 2.302582, |trair: ©.121000, Val 0.124000,
Finished epoch 3 / 2.302558, [trair]: ©.119600, Jal 6.138000,
Finished epoch 4 / 2.302519, [trairj: ©.127600, jal 6.1516000,
Finished epoch 5 / 2.302517, |trair: 6.158060, Val 0.171000,
Finished epoch 6 / 2.302518, |trair: 0.179000, al 6.172000,
Finished epoch 7 / 2.302466, [trairf: ©.180000, Val 0.176000,
Finished epoch 8 / 2.302452, |traif]: 0.175000, Val ©.185000,
Finished epoch 9 / 10:|cost 2.302459, [trair|: ©.206000, Val 0.192000,
Finished epoch 10 / 10} cost 2.302420] train: ©.190000, |[val ©.192000, 1r 1.000000e-06
finished optimization.lhest validatiod accuracy: 0.192000

Loss barely changing: Learning rate is

probably too low

ej Karpathy & Justin Johnson
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Babysitting learning proce

Debugging optimizer

. model = init_two_layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes
Lets try to traln NOW... trainer = ClassifierTrainer()
best_model, stats = trainer.train(X_train, y train, X val, y val,
model, two layer net,
num_epochs=18, reg=0.006601,
update='sgd', learning rate decay=1,

| like to start with small e

e,
5, | verbose=True)

rate=1.

H H . Finished epoch 1 / 2.302576, [trair: 0.080000, Val 0.103000, Lr 1.000000e-06

regularization and find &5 & 2 37303580, [crait: /121000, Bl 0.124000. Lr 1. do00006-06

Finished epoch 3 / 2.362558, [trairf: 8.119060, Val 06.138000, Lr 1.000000e-06

Iearnln rate that Finished epoch 4 / 2.302519, [traif: ©.127600, al 0.151000, lr 1.600000e-06

g Finished epoch 5 / 2.302517, [trairf: 6.158000, Val 0.171600, Lr 1.000000e-06

Finished epoch 6 / 2.302518, [trairf: 6.179000, Val 0.172000, Lr 1.000000e-06

makes the IOSS go Finished epoch 7 / 2.302466, |trai ©.180000, Mal 0.176000, lr 1.000000e-06

Finished epoch 8 / 2.302452, [trair]: ©.175000, Jal ©.185000, lr 1.000000e-06

Finished epoch 9 / 10:|cost 2.302459, [trair]: ©.206000, Jal ©.192000, lr 1.000000e-06

down_ Finished epoch 10 / 10} cost 2.302420] train: ©.190000, |[val ©.192000, 1r 1.000000e-06
finished optimization.lhest validatiod accuracy: 0.192000

Loss barely changing: Learning rate is
loss not going down: probably too low

Ieammg rate too low Notice train/val accuracy goes to 20%

though, what’s up with that? (remember
this is softmax)

ej Karpathy & Justin Johnson Lecture 5 -




ugging optimizer

Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

model = init two_layer model(32+32*3, 50, 10) # input

trainer = ClassifierTrainer()

best_model, stats = trainer.train(X_train, y train, X val, y val,
model, two layer net,
nun_epochs=16, reg=6.600061,
update='sgd’, learning rate decay=1,
sample_batches = True,
learning_rate=1le6, verbose=True)

size, hidden size, number of classes

Okay now lets try learning rate 1e6. What could
possibly go wrong?
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Optimization Babysitting learning proc

ugging optimizer

Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

model = init_two_layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best_model, stats = trainer.train(X_train, y train, X val, y val,
model, two layer net,

num_epochs=10, reg=0.660001,

update='sgd’, learning rate decay=1,

sample_batches = True,

learning_rate=le6, verbose=True)

/home/karpathy/csz;ln/code/cszzm/clz;smer;/neurzl net.py:50: RuntimeWarning: divide by zero en
countered i

ate tossm -np.sum(np. log (probs[range(N), y])) / N
/hnme/karpatny/cszaln/code/csznn/classmars/neural net.py:48: RuntimeWarning: invalid value enc
ountered in subtract

probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))
Finished epoch 1 / 10: cost nan, train: ©.691000, val ©.087600, lr 1.000000e+06
Finished epoch 2 / 16: cost nan, train: ©.095000, val 0.087000, lr 1.000000e+06
Finished epoch 3 / 10: cost nan, train: ©.100000, val 0.087000, lr 1.000000€+06

cost: NaN almost
always means high
learning rate...
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Optimization Babysitting learning pro

bugging optimizer

model = init_two_layer model(32%32+3, 50, 10) # input size, hidden size, number of classes
. trainer = ClassifierTrainer()
Lets try to tra|n NOW. .. best model, stats = trainer.train(X train, y train, X val, y val,
nodel, two layer net,
num_epochs=10, reg=0.000001,
update="sgd’, learning_rate decay=1,
sample_batches = True,

I Ilke to Start Wlth Sma” learning rate=3e-3, verbose=True)

Finished epoch 10: cost 2.186654, train: 0.308000, val ©.306000, lr 3.000000e-03

1 1 H Finished h 10: 1 2.176230, train: 0.330000, 1 ©.350000, Lr 3.000000e-03
regularization and find friae oo 5 ; -

1.

