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Logistics

Need your presentation preference by the end of this class. Again,
please give me three package names with order of preference. The
final decision will be computed by minimizing the following cost
function :)∑

student student cost +
∑

package package cost

student cost =


0, first priority

2.5, second priority

5, third priority

package cost = α · 2(num presentations covered)

Most popular package (in terms of first priority pick) will be
presented first. If there is a tie, I will break it with popularity
based all choices regardless of priority. If there is a tie, I will break
it by random

Students presenting the same packages will be ordered randomly
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Logistics

HW1 due this Thursday

Package choice due this Thursday
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Review

Review

In the last couple classes, we discussed

Basic concepts of regression and classification

Examples of regularization such as ridge (l2) regression and lasso
(l1)

Linear classifiers including logistic regression and softmax classifier

We introduced loss functions and the concept of training a classifier
through minimizing the loss function
We described stochastic gradient descent and momentum trick for
classification
We also briefly went through SVM and hinge loss
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Review Correction

SVM

Denote ŵ = w
‖w‖ , ŵ · x1

(ŵ · x−1) is the distance of the
boundary line of x1 (x−1)
from the origin

Thus, the distance between
the two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all xi

max
2

‖w‖
s.t. yi(w · xi − b) ≥ 1

Equivalently,

min‖w‖ s.t. yi(w · xi − b) ≥ 1
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‖w‖ , ŵ · x1
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Review Correction

Soft-margin SVM and hinge loss

Hard-margin SVM

min‖w‖ s.t. yi(w · xi − b)− 1 ≥ 0

Soft-margin SVM (allow constrain to be
violate)

Define “hinge” loss function
h(z) = max(0, z)
Want to minimize hinge loss∑

i

h(1− yi(w · xi − b))

Soft-margin SVM

minλ‖w‖2 +
∑
i

h(1− yi(w · xi − b))
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Review Correction

Multi-class SVM

We can easily extend soft-margin SVM to multi-class case. Let

sl(x) = wl
T

[
1
x

]
be the score for class l.

We can define the hinge

loss for sample x as∑
l 6=j

h(sl(x)− sj(x) + ∆) =
∑
l 6=j

max(0, sl(x)− sj(x) + ∆),

where j is the true label of x and ∆ contributes a margin ensuring
that the true label score has to be at least ∆ more than the rest to
be penalty free

Multi-class SVM:

minλ‖w‖2 +
∑
i

∑
l 6=j(xi)

h(sl(xi)− sj(xi)(xi) + ∆)
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Review Perceptron

Perceptron

Perceptron is an artificial neuron with
step function as activation function

It is impossible to extend perceptron
to multilayer. Multilayer perceptron
(MLP) is a misnomer. Step activation
function is never used multilayer
neural networks (not trainable)

According to Hinton, perceptrons are
still used in systems with large
number (millions) of features. Other
than that, it has relatively limited use
since most problems are not linearly
separable
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Review Perceptron

Perceptron

In most cases, perceptron would be
useful if only one manages to
handcode inputs into separable
features

That was the main area of research in
many machine learning
applications—finding efficient ways to
generate good features

One attractive characteristic of deep
learning (neural networks) is that we
not only can train the classifier but
also can learn the appropriate
features automatically
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Review Network architectures

Nomenclature of basic network architectures

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201677

Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”
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Review Network architectures

Caveat: don’t go too far for the brain analogy

Biological neurons:

Many different types

Dendrite can perform complex non-linear operations

Synapses are not a single weight but a complex non-linear
dynamical system

Rate code may not be adequate

Also see London 2005 (Slide credit: CS231n)

S. Cheng (OU-ECE) Neural Networks Jan 2018 12 / 235
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Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters

For neural networks, it is thus necessary to find ∂L(w;x)
∂w for a

weight in each layer

Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain
rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph

Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example
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Back-propagation

Multi-class SVM

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 20178

x

W

hinge 
loss

R

+ L
s (scores)

