Generative Models

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2018
(Slides credit to Goodfellow, Larochelle, Hinton)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 1/125



Table of Contents

0 Supervised vs unsupervised learning
e Generative models

e GANs

@ Dimension reduction

e Autoencoders

e Conclusions

S. Cheng (OU-Tulsa) Generative Models Feb 2017 2/125



@ We talked about RNN previously. RNN can be treated as a kind of
generative models. That is, able to generate samples from the
model

@ We will look into more generative models:

@ PixelCNN and PixelRNN
o Generative adversarial networks (GANSs)
e Variational autoencoders

S. Cheng (OU-Tulsa) Generative Models Feb 2017 3/125



Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 4 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 4/125



Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,

regression, object detection, Classsification
semantic segmentation, image

captioning, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 5 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 5/125



Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification, DOG. DOG. CAT
regression, object detection,
semantic segmentation, image Object Detection

captioning, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 6 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 6/125



Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

GRASS,

Examples: Classification, TREE, SKY

regression, object detection,
semantic segmentation, image Semantic Segmentation
captioning, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 7 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 7/125



Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y
Examples: ClaSSiﬁcation, A cat sitting on a suitcase on the floor
regression, object detection,
semantic segmentation, image
captioning, etc.

Image captioning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 8 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 8/125



Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 9 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 9/125



Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Unsupervised Learning . o

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

K-means clustering

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 10 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 10/125



Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Unsupervised Learning

original data space

component space

Data: x
Just data, no labels!

S
e
PC1

Goal: Learn some underlying
hidden structure of the data

2-d
E?(amp!es: Qlustering, Principal Component Analysis
dimensionality reduction, feature (Dimensionality reduction)

learning, density estimation, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 11 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 11/125



Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Unsupervised Learnin e
p g L2 Loss function: i%‘zg
: el LIS G
Data: x I -
Just data, no labels! Reconstructed z -EH: W
|nput data Y R Encoder: 4-layer conv
Decoder Decoder: ;Haer upconv
Goal: Learn some underlying Features | 2 .nput’data
hidden structure of the data o R |
Encoder | YRR B IR
. . Inputdata [ gz | nsuﬂ
E.xamp_les. Qlusterlng, bl « HEB
dimensionality reduction, feature Autoencoders

learning, density estimation, etc. (Feature learning)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 12 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 12/125



Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels! 1-d density estimation

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature 2-d density estimation
learning, density estimation, etc.

left and right

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 13 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 13/125



Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning
Data: (x, y) Data: x
X is data, y is label Just data, no labels!

Goal: Learn a functionto map x>y  Goal: Learn some underlying
hidden structure of the data
Examples: Classification,

regression, object detection, Examples: Clustering,
semantic segmentation, image dimensionality reduction, feature
captioning, etc. learning, density estimation, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 14 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 14/125



Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y
Examples: Classification,
regression, object detection,
semantic segmentation, image

captioning, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung

Unsupervised Learning
Training data is cheap
Data: x

Just data, no labels!

Holy grail: Solve
unsupervised learning
=> understand structure
of visual world

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Lecture 13- 15

S. Cheng (OU-Tulsa)

Generative Models

May 18, 2017

Feb 2017 15/125



Generative models

Generative Models
Given training data, generate new samples from same distribution

X4 Ty

Training data ~ p ., .(x) Generated samples ~ X)

model(

Want to learn p similar to p,,,,.(x)

model( )

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 16 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 16/125



Generative models

Generative Models
Given training data, generate new samples from same distribution

A F:aq

Training data ~ p ., .(x) Generated samples ~ X)

model(

Want to learn p___(x) similar to p__,_(x)

model
Addresses density estimation, a core problem in unsupervised learning
Several flavors:

- Explicit density estimation: explicitly define and solve forp_ ..(x)

- Implicit density estimation: learn model that can sample from p w/o explicitly defining it

model(x)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 17 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 17/125



Generative models

Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc

- Generatlve models of time-series data can be used for simulation and
planning (reinforcement learning applications!)

- Training generative models can also enable inference of latent
representations that can be useful as general features

Alec Radford et a. 2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 18 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 18/125



Generative models

Discriminative models vs generative models

@ Discriminative models try to discriminate if one input is different
from another. But it is not possible to generate samples from the
models. Many classifiers are based on discriminative models, for
example, support vector machines

S. Cheng (OU-Tulsa) Generative Models Feb 2017 19/125



Generative models

Discriminative models vs generative models

@ Discriminative models try to discriminate if one input is different
from another. But it is not possible to generate samples from the
models. Many classifiers are based on discriminative models, for
example, support vector machines

@ Generative models on the other hand can generate simulated
data, for example, Pixe CNN

S. Cheng (OU-Tulsa) Generative Models Feb 2017 19/125



Generative models
Discriminative models vs generative models

@ Discriminative models try to discriminate if one input is different
from another. But it is not possible to generate samples from the
models. Many classifiers are based on discriminative models, for
example, support vector machines

@ Generative models on the other hand can generate simulated
data, for example, Pixe CNN

@ Many older machine learning problems are classification
problems. Discriminative models provide a more direct solution
and thus were more attractive

S. Cheng (OU-Tulsa) Generative Models Feb 2017 19/125



Generative models
Discriminative models vs generative models

@ Discriminative models try to discriminate if one input is different
from another. But it is not possible to generate samples from the
models. Many classifiers are based on discriminative models, for
example, support vector machines

@ Generative models on the other hand can generate simulated
data, for example, Pixe CNN

@ Many older machine learning problems are classification
problems. Discriminative models provide a more direct solution
and thus were more attractive

@ Generative models have gained quite some attentions in recent
years

o Generate labeled simulation data for semi-supervised learning
e Simulate data for planning and reinforcement learning

S. Cheng (OU-Tulsa) Generative Models Feb 2017 19/125



Generative models

Taxonomy of Generative Models

GAN
‘ Generative models ‘
| Explicitdensity | Implicit density
‘ Tractable density ‘ ‘ Approximate density ‘ ‘ Markov Chain ‘
Fully Visible Belief Nets / \ GSN
- NADE — °
- MADE ‘ Variational ‘ ‘ Markov Chain ‘
- P'XeIRNN/CNN Variational Autoencoder Boltzmann Machine
Change of variables models
(nonlinear ICA) ) ) ) ) )
Figure copyright and adapted from lan Tutorial on Ad Networks, 2017.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 19 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 20/125



Generative models

Taxonomy of Generative Models

Today: discuss 3 most GAN
popular types of generative ‘ Generative models ‘
models today /\
| Explicitdensity | Implicit density
‘ Tractable density ‘ ‘ Approximate density ‘ ‘ LEREY DA ‘
Fully Visible Belief Nets T GSN
- NADE — -
- MADE ‘ Variational ‘ ‘ Markov Chain ‘

- [PixelRNN/CNN |Variational Autoencoder| Boltzmann Machine

Change of variables models
(nonlinear ICA)

Figure copyright and adapted from lan Tutorial on ive Ad ial Networks, 2017.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 20 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 21/125



Generative models

PixelRNN and PixelCNN

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - 21 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 22/125



Generative models

Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

p(x) = Hp(:z:z-|:1:1, ey Ti—1)

Likelihood of Probability of i'th pixel value
image x given all previous pixels

Then maximize likelihood of training data

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 22 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 23/125



Generative models

Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

Likelihood of Probability of i'th pixel value
image x given all previous pixels
Complex distribution over pixel
L o . values => Express using a neural
Then maximize likelihood of training data  etwork!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 23 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 24 /125



Generative models

Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

n
p(z) = I I p(zilz1, ..., Ti-1)
T i=1 T Will need to define
o ordering of “previous
Likelihood of Probability of ith pixel value pixels”
image x given all previous pixels

Complex distribution over pixel
T . values => Express using a neural
Then maximize likelihood of training data  etwork!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 24 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 25/125



Generative models

PixelRNN pan der cord et ar. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

@ O
© O
© O
o O
o O

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 25 May 18, 2017

© 0 0 0 O
© 0 0 0 O
© 0 0 0 O

S. Cheng (OU-Tulsa) Generative Models Feb 2017 26/125



Generative models

PixelRNN pan der cord et ar. 2016]

Generate image pixels starting from corner ?—O © © O
Dependency on previous pixels modeled ® © 6 0 ©
using an RNN (LSTM) O © 0 © O
© 06 6 0 O
© 06 0 0 O

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 26 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 27 /125



Generative models

PixelRNN pan der cord et ar. 2016]

Generate image pixels starting from corner ?—?—O o O
Dependency on previous pixels modeled ?—O © o ©
using an RNN (LSTM) © 0o 0 © ©
© 06 6 0 O
© 06 0 0 O

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 27 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 28/125



Generative models

PixelRNN pan der cord et ar. 2016]