2/

3 / 10: cost 1.942257, train: 0.376000, val ©.352000, lr 3.000000e-03
Finished epoch 4 / 10: cost 1.827868, train: 0.329000, val ©.310000, lr 3.000000e-03

5/

6/

learning rate that Finiohed choch & / 10: cost inf, traini 0.144000, val o.147000, Lr 3.0000006.03
makes the loss go
down. 3e-3 is still too high. Cost explodes....

loss not going down: ,
| . te t | => Rough range for learning rate we
earning rate 100 low should be cross-validating is

loss exploding: somewhere [1e-3 ... 1e-5]
learning rate too high
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Optimization Hyperparameter optimization

Hyperparameter optimization

Hyperparameter Optimization

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 85 20 Jan 2016

S. Cheng (OU-ECE) Neural Networks Jan 2018 219 / 235



Optimization Hyperparameter optimization

Hyperparameter optimization

Cross-validation strategy

| like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early
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ameter optimization

Hyperparameter optimization

For example: run coarse search for 5 epochs

max_count = 160

gy . .
for count in xrange(max_count): note It S best to Optlmlze
reg = 10**uniform(-5, 5)
i -+ .
1r = 10**uniform(-3, -6) in |Og s ace|
trainer = ClassifierTrainer() p
model = init two layer model(32*32*3, 50, 18) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=5, reg=reg,
update='momentum’, learning rate decay=6.9,

sample batches = True, batch size = 160,
learning rate=lr, verbose=False)

| val _acc: 0.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / 10@) |
val acc: 0.214000, Llr: 7.231888e-06, reg: 2.32128le-04, (2 / 100)
val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+81, (3 / 100)
val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)
val acc: 0.8790860, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
val acc: 0.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)
| val_acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 163;_1
niCe val acc: 0.241000, (r: 6.749231e-05, reg: 4.226413e+01, (8 / 100
—>| val_acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100)
val acc: 0.079000, [r: 5.401602e-06, reg: 1.599828e+04, (10 / 100)
val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)




ptimi i Hyperparameter optimizati

Hyperparameter optimization

Now run finer search.

max_count = 100 adjust range max_count = 100

for count in xrange(max_count): for count in xrange(max count):
reg = 10**uniform(-5, 5) _— reg = 10**uniform(-4, 0)
1r = 10**uniform(-3, -6) lr = 1e**uniform(-3, -4)

val_acc: 6.5276000, 1 5.340517e-04, : 4.097824e-01, (6 / 100)

val_acc: ©.512000, lr: 8.680827e-84, reg: 1.349727e-02, (2 / 100)

0 8 1
val acc: 0.461000, lr: 1.628377e-04, reg: 1.220193¢-62, (3 / 100)
val acc: ©.460000, 1r: 1.113730e-04, reg: 5.244309e-02, (4 / 108) o :
val_acc: 0.498600, lr: 9.477776e-64. reg: 2.001293e-03, (5 / 100) 53% - relatively good
val acc: 0.469000, Lr: 1.484369-04, reg: 4.328313e-01; (6 / 100) for a 2-layer neural net
val acc: 6.522000, lr: 5. - %

586261e-04, reg:
" ]

312685e-04, (7 / 100) . H
- o with 50 hidden neurons.

val_acc: ©.489600, lr: 1.979168e-04, reg:

] T 1.010889e-04, (9 / 100)

val_acc: 6.490000, lr: 2.636031e-04, reg: 2.406271e-03, (10 / 100)
val_acc: 0.475000, \r: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, 1r: 1.135527e-84, reg: 3.905040e-02, (12 / 100)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
[val acc: ©.531600, 1r: 9.471549-04, req: 1.433895e-63, (14 / 100)
val_acc: 0.509000, Lr: 3.140888e-64, reg: 2.857518e-01, (15 / 160)
val_acc: 0.514000, \r: 6.438349e-04, reg: 3.03378le-01, (16 / 100)
val_acc: ©.502000, lr: 3.921784e-84, reg: 2.707126e-04, (17 / 100)
val_acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100)
val_acc: 8.500000, lr: 2.412048e-84, reg: 4.997821e-04, (19 / 100)
val_acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val_acc: 0.516000, Lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
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Hyperparameter optimization

Hyperparameter optimization

Now run finer search...