Computational graphs

*
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Back-propagation

More complex example

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 20179

input image

loss

weights

Convolutional network
(AlexNet)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 
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Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201610

e.g. x = -2, y = 5, z = -4
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Back-propagation

A simple BP example
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Chain rule:
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Back-propagation

A simple BP example
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Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201622

f

activations
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activations

“local gradient”

gradients
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Back-propagation

BP at one node
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f

activations

gradients

“local gradient”
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Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201628

Another example:
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Back-propagation
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Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201637

Another example:

(-1) * (-0.20) = 0.20
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Back-propagation

Yet another BP example
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Another example:
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Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201639

Another example:

[local gradient] x [its gradient]
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2  (both inputs!)
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Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201640

Another example:
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Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201641

Another example:

[local gradient] x [its gradient]
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2
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Back-propagation

Breaking down at different granularities

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201642

sigmoid function

sigmoid gate
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Back-propagation

Breaking down at different granularities

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201643

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2
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Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201746

add gate: gradient distributor

Patterns in backward flow
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Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201747

add gate: gradient distributor

Patterns in backward flow

Q: What is a max gate?
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Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201748

add gate: gradient distributor

Patterns in backward flow

max gate: gradient router
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Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201749

add gate: gradient distributor

Patterns in backward flow

max gate: gradient router

Q: What is a mul gate? 
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Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201750

add gate: gradient distributor

Patterns in backward flow

max gate: gradient router

mul gate: gradient switcher
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Back-propagation

Merging gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201751

+

Gradients add at branches
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201752

f

“local gradient”

This is now the 
Jacobian matrix 
(derivative of each 
element of z w.r.t. each 
element of x)

(x,y,z are 
now vectors)

gradients

Gradients for vectorized code
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201753

f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Vectorized operations
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201754

Jacobian matrix

f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Vectorized operations

Q: what is the 
size of the 
Jacobian matrix?
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201755

Jacobian matrix

f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Vectorized operations

Q: what is the 
size of the 
Jacobian matrix?
[4096 x 4096!]
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 2017

i.e. Jacobian would technically be a
[409,600 x 409,600] matrix :\

f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Vectorized operations

Q: what is the 
size of the 
Jacobian matrix?
[4096 x 4096!]

in practice we process an 
entire minibatch (e.g. 100) 
of examples at one time:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 2017

Q: what is the 
size of the 
Jacobian matrix?
[4096 x 4096!]

Q2: what does it 
look like?

f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Vectorized operations

Jacobian matrix
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201758

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201759

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201760

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201761

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201762

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201763

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201764

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201765

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201766

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201767

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201768

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201769

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201770

A vectorized example:

Always check: The 
gradient with 
respect to a variable 
should have the 
same shape as the 
variable
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201771

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201772

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201773

A vectorized example:
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Back-propagation

Handing vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201774

A vectorized example:
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Back-propagation

Implementation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201775

Modularized implementation: forward / backward API

Graph (or Net) object  (rough psuedo code)
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Back-propagation

Implementation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201776

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API
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Back-propagation

Implementation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201777

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API
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Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-ECE) Neural Networks Jan 2018 82 / 235



Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-ECE) Neural Networks Jan 2018 82 / 235



Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-ECE) Neural Networks Jan 2018 82 / 235



Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-ECE) Neural Networks Jan 2018 82 / 235



Activation functions

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201628

Activation Functions
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Activation functions

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201629

Activation Functions

Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

ELU
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201630

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201631

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201632

sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201633

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not zero-
centered
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201634

Consider what happens when the input to a neuron (x) 
is always positive:

What can we say about the gradients on w?
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201635

Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201636

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not zero-
centered

3. exp() is a bit compute expensive
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Activation functions Tanh function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201637

Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201638

Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201639

Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201640

ReLU 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201641

DATA CLOUD
active ReLU

dead ReLU
will never activate 
=> never update
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201642

DATA CLOUD
active ReLU

dead ReLU
will never activate 
=> never update

=> people like to initialize 
ReLU neurons with slightly 
positive biases (e.g. 0.01)
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201643

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201644

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]
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Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201645