Generate image pixels starting from corner

%

© 0 0 0 O

Dependency on previous pixels modeled
using an RNN (LSTM)

O%i
© 0 O
©O 0 0 O

o O

Drawback: sequential generation is slow!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 28 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 29/125



Generative models

PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from u
corner

Dependency on previous pixels now il /

modeled using a CNN over context region

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 29 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 30/125



Generative models

PixelCNN [van der Oord et al. 2016]

Softmax loss at each pixel

Still generate image pixels starting from u
corner

Dependency on previous pixels now 7
modeled using a CNN over context region / /

Training: maximize likelihood of training
images

n
p(z) = Hp(mz‘kﬂl, ey Ti1)
i=1

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 30 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 31/125



Generative models

PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from u
corner

Dependency on previous pixels now = /

modeled using a CNN over context region

Training is faster than PixelRNN
(can parallelize convolutions since context region
values known from training images)

Generation must still proceed sequentially
=> still slow

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 31 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 32/125



Generative models

Generation Samples

Pl TR | LS Ji @Ekﬂ“ﬁ&hﬂl
E iy II

BEIRS. o
- D
dliﬁb‘ﬂﬁﬁﬂl

32x32 CIFAR-10 32x32 ImageNet

S
= e L

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 32 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 33/125



Generative models

PixelRNN and PixelCNN

Pros: Improving PixelCNN performance

- Can explicitly compute likelihood
p(x) )
- Explicit likelihood of training
data gives good evaluation
metric -
- Good samples

- Sequential generation => slow

Fei-Fei Li & Justin Johnson & Serena Yeung

Gated convolutional layers
Short-cut connections
Discretized logistic loss
Multi-scale

Training tricks

Etc...

Van der Oord et al. NIPS 2016
Salimans et al. 2017
(PixelCNN++)

Lecture 13- 33 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models

Feb 2017 34/125



GANs

Generative adversarial networks (GANS)
Goodfellow et al. 2014

random
number
generator

generator
sample

data sample?

S. Cheng (OU-Tulsa) Generative Models Feb 2017 35/125




GANs

Generative adversarial networks (GANS)

Goodfellow et al. 2014

G(2)
e e
X)

x ~q(

Prob(x ~ g(x))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 36/125



Minimax game of a GAN

@ Probability of model data: pmodel(X) = [, P(2)pP(x|2)d

S. Cheng (OU-Tulsa) Generative Models Feb 2017 37/125



Minimax game of a GAN

Jzp(2)p(x|2)d.
)

@ Probability of model data: pmoge/(X) =
@ Probability of true data: pga(x) = (

S. Cheng (OU-Tulsa) Generative Models Feb 2017 37/125



Minimax game of a GAN

@ Probability of model data: pmodel(X) = [, P(2)pP(x|2)d
@ Probability of true data: pgaa(x) = q(x)
@ Discriminator wants to catch fake data

JO) = —Ey pal0g D(x) — Ezlog(1 — D(G(2)))
= _EXdiata log D(X) B EX"’Pmodel |Og(1 - D(X))

e N.B. JD is just cross-entropy loss for correct classification

S. Cheng (OU-Tulsa) Generative Models Feb 2017 37/125



Minimax game of a GAN

@ Probability of model data: pmodel(X) = [, P(2)pP(x|2)d
@ Probability of true data: pgaa(x) = q(x)
@ Discriminator wants to catch fake data

JO) = —Ey pal0g D(x) — Ezlog(1 — D(G(2)))
= _EXdiata log D(X) B EX"’Pmodel |Og(1 - D(X))

e N.B. JD is just cross-entropy loss for correct classification
@ Generator wants to fool the discriminator: J(@) = —J(P)
e Since first term does not depend on G(-), we can simplify J(©) to

J@ = _E,log(1 — D(G(2)))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 37/125



GANs

Optimal discriminator D*(x)

By calculus of variations, for any A(x),

aJO)(D*(X) + AA(x))
X

=0
A=0

S. Cheng (OU-Tulsa) Generative Models Feb 2017 38/125



GANs

Optimal discriminator D*(x)

By calculus of variations, for any A(x),

oJO(D*(X) + AA(x)) 0
oA N
OExpgas 109(D* (X) + AA(X))  OExmppoge 109(1 — D*(x) — AA(X))
= - - =0
oA O\ A=0

S. Cheng (OU-Tulsa) Generative Models Feb 2017 38/125



GANs

Optimal discriminator D*(x)

By calculus of variations, for any A(x),

2IOD (X)),
o\ 220 N
OExmpy 109(D*(X) + AA(X))  OExmpyou 109(1 — D*(X) — AA(X))
= - - =0
A ) o
- _E S N iy~ L ~0
X~Paata | Dx(x) 4+ AA(X) XPmodel | 4 — D*(x) — MA(X) | |\_g

S. Cheng (OU-Tulsa) Generative Models Feb 2017 38/125



GANs

Optimal discriminator D*(x)

By calculus of variations, for any A(x),

aJO)(D*(X) + AA(x))

oA A=0 =0
0B 109(D (X) + MA(X))  OEipyyl09(1 — D'(X) “AA) [
) A o
- _E 1 __|iE ! —0
X~ Pdata D*(X) + )\A(X) X~ Pmodel 1— D*(X) . )\A(X) \—o -

- [[5- Epig) s

S. Cheng (OU-Tulsa) Generative Models Feb 2017 38/125



GANs

Optimal discriminator D*(x)

By calculus of variations, for any A(x),

aJO)(D*(X) + AA(x))

E)) o 0
_6EXdiata IOg(D* (X) + AA(X)) _ 8E)(’\“pmodel |Og(1 — D* (X) — )\A(X)) = O
A ) -
- E L - 1 ~0
X~ Pdata D*(X) + )\A( ) X~ Pmodel 1— D*(X) . )\A(X) \—0 -

- [ - g oo

pdata( )

=D*(x) =
( ) pdata(x) + pmodel(x)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 38/125



GANs Design tricks

Non-saturating cost function

@ The discriminator cost function
JO) = —E, p,..log D(x) — E;log(1 — D(G(2))) is a very
reasonable choice and usually will not be modified

S. Cheng (OU-Tulsa) Generative Models Feb 2017 39/125



GANs Design tricks

Non-saturating cost function

@ The discriminator cost function
JO) = —E, p,..log D(x) — E;log(1 — D(G(2))) is a very
reasonable choice and usually will not be modified

@ On the other hand, we have more freedom on choosing the
generator cost

S. Cheng (OU-Tulsa) Generative Models Feb 2017 39/125



GANs Design tricks

Non-saturating cost function

@ The discriminator cost function
JO) = —E, p,..log D(x) — E;log(1 — D(G(2))) is a very
reasonable choice and usually will not be modified

@ On the other hand, we have more freedom on choosing the
generator cost

e E;log(1 — D(G(2))) is the intuitive choice for J(@ but it has a small
gradient when D(G(z)) is small for all z

@ Thatis, generator is not able to fool the discriminator
@ Reasonable when we just started to train the generator

S. Cheng (OU-Tulsa) Generative Models Feb 2017 39/125



GANs Design tricks

Non-saturating cost function

@ The discriminator cost function
JO) = —E, p,..log D(x) — E;log(1 — D(G(2))) is a very
reasonable choice and usually will not be modified

@ On the other hand, we have more freedom on choosing the
generator cost

e E;log(1 — D(G(2))) is the intuitive choice for J(@ but it has a small
gradient when D(G(z)) is small for all z
@ Thatis, generator is not able to fool the discriminator
@ Reasonable when we just started to train the generator
e Instead, it is better to have J(®) = —E, log D(G(z))
@ —log D(G(z)) ~ 0 when D(G(z)) ~ 1: ignore samples that
successfully fool the discriminator
@ —log D(G(z)) > 0 when D(G(z)) =~ 0: emphasize samples that
cannot fool the discriminator
@ When D(G(z)) ~ 1 for all z, we may need to switch back to the
original cost function. But better yet, we should better train the
discriminator

S. Cheng (OU-Tulsa) Generative Models Feb 2017 39/125



GANs Design tricks

. . lan Goodfellow et al., “Generative
Tra|n|ng GANSs: Two-player game Adversarial Nets”, NIPS 2014
Minimax objective function:

min max [Egnpg,., 108 Doy (@) + Eanp() 108(1 — Do, (Go, ()

0, d

Alternate between:
1. Gradient ascent on discriminator

mx [Eznpisi, 108 Do, (&) + Eanpie)108(1 = Do, (Go, (2)))]

2. Instead: Gradient ascent on generator, different
objective
: maxE, ;) 10g(D, (Cs, (2)))

Instead of minimizing likelihood of discriminator being correct, now
maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient
signal for bad samples => works much better! Standard in practice. oo f.‘owd?adié"ﬁt signal