max_count = 100 adjust range max_count = 100

for count in xrange(max_count): for count in xrange(max count):
reg = 10**uniform(-5, 5) _— reg = 10**uniform(-4, 0)
1r = 10**uniform(-3, -6) lr = 1e**uniform(-3, -4)

val_acc: 6.5276000, 1 5.340517e-04, : 4.097824e-01, (6 / 100)

.512000, 1r: .349727e-02, (2 / 100)

mjmi 0 3:5868279-84: reg; 1

val acc: 0.461000, lr: 1.628377e-04, reg: 1.220193¢-62, (3 / 100)

val acc: ©.460000, 1r: 1.113730e-04, reg: 5.244309e-02, (4 / 108) o :

val_acc: 0.498600, lr: 9.477776e-64. reg: 2.001293e-03, (5 / 100) 53% - relatively good

val acc: 0.469000, Lr: 1.484369-04, reg: 4.328313e-01; (6 / 100) for a 2-layer neural net
(] 5 - %

val_acc: 0.5226000, 1r:

.586261e-04, reg:
" ]

312685e-04, (7 / 100) . H
- o with 50 hidden neurons.

.489000, 1r:

466000, 1lr:
.516000, 1r:

189915e-02, (20 / 100)
528291e-02, (21 / 100)

val_acc:
val_acc:

.319314e-04, reg:
.039527e-04, reg:

val_acc: 1.979168e-04, req: 1.010839e-04, (9 / 100)
val_acc: 0.430000, Lr: 2.036031e-64, reg: 2.406271e-03, (16 / 100)
val_acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100) But this best cross-
val acc: 0.460000, 1r: 1.135527e-04, reg: 3.905040e-02, (12 / 100) . . .
val_acc: 0.515000, Lr: 6.947668e-04, req: 1.562808e-02, (13 / 100) validation result is
val acc: 0.531000, lr: 9.471549e-64, reg: 1.433895e-03, (14 / 100) | <— .
l val_acc: 0.569000, Lr: 3.140888e-64, Teq: 2 83751801 (15 7 100) worrying. Why?
val_acc: 0.514000, Lr: 6.438349¢-64, reg: 3.03378le-01, (16 / 100)
va'lia:(: 0.502000, 1r: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val_acc: 0.569000, lr: 9.752279¢-64, reg: 2.850865¢-03, (18 / 100)
val acc: ©.500000, lr: 2.412048e-04, reg: 4.997821e-64, (19 / 100)
) 1 1]
1) 8 1:
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Optimization Hyperparameter optimization

Hyperparameter optimization

Random Search vs. Grid Search

Grid Layout Random Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012
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Optimization Hyperparameter optimization

Hyperparameter optimization

Hyperparameters to play with:

- network architecture

- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function
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Optimization Hyperparameter optimization

Hyperparameter optimization

My cross-validation
“command center”
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Monitor and visualize the loss curve

25

loss

low learning rate

high learning rate

good learning rate
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Hyperparameter optimization

Hyperparameter optimization

Loss

time
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Optimization Hyperparameter optimization

Hyperparameter optimization

Loss
Bad initialization
a prime suspect

time
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lossfunctions.tumblr.com Loss function specimen
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Optimization Hyperparameter optimization

Hyperparameter optimization

lossfunctions.tumblr.com
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Optimization Hyperparameter optimization

Hyperparameter optimization
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lossfunctions.tumblr.com

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 98 20 Jan 2016

S. Cheng (OU-ECE) Neural Networks Jan 2018 232 / 235



Optimization Hyperparameter optimization

Hyperparameter optimization

Monitor and visualize the accuracy:

080

[*5

070

big gap = overfitting

=> increase regularization strength?

060

Clasification accuracy

\ A A N o Bose
/ i /«Ww\f«/ WAN \//Vf AWM AN

— Training accuracy
— validation accuracy

o 20 0 & 80 100

no gap
=> increase model capacity?
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Optimization Hyperparameter optimization

Hyperparameter optimization

Track the ratio of weight updates / weight magnitudes:

# assume parameter vector W and its gradient vector dwW
param_scale = np.linalg.norm(W.ravel())

update = -learning_rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update_scale / param_scale # want -le-3

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so
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us s

Conclusions (What we know in 2017)

@ BP is just chain rule in calculus

e Use ReLU. Never use Sigmoid (use Tanh instead)
e Input preprocessing is no longer very important

o Do subtract mean
o Whitening and normalizing are not much needed

e Weight initialization on the other hand is extremely important for
deep networks

e Use batch normalization if you can
@ Use dropout

e Use Adam (or maybe RMSprop) for optimizer. If you don’t have
much data, can consider LBFGS

@ Need to babysit your learning for real-world problems

e Never use grid search for tuning your hyperparameters
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