Activation Functions

Exponential Linear Units (ELU)

- All benefits of ReLU
- Does not die
- Closer to zero mean outputs

- Computation requires exp()

[Clevert et al., 2015]
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Activation functions Maxout neurons

Activation functions

Maxout ”Neurons” [Goodfellow et al., 2013]

Try to generalize ReLU and leaky ReLU

max(wT
1 x+ b1,w

T
2 x+ b2)

Pros

Linear regime

Does not saturate

Does not die

Cons

Double amount of parameters
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Activation functions Lesson Learned

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201647

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don’t expect much
- Don’t use sigmoid

S. Cheng (OU-ECE) Neural Networks Jan 2018 102 / 235



Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201649

Step 1: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)
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Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201650

Step 1: Preprocess the data

In practice, you may also see PCA and Whitening of the data

(data has diagonal 
covariance matrix)

(covariance matrix is the 
identity matrix)
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Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201651

TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize 
variance, to do PCA or 
whitening
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201653

- Q: what happens when W=0 init is used?
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201654

- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201655

- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but can lead to 
non-homogeneous distributions of activations 
across the layers of a network.
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201656

Lets look at 
some 
activation 
statistics

E.g. 10-layer net with 
500 neurons on each 
layer, using tanh non-
linearities, and 
initializing as 
described in last slide.
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201657
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201658

All activations 
become zero!

Q: think about the 
backward pass. 
What do the 
gradients look like?

Hint: think about backward 
pass for a W*X gate.
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201659

Almost all neurons 
completely 
saturated, either -1 
and 1. Gradients 
will be all zero.

*1.0 instead of *0.01
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Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=
n∑
i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)
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Initialization Weight initialization

V ar(XY ) =
E[X]2V ar(X) + E[Y ]2V ar(Y ) + V ar(X)V ar(Y )

V ar(XY ) = E[(XY )2]− E[XY ]2

= E[X2]E[Y 2]− E[X]2E[Y ]2

V ar(X)V ar(Y )

= (E[X2]− E[X]2)(E[Y 2]− E[Y ]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y ]2 + E[X]2E[Y ]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y ]2)

E[Y ]2(E[X2]− E[X]2)− E[X]2E[Y ]2

= V ar(XY )− E[X]2V ar(Y )− E[Y ]2V ar(X)
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Initialization Weight initialization

V ar(XY ) =
E[X]2V ar(X) + E[Y ]2V ar(Y ) + V ar(X)V ar(Y )

V ar(XY ) = E[(XY )2]− E[XY ]2

= E[X2]E[Y 2]− E[X]2E[Y ]2

V ar(X)V ar(Y )

= (E[X2]− E[X]2)(E[Y 2]− E[Y ]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y ]2 + E[X]2E[Y ]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y ]2)

E[Y ]2(E[X2]− E[X]2)− E[X]2E[Y ]2

= V ar(XY )− E[X]2V ar(Y )− E[Y ]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2018 114 / 235



Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=

n∑
i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
n∑
i

Var(xi)Var(wi)

= (nVar(w))Var(x)

Thus, output will have same variance as input if nVar(w) = 1
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201660

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation 
assumes linear activations)
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201661

but when using the ReLU 
nonlinearity it breaks.
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Initialization Weight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w
(l)
i x

(l)
i ) = nVar(w(l)x(l))

= nE(w(l))2Var(x(l)) + nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE((x(l))2)Var(w(l))

= n[Var(y(l−1))/2]Var(w(l)) =
[n
2
Var(w(l))

]
Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-ECE) Neural Networks Jan 2018 118 / 235



Initialization Weight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w
(l)
i x

(l)
i ) = nVar(w(l)x(l))

= nE(w(l))2Var(x(l)) + nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE((x(l))2)Var(w(l))

= n[Var(y(l−1))/2]Var(w(l)) =
[n
2
Var(w(l))

]
Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-ECE) Neural Networks Jan 2018 118 / 235



Initialization Weight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w
(l)
i x

(l)
i ) = nVar(w(l)x(l))