High gradignt signal

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 40/125



GANs Design tricks

Some refinements

Training GAN is equivalent of finding the Nash equilibrium of a two-
player non-cooperative game, which itself is a very hard problem. We
will mention here a couple refinements to help find a better solution.
You probably would like to check out Salimans’ 16 also

@ One-sided label smoothing
@ Fixing batch-norm

@ Mini-batch features

@ Unrolled GAN

S. Cheng (OU-Tulsa) Generative Models Feb 2017 41/125


https://arxiv.org/pdf/1606.03498.pdf

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

@ Default discriminator cost can also be written as

cross_entropy(“1” ,discriminator(data))
+cross_entropy( “0”, discriminator(samples))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 42/125



GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

@ Default discriminator cost can also be written as

cross_entropy(“1” ,discriminator(data))
+cross_entropy( “0”, discriminator(samples))

@ Experiment shows that one-sided label smoothed cost enhance
system stability

cross_entropy( “0.9" ,discriminator(data))
+cross_entropy( “0”, discriminator(samples))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 42/125



GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

@ Default discriminator cost can also be written as

cross_entropy(“1” ,discriminator(data))
+cross_entropy( “0”, discriminator(samples))

@ Experiment shows that one-sided label smoothed cost enhance
system stability

cross_entropy( “0.9" ,discriminator(data))
+cross_entropy( “0”, discriminator(samples))

o Essentially prevent extrapolating effect from extreme samples
e Generally does not reduce classification accuracy, only confidence

S. Cheng (OU-Tulsa) Generative Models Feb 2017 42/125



GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

@ Itis important not to smooth the negative labels though, i.e., say

cross_entropy(1 — a,discriminator(data))
+cross_entropy(f, discriminator(samples))

with 3 >0

S. Cheng (OU-Tulsa) Generative Models Feb 2017 43/125



GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

@ Itis important not to smooth the negative labels though, i.e., say

cross_entropy(1 — a,discriminator(data))
+cross_entropy(f, discriminator(samples))

with 3 >0

@ Just follow the same derivation as before, we can get the optimum
D(x) as

«roy (1= a)Pdata(X) + BPmodel(X)
Di(x) = Pdata(X) + Pmodel(X)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 43/125



GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

@ Itis important not to smooth the negative labels though, i.e., say

cross_entropy(1 — a,discriminator(data))
+cross_entropy(f, discriminator(samples))

with 3 >0

@ Just follow the same derivation as before, we can get the optimum
D(x) as

«roy (1= a)Pdata(X) + BPmodel(X)
Di(x) = Pdata(X) + Pmodel(X)

@ $ > 0 tends to give undesirable bias of the discriminator to data
generated by the model

S. Cheng (OU-Tulsa) Generative Models Feb 2017 43/125



GANs Design tricks

Issue on batch normalization
Goodfellow 2016

Batch normalization is preferred and highly recommended. But it can
cause strong intra-batch correlation

gl

S. Cheng (OU-Tulsa) Generative Models Feb 2017 44 /125



GANs Design tricks

Fixing batch norm

@ Reference batch norm: one possible approach is keep one
reference batch and always normalized based on that batch. That
is, always subtract mean from that of the reference batch and
adjust variance to that of the reference batch

o Can easily overfit to the particular reference batch

S. Cheng (OU-Tulsa) Generative Models Feb 2017 45/125



GANs Design tricks

Fixing batch norm

@ Reference batch norm: one possible approach is keep one
reference batch and always normalized based on that batch. That
is, always subtract mean from that of the reference batch and
adjust variance to that of the reference batch

o Can easily overfit to the particular reference batch

@ Virtual batch norm: a partial solution by combining the reference
batch norm and conventional batch norm. Fix a reference batch,
but every time inputs are normalize to the net mean and variance
of the virtual batch containing both inputs and all elements of the
reference batch

S. Cheng (OU-Tulsa) Generative Models Feb 2017 45/125



GANs Design tricks

Balancing G and D

@ Usually it is more preferable to have a bigger and deeper D

S. Cheng (OU-Tulsa) Generative Models Feb 2017 46/125



GANs Design tricks

Balancing G and D

@ Usually it is more preferable to have a bigger and deeper D

@ Some researchers also run more D steps than G steps. The
results are mixed though

S. Cheng (OU-Tulsa) Generative Models Feb 2017 46/125



GANs Design tricks

Balancing G and D

@ Usually it is more preferable to have a bigger and deeper D

@ Some researchers also run more D steps than G steps. The
results are mixed though

@ Some take home messages

e Use non-saturating cost
e Use label smoothing

S. Cheng (OU-Tulsa) Generative Models Feb 2017 46/125



GANs Design tricks

Balancing G and D

@ Usually it is more preferable to have a bigger and deeper D

@ Some researchers also run more D steps than G steps. The
results are mixed though

@ Some take home messages

e Use non-saturating cost
e Use label smoothing

@ Do not try to limit D from being “too smart”

e The original theoretical justification is that D is supposed to be
perfect

S. Cheng (OU-Tulsa) Generative Models Feb 2017 46/125



GANs Design tricks

Mode collapse
Metz et al. 2016

Below demonstrates why D should be smart.
@ Basically the minmax and the minmax problem is not the same
and can lead to drastically different solutions

i V(G,D inV(G,D
min max (G, )#mgxmén (G,D)

- - - -

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

S. Cheng (OU-Tulsa) Generative Models Feb 2017

47 /125



GANs Design tricks

Mode collapse
Metz et al. 2016

Below demonstrates why D should be smart.
@ Basically the minmax and the minmax problem is not the same
and can lead to drastically different solutions

i V(G,D inV(G,D
min max (G, )#mgxmén (G,D)

@ D inthe inner loop: converge to the correct distribution
@ G inthe inner loop: place all mass on most likely point

- - -
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

S. Cheng (OU-Tulsa) Generative Models Feb 2017 47 /125



GANs Design tricks

Minibatch features
Salimans et al. 2016

@ Mode collapse can lead to low diversity of generated data

S. Cheng (OU-Tulsa) Generative Models Feb 2017 48 /125



GANs Design tricks

Minibatch features
Salimans et al. 2016

@ Mode collapse can lead to low diversity of generated data

@ One attempt to mitigate this problem is to introduce the so-called
minibatch features
e Basically classify each example by comparing the features to other
members in the minibatch
o Reject a sample if the feature to close to existing ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 48 /125



GANs Design tricks

Unrolled Gans
Metz et al. 2016

@ A more direct approach was proposed by Google brain

@ Trying to ensure that the generated sample is a solution of the
minmax rather than the maxmin problem

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

S. Cheng (OU-Tulsa) Generative Models Feb 2017 49/125



GANs Design tricks

Unrolled Gans
Metz et al. 2016

@ A more direct approach was proposed by Google brain

@ Trying to ensure that the generated sample is a solution of the
minmax rather than the maxmin problem

@ Have the generator to unroll k future steps and predict what
discriminator will think of the current sample

o S - EEa: ==ma
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

S. Cheng (OU-Tulsa) Generative Models Feb 2017 49/125



GANs Design tricks

Unrolled Gans
Metz et al. 2016

@ A more direct approach was proposed by Google brain

@ Trying to ensure that the generated sample is a solution of the
minmax rather than the maxmin problem
@ Have the generator to unroll k future steps and predict what
discriminator will think of the current sample
e Since generator is the one who unrolls, generator is in the outer
loop and discriminator is in the inner loop
o We ensure that we have solution approximating a minmax rather
than maxmin problem

-0 &

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

S. Cheng (OU-Tulsa) Generative Models Feb 2017 49/125



GANs DCGAN

Deep convolutional GAN (DCGAN)

Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReLU activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

8

S. Cheng (OU-Tulsa) Generative Models Feb 2017 50/125



GANs DCGAN

Deep convolutional GAN (DCGAN)

Radford et al. 2016

1024 ) -5
—— 5 =
- Stride 2
A e e NG
. Stride 2 16
Project and reshape CONV 1
i CONV 3 64
CONV 4 -
G(2)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 51/125



GANs More applications

Generated bedroom after 5 epochs (LSUN dataset)

Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 52/125



GANs More applications

Generative Adversarial Nets: Convolutional Architectures

Interpolating Zi*
between
random

space

Radford et al,
ICLR 2016

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Feb 2017 53/125

S. Cheng (OU-Tulsa) Generative Models



GANs More applications

Vector arithmetics
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 54 /125



GANs More applications

Vector arithmetics
Radford et al. 2016

ﬂ+

smiling neutral neutral
woman woman man

S. Cheng (OU-Tulsa) Generative Models

Feb 2017

54/125



GANs More applications

Vector arithmetics
Radford et al. 2016

smiling neutral neutral

smiling man
woman woman man 9

S. Cheng (OU-Tulsa) Generative Models Feb 2017 54 /125



GANs More applications

Vector arithmetics
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 55/125



GANs More applications

Vector arithmetics
Radford et al. 2016

man man woman
with glasses without glasses without glasses

S. Cheng (OU-Tulsa) Generative Models Feb 2017 55/125



GANs More applications

Vector arithmetics
Radford et al. 2016

% |
~a |
man man woman
with glasses without glasses without glasses woman with glasses

S. Cheng (OU-Tulsa) Generative Models Feb 2017 55/125



More applications

StackGAN

Zhang et al. 2016

Stage-Il Generator

! I
This bird is grey with white on its | Conditioning |
chest and has a very shon beak : Augmentation |
i

=

256 x 256
generated sample

generated sample

This bird is grey with white on its
chest and has a very short beak

la.T
“This bird is grey with white on its
chest and has a very short beak

56 /125

S. Cheng (O



https://github.com/hanzhanggit/StackGAN

GANs More applications

StackGAN

A small yellow bird with a black crown and a short black pointed
beak

A
£\ <0 )y A"

A white bird with a black crown and yellow beak

S. Cheng (OU-Tulsa) Generative Models Feb 2017 57 /125



GANs More applications

StackGAN

This flower has long thin yellow petals and a lot of yellow anthers
in the center

This flower is white, pink
that are multi colored

- - powm

S. Cheng (OU-Tulsa) Generative Models Feb 2017 58/125



More applications

IGAN

Zhu et al. 2016

User edits

Generated images

mm==  (Color
m == Sketch

S. Cheng (OU-Tulsa) Generative Models Feb 2017 59/125



GANs More applications

201 7: Year Of the GAN Text -> Image Synthesis

this small bird has a pink this magnificent fellow is

i breast and crown, and black almost all black with a red
Better tralnlng and generatlon Source->Target domain trarﬂsfer . riniries s secondarien, erest, adwhite chiéek patch
Input npu utput .

Reed etal. 2017.
Many GAN applications

applc — orange

» Summner Yosemie

- winter Yosemite

Pix2pix. Isola 2017. Many examples at
CycleGAN. Zhu et al. 2017. P Y Sxamp

https://phillipi.github.io/pix2pix/

BEGAN. Bertholet et al. 2017.

Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017




GANs

More applications

See also:

“The GAN Zoo”

« GAN - Generative Adversarial Networks
« 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
« acGAN - Face Aging With Conditional Generative Adversarial Networks

AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

AdaGAN - AdaGAN: Boosting Generative Models

AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

« AffGAN - Amortised MAP Inference for Image Super-resolution
« AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
« ALl - Adversarially Learned Inference

« AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery *

« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs
« b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks
« Bayesian GAN - Deep and Hierarchical Implicit Models

« BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks
« BIGAN - Adversarial Feature Learning

« BS-GAN - Boundary-Seeking Generative Adversarial Networks

« CGAN - Conditional Generative Adversarial Nets

https://github.com/soumith/ganhacks for tips

and tricks for trainings GANs

Context-RNN-GAN - Contextual RNN-GANS for Abstract Reasoning Diagram Generation
C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training
CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks

DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

EBGAN - Energy-based Generative Adversarial Network

F-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

FF-GAN - Towards Large-Pose Face Frontalization in the Wild

GAWWN - Learning What and Where to Draw

GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

GOGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

IGAN - Generative Visual Manipulation on the Natural Image Manifold

IGAN - Invertible Conditional GANs for image editing

« ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network

« CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters

with Generative Adversarial Networks
« CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

« CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
 CoGAN - Coupled Generative Adversarial Networks

Fei-Fei Li & Justin Johnson & Serena Yeung

Improved GAN - Improved Techniques for Training GANs
InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

May 18, 2017

Lecture 13 -

S. Cheng (OU-Tulsa)

2017

/125



GANs More applications

GANs

Don’t work with an explicit density function

Take game-theoretic approach: learn to generate from training distribution through 2-player
game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can't solve inference queries such as p(x), p(z|x)

Active areas of research:

- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 62/125



Dimension reduction

Why autoencoders? Dimension reduction

@ As name suggests, the objective of dimension of reduction is to
decrease the dimension of input signals to ease later processing

o ltis often a preprocessing step

S. Cheng (OU-Tulsa) Generative Models Feb 2017 63 /125



Dimension reduction

Why autoencoders? Dimension reduction

@ As name suggests, the objective of dimension of reduction is to
decrease the dimension of input signals to ease later processing

o ltis often a preprocessing step
e Was commonly used to compress features

S. Cheng (OU-Tulsa) Generative Models Feb 2017 63 /125



Dimension reduction

Why autoencoders? Dimension reduction

@ As name suggests, the objective of dimension of reduction is to
decrease the dimension of input signals to ease later processing

o ltis often a preprocessing step
e Was commonly used to compress features

@ It is a very old problem. The most representative algorithm is the
principal component analysis (PCA)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 63 /125



Dimension reduction PCA

Principal component analysis (PCA)

@ Take N-dimensional data and find the M
orthogonal directions in which the data
have the most variance

S. Cheng (OU-Tulsa) Generative Models Feb 2017 64 /125



Dimension reduction PCA

Principal component analysis (PCA)

@ Take N-dimensional data and find the M
orthogonal directions in which the data
have the most variance

@ We can represent an N-dimensional
datapoint by its projections onto the M
principal directions (i.e., with highest
variances)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 64 /125



Dimension reduction PCA

Principal component analysis (PCA)

@ Take N-dimensional data and find the M
orthogonal directions in which the data
have the most variance

@ We can represent an N-dimensional
datapoint by its projections onto the M
principal directions (i.e., with highest
variances)

e This loses all information about where
the datapoint is located in the remaining
orthogonal directions

S. Cheng (OU-Tulsa) Generative Models Feb 2017 64 /125



Dimension reduction PCA

PCA reconstruction

@ We reconstruct by using the mean value
(over all the data) onthe N — M
directions that are not represented.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 65/125



Dimension reduction PCA

PCA reconstruction

@ We reconstruct by using the mean value
(over all the data) onthe N — M
directions that are not represented.

e The reconstruction error is the sum over
the variances over all these
unrepresented directions

S. Cheng (OU-Tulsa) Generative Models Feb 2017 65/125



Dimension reduction PCA

PCA reconstruction

@ We reconstruct by using the mean value
(over all the data) onthe N — M
directions that are not represented.

e The reconstruction error is the sum over
the variances over all these
unrepresented directions

@ The variances are just eigenvalues of
covariance matrix of the data

S. Cheng (OU-Tulsa) Generative Models Feb 2017 65/125



Dimension reduction PCA

PCA reconstruction

@ We reconstruct by using the mean value
(over all the data) onthe N — M
directions that are not represented.

e The reconstruction error is the sum over
the variances over all these
unrepresented directions

@ The variances are just eigenvalues of

. covariance matrix of the data

- @ PCA is “optimum”

I e Since we keep the largest variance
components, on average the distortion
is minimum among all linear dimension
reduction methods

S. Cheng (OU-Tulsa) Generative Models Feb 2017 65/125



Dimension reduction PCA

Math review: Singular value decomposition (SVD)

For any N x K matrix A (assume K < N), we can decompose it into
product of three matrices

where Uis N x K, Dis K x K, and V is K x K. Moreover,

S. Cheng (OU-Tulsa) Generative Models Feb 2017 66 /125



Dimension reduction PCA

Math review: Singular value decomposition (SVD)

For any N x K matrix A (assume K < N), we can decompose it into
product of three matrices

where Uis N x K, Dis K x K, and V is K x K. Moreover,
@ Uis orthonormal,i.e., UTU =1

@ D is diagonal
@ Vs orthonormal,ie., VIV =1

S. Cheng (OU-Tulsa) Generative Models Feb 2017 66 /125



Dimension reduction PCA

Math review: Singular value decomposition (SVD)

For any N x K matrix A (assume K < N), we can decompose it into
product of three matrices

where Uis N x K, Dis K x K, and V is K x K. Moreover,

@ Uis orthonormal,i.e., UTU =1

@ D is diagonal

@ Vs orthonormal,ie., VIV =1
Has nice geometric interpretation. Roughly speaking, any linear trans-
form can be decompose into rotation, scaling, and rotation again

S. Cheng (OU-Tulsa) Generative Models Feb 2017 66 /125



Dimension reduction PCA

SVD and PCA

@ Let X = [xq,Xo, - ,Xg] be the matrix with columns as data
vectors. We can decompose X = ULV’ using SVD

