
Neural Networks

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2019

S. Cheng (OU-ECE) Neural Networks Jan 2019 1 / 221

Table of Contents

1 Review

2 SVM

3 Introduction to neural networks

4 Back-propagation

5 Activation functions

6 Initialization

7 Regularization

8 Optimization

9 Conclusions

S. Cheng (OU-ECE) Neural Networks Jan 2019 2 / 221

Logistics

Need your presentation preference by this Thursday. Please give
me two package names with order of preference. The final decision
will be computed by minimizing the following cost function :)∑

student student cost +
∑

package package cost

student cost =

{
0, first priority
3, second priority

package cost = α · 2(num presentations covered)

Most popular package (in terms of first priority pick) will be
presented first. If there is a tie, I will break it with popularity
based all choices regardless of priority. If there is a tie, I will break
it by random
Students presenting the same packages will be ordered randomly

S. Cheng (OU-ECE) Neural Networks Jan 2019 3 / 221

Logistics

Need your presentation preference by this Thursday. Please give
me two package names with order of preference. The final decision
will be computed by minimizing the following cost function :)∑

student student cost +
∑

package package cost

student cost =

{
0, first priority
3, second priority

package cost = α · 2(num presentations covered)

Most popular package (in terms of first priority pick) will be
presented first. If there is a tie, I will break it with popularity
based all choices regardless of priority. If there is a tie, I will break
it by random

Students presenting the same packages will be ordered randomly

S. Cheng (OU-ECE) Neural Networks Jan 2019 3 / 221

Logistics

Need your presentation preference by this Thursday. Please give
me two package names with order of preference. The final decision
will be computed by minimizing the following cost function :)∑

student student cost +
∑

package package cost

student cost =

{
0, first priority
3, second priority

package cost = α · 2(num presentations covered)

Most popular package (in terms of first priority pick) will be
presented first. If there is a tie, I will break it with popularity
based all choices regardless of priority. If there is a tie, I will break
it by random
Students presenting the same packages will be ordered randomly

S. Cheng (OU-ECE) Neural Networks Jan 2019 3 / 221

Logistics

Package choice due this Thursday

S. Cheng (OU-ECE) Neural Networks Jan 2019 4 / 221

Review

Review

In the last couple classes, we discussed

Basic concepts of regression and classification
Examples of regularization such as ridge (l2) regression and lasso
(l1)
Linear classifiers including logistic regression and softmax classifier

We introduced loss functions and the concept of training a classifier
through minimizing the loss function
We described stochastic gradient descent and momentum trick for
classification

S. Cheng (OU-ECE) Neural Networks Jan 2019 5 / 221

Review

Review

In the last couple classes, we discussed

Basic concepts of regression and classification
Examples of regularization such as ridge (l2) regression and lasso
(l1)
Linear classifiers including logistic regression and softmax classifier

We introduced loss functions and the concept of training a classifier
through minimizing the loss function

We described stochastic gradient descent and momentum trick for
classification

S. Cheng (OU-ECE) Neural Networks Jan 2019 5 / 221

Review

Review

In the last couple classes, we discussed

Basic concepts of regression and classification
Examples of regularization such as ridge (l2) regression and lasso
(l1)
Linear classifiers including logistic regression and softmax classifier

We introduced loss functions and the concept of training a classifier
through minimizing the loss function
We described stochastic gradient descent and momentum trick for
classification

S. Cheng (OU-ECE) Neural Networks Jan 2019 5 / 221

SVM

SVM

Denote ŵ = w
‖w‖ , ŵ · x1

(ŵ · x−1) is the distance of the
boundary line of x1 (x−1)
from the origin

Thus, the distance between
the two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all xi

max
2

‖w‖
s.t. yi(w · xi − b) ≥ 1

Equivalently,

min‖w‖ s.t. yi(w · xi − b) ≥ 1

S. Cheng (OU-ECE) Neural Networks Jan 2019 6 / 221

SVM

SVM

Denote ŵ = w
‖w‖ , ŵ · x1

(ŵ · x−1) is the distance of the
boundary line of x1 (x−1)
from the origin
Thus, the distance between
the two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all xi

max
2

‖w‖
s.t. yi(w · xi − b) ≥ 1

Equivalently,

min‖w‖ s.t. yi(w · xi − b) ≥ 1

S. Cheng (OU-ECE) Neural Networks Jan 2019 6 / 221

SVM

SVM

Denote ŵ = w
‖w‖ , ŵ · x1

(ŵ · x−1) is the distance of the
boundary line of x1 (x−1)
from the origin
Thus, the distance between
the two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all xi