= nE(w(l))2Var(x(l)) + nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE((x(l))2)Var(w(l))

= n[Var(y(l−1))/2]Var(w(l)) =
[n
2
Var(w(l))

]
Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-ECE) Neural Networks Jan 2018 118 / 235



Initialization Weight initialization

Variance calibration for ReLU

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w
(l)
i x

(l)
i ) = nVar(w(l)x(l))

= nE(w(l))2Var(x(l)) + nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE(x(l))2Var(w(l)) + nVar(x(l))Var(w(l))

= nE((x(l))2)Var(w(l))

= n[Var(y(l−1))/2]Var(w(l)) =
[n
2
Var(w(l))

]
Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-ECE) Neural Networks Jan 2018 118 / 235



Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201662

He et al., 2015
(note additional /2)
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201663

He et al., 2015
(note additional /2)
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Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201664

Proper initialization is an active area of research…

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by 
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and 
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet 
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015
…
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Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201665

Batch Normalization

“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer. 
To make each dimension unit gaussian, apply:

this is a vanilla 
differentiable function...
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Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201666

Batch Normalization

“you want unit gaussian activations? 
just make them so.”

[Ioffe and Szegedy, 2015]

XN

D

1. compute the empirical mean and 
variance independently for each 
dimension.

2. Normalize
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Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201667

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected / (or Convolutional, as 
we’ll see soon) layers, and before 
nonlinearity.

Problem: do we 
necessarily want a unit 
gaussian input to a 
tanh layer?
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Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201668

Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash 
the range if it wants to:

Note, the network can learn:

to recover the identity 
mapping.

Normalize:
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Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201669

Batch Normalization [Ioffe and Szegedy, 2015]

- Improves gradient flow through 
the network

- Allows higher learning rates
- Reduces the strong dependence 

on initialization
- Acts as a form of regularization 

in a funny way, and slightly 
reduces the need for dropout, 
maybe

S. Cheng (OU-ECE) Neural Networks Jan 2018 126 / 235



Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201670

Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer 
functions differently:

The mean/std are not computed 
based on the batch. Instead, a single 
fixed empirical mean of activations 
during training is used.

(e.g. can be estimated during training 
with running averages)
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Regularization Dropout

Reducing testing error

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201758

How to improve single-model performance?

Regularization
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Regularization Dropout

Ensemble trick

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201646

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance
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Regularization Dropout

Ensemble trick

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Fun Tips/Tricks:

- can also get a small boost from averaging multiple 
model checkpoints of a single model.

47
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Regularization Dropout

Ensemble trick

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201755

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple 
snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Regularization Dropout

Ensemble trick

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201756

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple 
snapshots of a single model during training!

Cyclic learning rate schedules can 
make this work even better!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Regularization Dropout

Ensemble trick

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201757

Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a 
moving average of the parameter vector and use that 
at test time (Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201650

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]
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Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201651

Example forward 
pass with a 3-
layer network 
using dropout
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Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201762

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous 
look

cat 
score

X

X

X
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Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201763

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of 
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...
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Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201764

Dropout: Test time

Dropout makes our output random!

Output
(label)

Input
(image)

Random 
mask

Want to “average out” the randomness at test-time

But this integral seems hard … 
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Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201765

Dropout: Test time

Want to approximate 
the integral

Consider a single neuron.

a

x y

w
1 w

2
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Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201766

Dropout: Test time

Want to approximate 
the integral

Consider a single neuron.

At test time we have:
a

x y

w
1 w

2
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Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201767

Dropout: Test time

Want to approximate 
the integral

Consider a single neuron.

At test time we have:
During training we have: 

a

x y

w
1 w

2
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Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201768

Dropout: Test time

Want to approximate 
the integral

Consider a single neuron.