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 /125



Dimension reduction PCA

SVD and PCA

@ Let X = [xq,Xo, - ,Xg] be the matrix with columns as data
vectors. We can decompose X = ULV’ using SVD

. . . . T
@ Assume X is zero-mean, the covariance matrix C is just C ~ X%~

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 /125



Dimension reduction PCA

SVD and PCA

@ Let X = [xq,Xo, - ,Xg] be the matrix with columns as data
vectors. We can decompose X = ULV’ using SVD
@ Assume X is zero-mean, the covariance matrix C is just C ~ %T

@ Note that C ~ UZVT(UZVT)T = UX2UT, thus singular values
are just square root of eigenvalues

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 /125



Dimension reduction PCA

SVD and PCA

@ Let X = [xq,Xo, - ,Xg] be the matrix with columns as data
vectors. We can decompose X = ULV’ using SVD
@ Assume X is zero-mean, the covariance matrix C is just C ~ %T

@ Note that C ~ UZVT(UZVT)T = UX2UT, thus singular values
are just square root of eigenvalues
@ Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 /125



Dimension reduction PCA

SVD and PCA

@ Let X = [xq,Xo, - ,Xg] be the matrix with columns as data
vectors. We can decompose X = ULV’ using SVD
@ Assume X is zero-mean, the covariance matrix C is just C ~ %T

@ Note that C ~ UZVT(UZVT)T = UX2UT, thus singular values
are just square root of eigenvalues
@ Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X R R R
@ One can easily verify that. Let X = UX VT, where ¥ only keeps
the M largest singular values, then

Error =) "(x — %)7(x — %)

i

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 /125



Dimension reduction PCA

SVD and PCA

@ Let X = [xq,Xo, - ,Xg] be the matrix with columns as data
vectors. We can decompose X = ULV’ using SVD
@ Assume X is zero-mean, the covariance matrix C is just C ~ %T

@ Note that C ~ UZVT(UZVT)T = UX2UT, thus singular values
are just square root of eigenvalues
@ Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X R R R
@ One can easily verify that. Let X = UX VT, where ¥ only keeps
the M largest singular values, then

Error = (x = %)T(x — %) = tr(X — X)T(X — X))

i

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 /125



Dimension reduction PCA

SVD and PCA

@ Let X = [xq,Xo, - ,Xg] be the matrix with columns as data
vectors. We can decompose X = ULV’ using SVD
@ Assume X is zero-mean, the covariance matrix C is just C ~ %T

@ Note that C ~ UZVT(UZVT)T = UX2UT, thus singular values
are just square root of eigenvalues
@ Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X R R R
@ One can easily verify that. Let X = UX VT, where ¥ only keeps
the M largest singular values, then

Error = (x = %)T(x — %) = tr(X — X)T(X — X))

=tr(V(Z - £)UTU(Z - £)VT)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 /125



Dimension reduction PCA

SVD and PCA

@ Let X = [xq,Xo, - ,Xg] be the matrix with columns as data
vectors. We can decompose X = ULV’ using SVD
@ Assume X is zero-mean, the covariance matrix C is just C ~ 27—

@ Note that C ~ UL VT(UXVT)T = Ux2UT, thus singular values
are just square root of eigenvalues
@ Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X R R R
@ One can easily verify that. Let X = UX VT, where ¥ only keeps
the M largest singular values, then

Error = Z(x )T (x = %) =tr(X = X)T(X = X))

=tr(V(Z - UTUE - ) VT) =tr(V(Z - £)(Z -5£)VT)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 /125



Dimension reduction PCA

SVD and PCA

@ Let X = [xq,Xo, - ,Xg] be the matrix with columns as data
vectors. We can decompose X = ULV’ using SVD
@ Assume X is zero-mean, the covariance matrix C is just C ~ 27—

@ Note that C ~ UL VT(UXVT)T = Ux2UT, thus singular values
are just square root of eigenvalues
@ Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X R R R
@ One can easily verify that. Let X = UX VT, where ¥ only keeps
the M largest singular values, then

Error = (x = %)T(x — %) = tr(X — X)T(X — X))
=tr(V(Z - UTUE - ) VT) =tr(V(Z - £)(Z -5£)VT)
=tr(((Z - £)VTV(Z - %))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 /125



Dimension reduction PCA

SVD and PCA

@ Let X = [xq,Xo, - ,Xg] be the matrix with columns as data
vectors. We can decompose X = ULV’ using SVD
@ Assume X is zero-mean, the covariance matrix C is just C ~ %T

@ Note that C ~ UZVT(UZVT)T = UX2UT, thus singular values
are just square root of eigenvalues
@ Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X R R R
@ One can easily verify that. Let X = UX VT, where ¥ only keeps
the M largest singular values, then

Error = (x = %)T(x — %) = tr(X — X)T(X — X))
=tr(V(Z - UTUE - ) VT) =tr(V(Z - £)(Z -5£)VT)
=tr(Z-2)VNHV(Z - %)) = tr((Z — £)?)
=Sum of eigenvalues excluding the M largest ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 /125



Dimension reduction PCA

Optimal linear decoder = optimal linear encoder

@ PCA is optimum when things are “linear”

S. Cheng (OU-Tulsa) Generative Models Feb 2017 68 /125



Dimension reduction PCA

Optimal linear decoder = optimal linear encoder

@ PCA is optimum when things are “linear”

@ Interesting to know that as far as decoding is linear, the optimal
encoding is linear (PCA) as well

S. Cheng (OU-Tulsa) Generative Models Feb 2017 68 /125



Dimension reduction PCA

Optimal linear decoder = optimal linear encoder

@ PCA is optimum when things are “linear”

@ Interesting to know that as far as decoding is linear, the optimal
encoding is linear (PCA) as well

e Thatis, if X = Wh(X) for some optimal W
e = h(X) = TX for some optimal T

S. Cheng (OU-Tulsa) Generative Models Feb 2017 68 /125



Dimension reduction PCA

Optimal linear decoder = optimal linear encoder

@ PCA is optimum when things are “linear”

@ Interesting to know that as far as decoding is linear, the optimal
encoding is linear (PCA) as well

e Thatis, if X = Wh(X) for some optimal W
e = h(X) = TX for some optimal T

S. Cheng (OU-Tulsa) Generative Models Feb 2017 68 /125



Autoencoders

X [O@OAOOOJ @ Autoencoder is a way to

perform dimension reduction
W WT with neural networks

(tied weights) h(x) = sigm(b + Wx)
10 OBOO0) o)
A
A\u%

x (OOO0O0)

S. Cheng (OU-Tulsa) Feb2017  69/125



Autoencoders
Autoencoders

: (C®0O000) -

W*:WT

(tied weights)

MMO@QOOJ

\%%

Autoencoder is a way to
perform dimension reduction
with neural networks

h(x) = sigm(b + Wx)
X =c+ W*h(x)

@ loss = ||[x — X||

x (OOO0O0)

S. Cheng (OU-Tulsa)

Generative Models

Feb 2017 69/125



Autoencoders
Autoencoders

X [O@OAOOOJ @ Autoencoder is a way to

perform dimension reduction
W = W' with neural networks

(tied weights) h(x) — sigm(b + WX)
ﬁ =

h(x) [Q@CA)QO] ¢+ Wh(x)
@ loss = ||[x — X||

\i4 @ N.B., as the decoder is linear,
the optimum autoencoder is

X [OOOOOOJ just equivalent to PCA

S. Cheng (OU-Tulsa) Generative Models Feb 2017 69/125



Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

output vector

t @ When using multiple layers,
PCA is no longer optimal for
continuous input

Ll

code

T

T

input vector

S. Cheng (OU-Tulsa) Generative Models Feb 2017 70/125



Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

output vector
t @ When using multiple layers,
PCA is no longer optimal for

continuous input

1) @ The introduced nonlinearity
can efficiently represent data
code that lies on a non-linear
1) manifold

input vector

S. Cheng (OU-Tulsa) Generative Models Feb 2017 70/125



Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

output vector

t @ When using multiple layers,
PCA is no longer optimal for
continuous input

1) @ The introduced nonlinearity
can efficiently represent data
code that lies on a non-linear
1) manifold

@ It was an old idea (dated back
to 80’s) but it was considered
t to be very hard to train

input vector

S. Cheng (OU-Tulsa) Generative Models Feb 2017 70/125



Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

output vector

@ First really successful deep
autoencoder was trained in
A'» 2006 by Hinton’s group

input vector

S. Cheng (OU-Tulsa) Generative Models Feb 2017 71/125



Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

output vector

@ First really successful deep
autoencoder was trained in

t 2006 by Hinton’s group
@ It uses layer-by-layer RBM
code pre-training as described in
1) the last lecture
@ Just use regular backprob for
fine-tuning

input vector

S. Cheng (OU-Tulsa) Generative Models Feb 2017 71/125



Autoencoders Deep autoencoders

Deep autoencoder vs PCA

Original data

Deep autoencoder
reconstruction

PCA reconstruction

From Hinton and Salakhutdinov, Science, 2006

S. Cheng (OU-Tulsa) Generative Models Feb 2017 72/125



Autoencoders Deep autoencoders

Deep autoencoder for 400,000 business documents
Hinton 2006

First compress all documents to 2 numbers using deep auto.
Then use different colors for different document categories

Interbank Markets Monetary/Economic

- . BT .

-

Disasters and
Accidents

s w8
T
;
Leading Ecnomic &
Indicators - :‘5%

Government
Accounts/ . = Borrowings
Earnings ?_?:

S. Cheng (OU-Tulsa) Generative Models Feb 2017 73/125



Autoencoders Deep autoencoders

Deep autoencoder for 400,000 image retrieval
Hinton 2006

Leftmost column
is the search
image.

Other columns
are the images
that have the
most similar
feature activities
in the last hidden
layer.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 74 /125



Autoencoders Stacked autoencoders

Stacked autoencoders

Alternative pretraining approach

Input Features | Output

S. Cheng (OU-Tulsa)

Generative Models

Besides pre-training
using RBMs, we
may also “expand”
a deep
autoencoders as a
stack of shallow
autoecoders

Feb 2017 75/125



Autoencoders Stacked autoencoders

Stacked autoencoders

Alternative pretraining approach

Besides pre-training
using RBMs, we
may also “expand”
a deep
autoencoders as a
stack of shallow
autoecoders

S. Cheng (OU-Tulsa) Generative Models Feb 2017 75/125



Autoencoders Stacked autoencoders

Stacked autoencoders

Alternative pretraining approach

@ Besides pre-training
using RBMs, we
may also “expand”
a deep
autoencoders as a
stack of shallow

—>Ply=0|x

—>Ply=1]x)

—> Ply=2|x)

Input Features | Output
= ot o s autoecoders
h‘l” class
@ Shallow

autoencoders are
easier to train than
RBM

w
h)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 75/125



Autoencoders Stacked autoencoders

Denoising autoencoders
Vincent et al. 2008

= (080000

@ |dea: representation should be robust
W=W' to introduction of noise
h(i) (tied weights) "] Randomly aSSIgn b|tS tO zero fOI‘
@O O@OOOO ] bmary.cgse .
A @ Similar to dropout but for inputs
W only
30/0/0/0/0)0)
A noise process
s b
x (OOO0O000)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 76 /125



Autoencoders Stacked autoencoders

Denoising autoencoders
Vincent et al. 2008

= (080000

@ |dea: representation should be robust
W=W' to introduction of noise
h(%) (tied weights) e Randomly assign bits to zero for
@O O@OOOO ] binary case
A @ Similar to dropout but for inputs
W only
e Gaussian additive noise for
& [@OO@O@] continuous case
A noise process
LR
x (OOO0O000)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 76 /125



Autoencoders Stacked autoencoders

Denoising autoencoders
Vincent et al. 2008

= (080000

@ |dea: representation should be robust
W=W' to introduction of noise
h(i) (tied weights) "] Randomly aSSIgn b|tS tO zero fOI‘
@O O@OOOO ] bmary.cgse .
A @ Similar to dropout but for inputs
W only
e Gaussian additive noise for
& [@OO@O@] continuous case
A no;(eip‘;scess @ Loss function compares X with
: noiseless input x
x (OOO0O000)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 76 /125



Autoencoders Stacked autoencoders
Denoising autoencoders

S. Cheng (OU-Tulsa) Generative Models Feb 2017 771125



Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

@ Idea: encourage robustness of the model by forcing the hidden
units to be insensitive to slight change of inputs

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78/125



Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

@ Idea: encourage robustness of the model by forcing the hidden
units to be insensitive to slight change of inputs

@ Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

1(x) = I(%) + || Vxh(x) |

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78/125



Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

@ Idea: encourage robustness of the model by forcing the hidden
units to be insensitive to slight change of inputs

@ Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

1(x) = I(%) + || Vxh(x) |

@ Pros and cons
o + deterministic gradient = can use second order optimizers

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78/125



Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

@ Idea: encourage robustness of the model by forcing the hidden
units to be insensitive to slight change of inputs

@ Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

1(x) = I(%) + || Vxh(x) |

@ Pros and cons

o + deterministic gradient = can use second order optimizers
@ + could be more stable than denoising autoencoder, which needs
to use a sampled gradient

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78/125



Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

@ Idea: encourage robustness of the model by forcing the hidden
units to be insensitive to slight change of inputs

@ Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

1(x) = I(%) + || Vxh(x) |

@ Pros and cons
o + deterministic gradient = can use second order optimizers
@ + could be more stable than denoising autoencoder, which needs
to use a sampled gradient
@ - Need to compute Jacobian of hidden layer

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78/125



Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

@ Idea: encourage robustness of the model by forcing the hidden
units to be insensitive to slight change of inputs

@ Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

1(x) = I(%) + || Vxh(x) |

@ Pros and cons
o + deterministic gradient = can use second order optimizers
@ + could be more stable than denoising autoencoder, which needs
to use a sampled gradient
@ - Need to compute Jacobian of hidden layer
@ - More complex than denoising autoencoder, which just needs to
add one two lines of code

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78/125



Autoencoders Stacked autoencoders

Remark on pretraining

What are the disadvantages of pretraining deep
neural networks by stacking autoencoders?

# Answer | | Request~ | Follow 55 Comment Downvote Ly
1 Answer

Yoshua Bengio, My lab has been one of the three that started the deep learning
© approach, back in 2006, along with Hinton's...

The same disadvantage as other layer-wise pre-training techniques: it is greedy,
i.e., it does not try to tune the lower layers in a way that will make the work of
higher layers easier. But that will change soon with a new approach I am
working on!

S. Cheng (OU-Tulsa) Generative Models Feb 2017

79/125



Autoencoders Stacked autoencoders

Remark on pretraining

@ Ian Goodfellow, Lead author of the Deep Learning textbook:

Autoencoders are useful for some things, but turned out not to be nearly as
necessary as we once thought. Around 10 years ago, we thought that deep nets
would not learn correctly if trained with only backprop of the supervised cost.
We thought that deep nets would also need an unsupervised cost, like the
autoencoder cost, to regularize them. When Google Brain built their first very
large neural network to recognize objects in images, it was an autoencoder (and
it didn’t work very well at recognizing objects compared to later approaches).

Today, we know we are able to recognize images just by using backprop on the
e — S
supervised cost as long as there is enough labeled data. There are other tasks

where we do still use autoencoders, but theyre not the fundamental solution to

training deep nets that people once thought they were going to be.
S. Cheng (OU-Tulsa) Generative Models Feb 2017 80/125



Autoencoders Variational autoencoders

Variational autoencoders

“Generative autoencoders” = variational autoencoders
@ Instead of spitting out an approximate for the input
@ The network spits out parameters of a distribution

S. Cheng (OU-Tulsa) Generative Models Feb 2017 81/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {x(")}{il is generated from underlying unobserved (latent)
representation z

Sample from
true conditional | r

po-(@ | 29)

Sample from

true prior 2

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 51 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 82/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {x(")}{il is generated from underlying unobserved (latent)
representation z

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to

Sample from ) . .
generate x: attributes, orientation, etc.

true conditional | r
po-(z | 29)

Sample from

true prior 2

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 52 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 83/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample from
true conditional | T

po- (@ | 29)

Sample from

true prior z

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 53 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 84 /125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample from
true conditional | T

po- (@ | 29)

How should we represent this model?