At test time we have:
During training we have: 

a

x y

w
1 w

2

At test time, multiply 
by dropout probability 
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Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201769

Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201770

Dropout Summary

drop in forward pass

scale at test time
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Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201771

More common: “Inverted dropout”

test time is unchanged!
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Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201774

Load image 
and label

“cat”

CNN

Compute
loss

Regularization: Data Augmentation

This image by Nikita is 
licensed under CC-BY 2.0
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Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201775

Regularization: Data Augmentation

Load image 
and label

“cat”

CNN

Compute
loss

Transform image
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Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201776

Data Augmentation
Horizontal Flips
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Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201777

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch
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Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201778

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales:  {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201779

Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness
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Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201780

Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B] 
pixels in training set

2. Sample a “color offset” 
along principal component 
directions

3. Add offset to all pixels of a 
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)
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Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201781

Data Augmentation
Get creative for your problem!

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing, 
- lens distortions, …  (go crazy)
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Regularization Dropout

Other regularization techniques

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201772

Regularization: A common pattern
Training: Add some kind 
of randomness

Testing: Average out randomness 
(sometimes approximate)
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Regularization Dropout

Other regularization techniques

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201782

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
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Regularization Dropout

Other regularization techniques

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201783

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013
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Regularization Dropout

Other regularization techniques

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201784

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014
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Regularization Dropout

Other regularization techniques

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201785

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016
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Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201714

Optimization

W_1

W_2
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Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201715

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large
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Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201716

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large
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Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201717

Optimization: Problems with SGD

What if the loss 
function has a 
local minima or 
saddle point?
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Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201718

Optimization: Problems with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Zero gradient, 
gradient descent 
gets stuck
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Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201719

Optimization: Problems with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Saddle points much 
more common in 
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201720

Optimization: Problems with SGD

Our gradients come from 
minibatches so they can be noisy!
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Optimization Optimizers

Exponential moving average

St =

{
Y1, t = 1

α · Yt + (1− α) · St−1, t > 1

St = α
[
Yt−1 + (1− α)Yt−2 + (1− α)2Yt−3 + · · ·

]
= Yt−1+(1−α)Yt−2+(1−α)2Yt−3+···

1+(1−α)+(1−α)2+···
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201617

Momentum update

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201618

Momentum update

- Allows a velocity to “build up” along shallow directions
- Velocity becomes damped in steep direction due to quickly changing sign
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Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

sgd
momentum
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201620

Nesterov Momentum update

gradient
step

momentum
step

actual step

Ordinary momentum update:
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201621

Nesterov Momentum update

gradient
step

momentum
step

actual step

momentum
step

“lookahead” gradient 
step (bit different than 
original)

actual step

Momentum update Nesterov momentum update
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201622

Nesterov Momentum update

gradient
step

momentum
step

actual step

momentum
step

“lookahead” gradient 
step (bit different than 
original)

actual step

Momentum update Nesterov momentum update

Nesterov: the only difference...
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201623

Nesterov Momentum update
Slightly inconvenient… 
usually we have :
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Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017

Change of variables                                   and 
rearrange: 

27

Nesterov Momentum

Annoying, usually we want 
update in terms of
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Optimization Optimizers

Optimizers

10 5 0 5
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5

0

5

number of steps=10

sgd
momentum
nag
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201627

AdaGrad update

Added element-wise scaling of the gradient based on the 
historical sum of squares in each dimension

[Duchi et al., 2011]
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201628

Q: What happens with AdaGrad?

AdaGrad update
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201629

Q2: What happens to the step size over long time?

AdaGrad update
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Optimization Optimizers

Optimizers

10 5 0 5
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5

0

5

number of steps=10

nag
adagrad
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201630

RMSProp update [Tieleman and Hinton, 2012]
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201631

Introduced in a slide in 
Geoff Hinton’s Coursera 
class, lecture 6
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201632

Introduced in a slide in 
Geoff Hinton’s Coursera 
class, lecture 6

Cited by several papers as:
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Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

nag
adagrad
rmsprop

S. Cheng (OU-ECE) Neural Networks Jan 2018 183 / 235



Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201634

Adam update [Kingma and Ba, 2014]

(incomplete, but close)
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201635

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201636

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum
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Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201737

Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 
first and second moment 
estimates start at zero

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models! 
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Optimizers
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201638

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these 
learning rates is best to use?
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201639

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay: 
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:
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Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201742

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!