Sample from

true prior 2

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 54 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 85/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample fr.o.m How should we represent this model?
true conditional | T
po-(x | 29) 1 Choose prior p(z) to be simple, e.g.
Gaussian. Reasonable for latent attributes,
Sample from e.g. pose, how much smile.
true prior 2
po~(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 55 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 86/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample fr.o.m How should we represent this model?
true conditional | T
po-(x | 29) 1 Choose prior p(z) to be simple, e.g.
Decoder Gaussian.
network
Sample from Conditional p(x|z) is complex (generates
true prior |:Z:| image) => represent with neural network
po~(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 56 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 87/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample from . "
true conditional | T How to train the model?
po-(z | 20) 1
Decoder
network
Sample from
true prior z
po~(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 57 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders: Intractability

Data likelihood: pe(z) = [ po(2)pe(z|z)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 62 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 89/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders: Intractability
v
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 63 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders: Intractability
v v
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 64 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 91/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders: Intractability

® v v
Data likelihood: pe(z) = [ po(2)pe(z|z)dz

f

Intractible to compute
p(x|z) for every z!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 65 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 92/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders: Intractability
® v v
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

Posterior density also intractable: Pg (z|z) = po(x|2)pe(2) /po()

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 66 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 93/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders: Intractability
8 v Vv
Data likelihood: pe(z) = [ po(2)pe(z|2)dz
v VvV
Posterior density also intractable: Pg (z|z) = pg(x|2)py(2)/po(x)

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 67 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 94 /125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders: Intractability
8 v Vv
Data likelihood: pe(z) = [ po(2)pe(z|2)dz
Posterior density also intractable: Pg (z|z) = pg(x|2)py(2)/po(x)

Solution: In addition to decoder network modeling p4(x|z), define additional
encoder network q¢(z|x) that approximates pg(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that is
tractable, which we can optimize

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 68 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 95/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z
N N
| Hels || Bape |
Encoder network Decoder network
7s(2|z) po(z|2)
(parameters ) (parameters )
| z | z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 69 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 96 /125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from z|x ~ N(l"lexa Ezlx) Sample x|z from x|z ~ N(u1|z, EI|Z)
| Halz | Dg)s
Encoder network Decoder network
g(2|x) po(z|2)
(parameters ) (parameters )
| z | z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 70 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 97 /125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from z|x ~ N(l"lexa Ezlx) Sample x|z from x|z ~ N(u1|z, EI|Z)
| Halz | Dg)s
Encoder network Decoder network
g(2|x) po(z|2)
(parameters ) (parameters )
| z | z

Encoder and decoder networks also called

“recognition”/*inference” and “generation” networks  Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 71 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 98 /125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

logpo (z")) = B, g, (21000 [logpu(z("’))] (po () Does not depend on z)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 72 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 99/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

logpo (z")) = B, g, (21000 [logpu(z("’))] (po () Does not depend on z)

Taking expectation wrt. z
(using encoder network) will
come in handy later

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 73 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 100/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
logpo(2")) = B, g, (s/a00) [logz)u(z(i))] (po () Does not depend on z)

o) | 2)pe(2)

=E, [log - ] (Bayes’ Rule)
po(z | 2@)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 74 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 101/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
logpo(2) = B, g, (21000 [logpu(m("'))] (po () Does not depend on z)

(i) .
_E. [log Po(z™ | 2)po(2)
po(z | z@)
—E. [lo po(a® | Z)Z?r;(z) 4s( | I(f))
po(z | 2@D)  gy(z | 2®)

] (Bayes’ Rule)

] (Multiply by constant)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 75 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017

102/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
logpo(2) = B, g, (21000 [logpu(m("'))] (po () Does not depend on z)

(i) .
_E. [log Po(z™ | 2)po(2)
po(z | z@)
po(2® | 2)po(2) ¢s(z | D)
po(z | 2@D)  gy(z | 2®)

] (Bayes’ Rule)

=E, [log ] (Multiply by constant)

; (@) (o | (D
=E, [logpg(w“) | z)] -E, [log M] +E, [log go(2 | )

- Logarithms
e )| (Lot

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 76 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017

103/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
logpo(2) =B, g, (+/a00) [logpu(m("'))] (po () Does not depend on z)

(2) .
=E, [lo M] (Bayes’ Rule)
po(z | 2@)
_E. Po w( D | 2)po(2) go(z | 2P)
(z]2®) g4z ] 2®)
; @) 5(z | )
—E. [logps(a? | )| —E. [hn %oz |27) ] E. [1 T AL
[ sl |2) e MAES)

E. [logps(2® | 2)| — Dicr(go(z | 29) [|po(2)) + Dicr(as(z | 22) || po(z | 2))

] (Multiply by constant)

] (Logarithms)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 77 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017

104 /125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
logpo(2) =B, g, (+/a00) [logpu(m("'))] (po () Does not depend on z)
po(z | )

Po (2 | 2)po(2) go(z | D)
po(z | 2@D)  gy(z | 2®)

] (Bayes’ Rule)

=E, ] (Multiply by constant)

o T AT y%(mm)] [,_q¢<z|x<“>
- F [“"”’”“ 9] - B [l% pe@) | B |8 a1 2®)
E. |

E. [logps(2® | 2)| — Dicr(go(z | 29) [|po(2)) + Dicr(as(z | 22) || po(z | 27))

~_

The expectation wrt. z (using
encoder network) let us write
nice KL terms

] (Logarithms)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 78 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017

105/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders
Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
logpo(2) =B, g, (+/a00) [logpu(m("'))] (po () Does not depend on z)

(2) .
_E. [10 Po(z™ | 2)po(2)
po(z | z@)
_E. Po (2 | 2)po(2) go(z | D)
po(z | 2@D)  gy(z | 2®)

; (@) (o | (D)
=E, [logp()(w(z) | z)] -E, [log M] +E, [log M] (Logarithms)

] (Bayes’ Rule)

] (Multiply by constant)

po(z) po(z | z®)
E. |logpy(z? | 2) ] — Drc(as(z | 29 [|po(2)) + Dicrgs(z | 2@) || po(z | 2®))

4 4

Decoder network gives p(x|z), can This KL term (between Py(zlX) intractable (saw
compute estimate of this term through ~ Gaussians for encoder and z ~ earlier), can’t compute this KL
sampling. (Sampling differentiable prior) has nice closed-form term :( But we know KL
through reparam. trick. see paper. solution! divergence always >= 0.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 79 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017

106 /125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
logpo(z")) =B, g, (+/a00) [logpu(m("'))] (po () Does not depend on z)
po(z | )

Po (2 | 2)po(2) go(z | V)
po(z | 2@D)  gy(z | 2®)

] (Bayes’ Rule)

=E, ] (Multiply by constant)

5 (i) (i)
=E, [logpg(w(z) | z)] -E, [log M] +E, [l M] (Logarithms)
po(2) (z]2®)
=|E: []ng() @ 2 ] Dicrgo(z | 29) || po(2))|+ Drcrlgo(z | 29) [ po(z | 2))

L(a.6.0) =
Tractable lower bound which we can take
gradient of and optimize! (py(x|z) differentiable,
KL term differentiable)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 80 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017

107 /125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
logpo(z) = B, g, (21000 [logpg(ac("’))] (po () Does not depend on z)

po(e® | 2)pe(2)
po(z | z)

[ po(z® | 2)po(2) gs(z | D)
po(z | 2@D)  gy(z | 2®)

=E, [l ] (Bayes’ Rule)

=E, ] (Multiply by constant)

) (2 | 2@
=E. [logpe(z | z)] —E. [10, zlgx] E. [1 N ACIERY)

Po(2) po(z | ™)

[ ] (Logarithms)
[IOgPO @ 2) ] Drcrgo(z | 29) || po(2)) + Drcrgo(z | 29) || po(z | 2))

L(z9,6,0) o 240

v . 0, ¢* = ar L(z®,0,¢
logpp(x®) > L(z?, 0, ) ¢ algllol%v'x; (=.0,4)
ariational lower bound Training: Maximize lower bound

Serena Yeung Lecture 13- 81 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017

108/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
logpo(z) = B, g, (21000 [logpo(z("’))] (po () Does not depend on z)

(i) 2
_E, [log po(z' | 2);?9(4)
po(z | z@)
po(z® | 2)po(2) (= | I(l))]
og ) -
po(z | 2®)  gy(z | 2®)

Make approximate
posterior distribution
y by constant) close to prior

] (Bayes’ Rule)
Reconstruct
the input data=E

go(z | 20)
+E. [log ————=
] [ ® bz | 2®)

=E, [108;00(1(“ | Z)] — Drc(as(z | 29) [|pa(2)) + Dicrgs(z | @) [ po(z | 2®))

] (Logarithms)

L(z9,6,0) o 240

v . 0, ¢* = ar L(z®,0,¢
logpp(x®) > L(z?, 0, ) ¢ algllol%v'x; (=.0,4)
ariational lower bound Training: Maximize lower bound

Serena Yeung Lecture 13- 82 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 109/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a | 2)] — Dici(ao(= | =) | po(2))

L(zD,0,6)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 83 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 110/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a | 2)] — Dici(ao(= | =) | po(2))

L(zD,0,6)

Let's look at computing the bound
(forward pass) for a given minibatch of
input data

Input Data | T ‘

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 84 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 111/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a | 2)] — Dici(ao(= | =) | po(2))

L(zD,0,6)

Moz | [ X |

Encoder network
q4(z|)
Input Data | x ‘

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 85 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 112/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a | 2)] — Dici(ao(= | =) | po(2))

L(zD,0,6)

Make approximate
posterior distribution

close to prior | M|z ‘ | Ez|z ‘
Encoder network

q4(z|)
Input Data | T ‘

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 86 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 113/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a | 2)] — Dici(ao(= | =) | po(2))

L(zD,0,6)

z

Sample z from z|z ~ N (k12,2 1z)
Make approximate

posterior distribution

close to prior | M|z ‘ | Ez|z ‘
Encoder network

q4(z|)
Input Data | T ‘

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 87 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 114/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

B. [logpo(a® | 9)] — Dici(ao(z | 2) || pa(2)) | Pz|z | | R

Decoder network
ol %]

L(zD,0,6)

Make approximate
posterior distribution
close to prior

Encoder network

q4(z|)
Input Data | T ‘

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 88 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 115/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Maximize | 2 ‘
likelihood of ~ Sample xjz from  Z|z ~ N (pgz; Xgz)
original input
being
E. [logpe(z® | z)] — Dici(as(z | 27) ||po(2))  reconstructed | [=p | |

L(zD,0,6)

T maximizing the
likelihoog'Tower bound

z|z ‘

Decoder network

po(zl2)

Z
Sample z from z|z ~ N (k12,2 1z)

Make approximate

posterior distribution

close to prior

/
Moz | [ X |

Encoder network

q4(z|)
Input Data | T ‘

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 89 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 116 /125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders

Maximize | 2 ‘
likelihood of ~ Sample xjz from  Z|z ~ N (pgz; Xgz)
original input
being
E. [logpe(z® | z)] — Dici(as(z | 27) ||po(2))  reconstructed | [=p | |

T maximizing the
likelihoog'Tower bound

z|z ‘

Decoder network

po(zl2)

L(zD,0,6)

z

Sample z from z|z ~ N (k12,2 1z)
Make approximate

posterior distribution

close to prior | Bzl ‘ | Ez|z ‘
Encoder network
For every minibatch of input
data: compute this forward q¢(z|.7,‘)
pass, and then backprop! Input Data T ‘

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 90 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 117 /125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders: Generating Data!

Use decoder network. Now sample z from prior!

| z |
Sample x|z from x|z ~ N(Hz|z, E:t|z)

L Hele [ T
Decoder network

po(z2)

Sample z from z ~ N(0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 91 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models

Feb 2017

118/125



o
5]
°
5]
13)
=
@
=}
=]
T
©
j =
i<l
s
IS
>

Autoencoders

Variational autoencoders

Datal!

ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!

QVANANNANNNNNNN S SNNNSNS
QAAIVNNMHBAELELLLLu NSNS~
VAV Hkbhbboveew~~
QO bLIVVB e~~~
QOODHHNNBHHEBIVVV S~ —
QO0DNHININNMHABIVIVIW = ——
QO0OMINMMMEONIIII 9w = ——
COVONMMMMM®DDIID = — — —
QODONMNMMNMM DD DD e = = —
QOOMWMMMMNMNM®®DDD D e e e = —
QOOMMMM M0 0®®®mwmm — —
QOM@MMM M 0000000 0o oo —
QA4 o404 0% 07070000 00 bt & o on o e
GANNNE POt~
JaddddfFrrrrrrrssoon~
Jaaddddocrrrrrrrssaann~
Yaaddddorrrrrrrrrranns
Vddddagorrrrrrrrrrraan
AddITTTTrrrrrIrI™rRNN
ATFTTTTCCC oo oSN RIRIRNN

Ea;lz

&3

4
Sample z from z ~ N(0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Hz|z

Sample x|z from x|z ~ N(Hz|z, E:t|z)

Decoder network
po(z|2)

92 May 18, 2017

Lecture 13 -

()
C
>
)

>
®
=
]
o
(o)

(0]

o3
C
o
(2]
=

4=
o)

S

£

=
(2]
>
=

o3

]

k)

w

©

w

119/125

b 2017

&
()
°
o)
=
%)
=
&
@
c
o)
O]

S. Cheng (OU-Tulsa)



120/125

QVANANNANNNNNNN S SNNNSNS
QAAIVNNMHBAELELLLLu NSNS~
VAV Hkbhbboveew~~
QUVUVVN kb V e~~~
QOO NKE®EBIVVV -~

b 2017

N~
o
N
o)
—
>
@©
=

N
o QO0DNHNINMNMHMABIVIVS = ——
J QO0OOHNMNMMANBAIII S = ——
-— N Qooonmmmmmaesveww——— | o
© 5 0000NMMMMOmmeeeww—e—-—— N
- = 0000MMNMNO®O®O® e e - ——— [ >
© T 00000NNMnnneneneen-——— |G I
O 00NMMMMNrErBeeemm——— | o
D T Ol 80807000000 00 tn o oo o
T 9addNdErrrrmrr e~~~
» g £ Ydddddfrrrrrrrsseaa~~ U
I} © YaaddddorrrrrrrTsaan~ o
3 C e Yaddddorrrrrrrrraanns -~
< -— m SAdddTTTTrrrrrITTRIRNN o
S a AddITTTTrrrrrIrI™rRNN —
2] ITFTTTTCCCCCCCOIR™RNNN =]
3 — 3
+—>
© Q N Q
5 C > —
2 ]
k] O] g 3
< <]
g ) =
. E - S o 2
(2] [7)] ‘= X « m ©
—
T w S P LY O 2
S o O ¢ = N > 5
. S & B <o ¢
D) ° S R > . e
£ O Q ; By 5
> N 3 = [0)
< 'S} ® = T =
o ot N N N ©
o c e -
C e @© S 2 — Z N Mm o3
() o 32 I i <
2 = E S
- 8 >
(@] e} Ny ©
+— ) z € Nl C
> << . s o 3 IS
a = w N [N —
—_— o N — IS T
— © 2 x 8 By < 8
© c ¢ CEN @ 2 2
c a -« bl S S
= O 5 3 5 4 > s
Q = 3 @ 2 3 [ 2
,— (0] o L mb < I}
®© = 3 G s 5
o S N .nuu = S % %
S ©
© 7] 8 & £ [
V ) D I8 ©
> o E




Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders: Generating Data!

Diagonal prior on z

=> independent Degree of smile

latent variables

Different \
dimensions of z Vary z,
encode

interpretable factors

of variation

Head pose

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 94 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 121/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders: Generating Data!

Diagonal prior on z Eﬁf_&::,&,&

=> independent Degree of smile Lﬁﬁ

latent variables

| N
Different ?#
dimensions of z Vary z, "
encode r#

interpretable factors EJ.'
of variation ?‘e’_g’
A\ e

Also good feature representation that

can be computed using q¢(z|x)! igﬂgﬁg SRR

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 95 May 18, 2017

Head pose

S. Cheng (OU-Tulsa) Generative Models Feb 2017 122/125



Autoencoders Variational autoencoders

Variational autoencoders

Variational Autoencoders: Generating Data!

Labeled Faces in the Wild
32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 96 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 123/125



Autoencoders Variational autoencoders

Summary of variational autoencoders

@ Probabilistic spin to traditional autoencoders to allow data
generation. Use variational lower bound to workaround intractable
density estimation

Pros e Principled approach to generative models
e Allows inference of q(z|x) that can be used for
feature representation
Cons e Maximizes lower bound rather than exact cost
function. Less direct than say PixelRNN/PixelCNN
e Samples generated are lower quality compared to
the state-of-the-art (GANSs)

@ Follow-up research:

o More flexible approximations, e.g., richer model in approximating
the posterior (typically just use diagonal Gaussian in the basic
model)

@ Incorporating structure in latent variables

o Disentangled variational autoencoder

S. Cheng (OU-Tulsa) Generative Models Feb 2017 124 /125


https://arxiv.org/abs/1709.05047

Conclusions
Conclusions

@ Conventional autoencoders are important tools for dimension
reduction and data representation in general

S. Cheng (OU-Tulsa) Generative Models Feb 2017 125/125



Conclusions
Conclusions

@ Conventional autoencoders are important tools for dimension
reduction and data representation in general

@ Generative models are some very exciting hot topics in deep
learning

o Especially useful for datasets with few or no labels
e Many other possible applications to be discovered

S. Cheng (OU-Tulsa) Generative Models Feb 2017 125/125



Conclusions
Conclusions

@ Conventional autoencoders are important tools for dimension
reduction and data representation in general

@ Generative models are some very exciting hot topics in deep
learning

o Especially useful for datasets with few or no labels
e Many other possible applications to be discovered

@ We discuss two state-of-the-art generative models

e Variational autoencoders: autoencoders + variational inference
o Generative adversarial networks (GANs): more recent and gaining
lots of interests

S. Cheng (OU-Tulsa) Generative Models Feb 2017 125/125



	Supervised vs unsupervised learning
	Generative models
	GANs
	Design tricks
	DCGAN
	More applications

	Dimension reduction
	PCA

	Autoencoders
	Deep autoencoders
	Stacked autoencoders
	Variational autoencoders

	Conclusions