More critical with SGD+Momentum, 
less common with Adam
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201640

Second order optimization methods

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: what is nice about this update?
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate 
inverse Hessian with rank 1 updates over time (O(n^2) 
each).

- L-BFGS (Limited memory BFGS): 
Does not form/store the full inverse Hessian.
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Optimization Optimizers

Quasi-Newton methods (watch this)

Ref:
1 https://www.youtube.com/watch?v=uo2z0AT 83k
2 Nocedal & Wright - Numerical Optimization (B ↔ H)
3 http://users.ece.utexas.edu/ cm-

caram/EE381V 2012F/Lecture 10 Scribe Notes.final.pdf

The inverse of Hessian H is expensive to compute. Want to
approximate it iteratively instead

Quasi-Newton methods:
1 Approximate Newton direction

dk = −Bkgk,

where Bk ≈ H−1 and gk = ∇J(θk)
2 Line search: θk+1 = θk + αkdk
3 Update gk+1 = ∇J(θk+1)
4 Approximate inverse Hessian

Bk+1 = update formula(Bk, θk+1 − θk, gk+1 − gk)

S. Cheng (OU-ECE) Neural Networks Jan 2018 194 / 235
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Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpk = qk,
where pk = θk+1 − θk and qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT )pk = qk
⇒ u(vT pk) = qk −Hkpk ⇒ u = 1

vT pk
(qk −Hkpk)

We are free to pick v. But since we know H has to be symmetric,
let’s pick v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk
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Optimization Optimizers

Updating B

Recall that we need Bk = H−1
k to approximate the Newton

direction (dk = −Bkgk)

We don’t need to invert the matrix Hk directly. Note that
Hpk = qk give us Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Similarly, given Bqk = pk, we have

Bk+1 = Bk +
1

wT qk
wwT

with w = pk −Bkqk
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Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art

Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.

Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk
⇒ Hkpk +

1
αqkq

T
k pk +

1
βHkpkp

T
kH

T
k pk = qk. By inspection, this can

be satisfied if we pick α = qTk pk and β = −pTkHT
k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk
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Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT )−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT )
(
A−1 − A−1uvTA−1

1+vTA−1u

)

= AA−1 + uvTA−1 − AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u
= I + uvTA−1 − uvTA−1 = I
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Optimization Optimizers

Inverse Hessian update for BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and

(A+ uvT )−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))

= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D − HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p

⇒ Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra
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Inverse Hessian update for BFGS
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(qT p)(1−qTH−1q/(qT p))
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)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))
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qT p
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B
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I − qpT

qT p
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+ ppT
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Optimization Optimizers

Summary of BFGS

Initialize Initialize inverse Hessian approximation B ← B0. Can set
B ← I if no initial estimate; k ← 0; Pick a random
starting point θ0

Loop 1 Get search direction dk = −Bk∇J(θk)
2 Conduct line search to find optimum

θk+1 = θk + αkdk
3 pk ← θk+1 − θk; qk ← ∇J(θk+1)−∇J(θk);

Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
4 k ← k + 1; Exit if ‖∇J(θk)‖ > ε
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Optimization Optimizers

Inverse Hessian update for BFGS

Like rank-1 update, we can also rearrange the variables to obtain
an update rule for B = H−1

Instead of Hk+1pk = qk, we want Bk+1qk = pk.

Thus we have

Bk+1 = Bk +
pkp

T
k

pTk qk
−

Bkqkq
T
k Bk

qTk B
T
k qk

Note that this update rule of B is different from before. Actually
this is the update rule of DFP. An older approach that is
considered worse compared with BFGS
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Optimization Optimizers

Some theoretical notes

A prettier but more technical explanation of BFGS/DFP involves
weighted matrix norm

Comparing with rank-1 update, we have more degree of freedom
and thus can impose more requirement. Besides

1 Bk+1qk = pk (secant equation)
2 Bk+1 � 0 (symmetric and positive definite),

we also require each update to be small. Namely,

‖Bk+1 −Bk‖W → min,

where ‖A‖W = ‖W 1/2AW 1/2‖F is the weighted Frobenius norm

⇒

{
BFGS W = H

DFP W = H−1
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Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian

The matrix is too big to be stored in deep learning setting
(millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk

and qk are much smaller

Instead of storing Bk, we can store the previous last several p and
q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead
of just once) and the estimate is less accurate
Storage requirement decreases drastically
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201643

L-BFGS

- Usually works very well in full batch, deterministic mode 
i.e. if you have a single, deterministic f(x) then L-BFGS will 
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives 
bad results. Adapting L-BFGS to large-scale, stochastic 
setting is an active area of research.
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Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201644

- Adam is a good default choice in most cases

- If you can afford to do full batch updates then try out 
L-BFGS (and don’t forget to disable all sources of noise)

In practice:
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Optimization Babysitting learning process

Babysitting learning process

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201672

Step 1: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)
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Optimization Babysitting learning process

Babysitting learning process

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201673

Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

input 
layer hidden layer

output layer
CIFAR-10 
images, 3072 
numbers

10 output 
neurons, one 
per class

50 hidden 
neurons
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Optimization Babysitting learning process

Babysitting learning process

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201674

Double check that the loss is reasonable:

returns the loss and the 
gradient for all parameters

disable regularization

loss ~2.3.
“correct “ for 
10 classes
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Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201675

Double check that the loss is reasonable:

crank up regularization

loss went up, good. (sanity check)
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Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201676

Lets try to train now…  

Tip: Make sure that 
you can overfit very 
small portion of the 
training data The above code:

- take the first 20 examples from 
CIFAR-10

- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’
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Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201677

Lets try to train now…  

Tip: Make sure that 
you can overfit very 
small portion of the 
training data

Very small loss, 
train accuracy 1.00, 
nice!
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Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201678

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.
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Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201679

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

Loss barely changing 
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Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201680

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is 
probably too low
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Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201681

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is 
probably too low

Notice train/val accuracy goes to 20% 
though, what’s up with that? (remember 
this is softmax)
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Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201682

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low

Okay now lets try learning rate 1e6. What could 
possibly go wrong?

S. Cheng (OU-ECE) Neural Networks Jan 2018 216 / 235



Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201683

cost: NaN almost 
always means high 
learning rate...

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high
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Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201684

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we 
should be cross-validating is 
somewhere [1e-3 … 1e-5]
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Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201685

Hyperparameter Optimization
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Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201686

Cross-validation strategy

I like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

Tip for detecting explosions in the solver: 
If the cost is ever > 3 * original cost, break out early
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Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201687

For example: run coarse search  for 5 epochs

nice

note it’s best to optimize 
in log space!
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Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201688

Now run finer search...

adjust range

53% - relatively good 
for a 2-layer neural net 
with 50 hidden neurons.
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Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201689

Now run finer search...

adjust range

53% - relatively good 
for a 2-layer neural net 
with 50 hidden neurons.

But this best cross-
validation result is 
worrying. Why?
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Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012
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Hyperparameters to play with:
- network architecture
- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function
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My cross-validation 
“command center”
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Monitor and visualize the loss curve
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Loss

time
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Loss

time

Bad initialization
a prime suspect
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lossfunctions.tumblr.com Loss function specimen
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lossfunctions.tumblr.com
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lossfunctions.tumblr.com
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Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?
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0

Track the ratio of weight updates / weight magnitudes:

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so
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Conclusions (What we know in 2017)

BP is just chain rule in calculus

Use ReLU. Never use Sigmoid (use Tanh instead)

Input preprocessing is no longer very important

Do subtract mean
Whitening and normalizing are not much needed

Weight initialization on the other hand is extremely important for
deep networks

Use batch normalization if you can

Use dropout

Use Adam (or maybe RMSprop) for optimizer. If you don’t have
much data, can consider LBFGS

Need to babysit your learning for real-world problems

Never use grid search for tuning your hyperparameters
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