max
2

‖w‖
s.t. yi(w · xi − b) ≥ 1

Equivalently,

min‖w‖ s.t. yi(w · xi − b) ≥ 1

S. Cheng (OU-ECE) Neural Networks Jan 2019 6 / 221

SVM

SVM

Denote ŵ = w
‖w‖ , ŵ · x1

(ŵ · x−1) is the distance of the
boundary line of x1 (x−1)
from the origin
Thus, the distance between
the two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all xi

max
2

‖w‖
s.t. yi(w · xi − b) ≥ 1

Equivalently,

min‖w‖ s.t. yi(w · xi − b) ≥ 1

S. Cheng (OU-ECE) Neural Networks Jan 2019 6 / 221

SVM

Soft-margin SVM and hinge loss

Hard-margin SVM

min‖w‖ s.t. yi(w · xi − b)− 1 ≥ 0

Soft-margin SVM (allow constrain to be
violate)

Define “hinge” loss function
h(z) = max(0, z)
Want to minimize hinge loss∑

i

h(1− yi(w · xi − b))

Soft-margin SVM

minλ‖w‖2 +
∑
i

h(1− yi(w · xi − b))

S. Cheng (OU-ECE) Neural Networks Jan 2019 7 / 221

SVM

Multi-class SVM

We can easily extend soft-margin SVM to multi-class case. Let

sl(x) = wl
T

[
1
x

]
be the score for class l.

We can define the hinge

loss for sample x as∑
l 6=j

h(sl(x)− sj(x) + ∆) =
∑
l 6=j

max(0, sl(x)− sj(x) + ∆),

where j is the true label of x and ∆ contributes a margin ensuring
that the true label score has to be at least ∆ more than the rest to
be penalty free
Multi-class SVM:

minλ‖w‖2 +
∑
i

∑
l 6=j(xi)

h(sl(xi)− sj(xi)(xi) + ∆)

S. Cheng (OU-ECE) Neural Networks Jan 2019 8 / 221

SVM

Multi-class SVM

We can easily extend soft-margin SVM to multi-class case. Let

sl(x) = wl
T

[
1
x

]
be the score for class l. We can define the hinge

loss for sample x as∑
l 6=j

h(sl(x)− sj(x) + ∆) =
∑
l 6=j

max(0, sl(x)− sj(x) + ∆),

where j is the true label of x and ∆ contributes a margin ensuring
that the true label score has to be at least ∆ more than the rest to
be penalty free

Multi-class SVM:

minλ‖w‖2 +
∑
i

∑
l 6=j(xi)

h(sl(xi)− sj(xi)(xi) + ∆)

S. Cheng (OU-ECE) Neural Networks Jan 2019 8 / 221

SVM

Multi-class SVM

We can easily extend soft-margin SVM to multi-class case. Let

sl(x) = wl
T

[
1
x

]
be the score for class l. We can define the hinge

loss for sample x as∑
l 6=j

h(sl(x)− sj(x) + ∆) =
∑
l 6=j

max(0, sl(x)− sj(x) + ∆),

where j is the true label of x and ∆ contributes a margin ensuring
that the true label score has to be at least ∆ more than the rest to
be penalty free
Multi-class SVM:

minλ‖w‖2 +
∑
i

∑
l 6=j(xi)

h(sl(xi)− sj(xi)(xi) + ∆)

S. Cheng (OU-ECE) Neural Networks Jan 2019 8 / 221

Introduction to neural networks Perceptron

Perceptron

Perceptron is an artificial neuron with
step function as activation function

It is impossible to extend perceptron
to multilayer. Multilayer perceptron
(MLP) is a misnomer. Step activation
function is never used multilayer
neural networks (not trainable)
According to Hinton, perceptrons are
still used in systems with large
number (millions) of features. Other
than that, it has relatively limited use
since most problems are not linearly
separable

S. Cheng (OU-ECE) Neural Networks Jan 2019 9 / 221

https://www.youtube.com/watch?v=0OP1vyTiGsM

Introduction to neural networks Perceptron

Perceptron

Perceptron is an artificial neuron with
step function as activation function
It is impossible to extend perceptron
to multilayer. Multilayer perceptron
(MLP) is a misnomer. Step activation
function is never used multilayer
neural networks (not trainable)

According to Hinton, perceptrons are
still used in systems with large
number (millions) of features. Other
than that, it has relatively limited use
since most problems are not linearly
separable

S. Cheng (OU-ECE) Neural Networks Jan 2019 9 / 221

https://www.youtube.com/watch?v=0OP1vyTiGsM

Introduction to neural networks Perceptron

Perceptron

Perceptron is an artificial neuron with
step function as activation function
It is impossible to extend perceptron
to multilayer. Multilayer perceptron
(MLP) is a misnomer. Step activation
function is never used multilayer
neural networks (not trainable)
According to Hinton, perceptrons are
still used in systems with large
number (millions) of features. Other
than that, it has relatively limited use
since most problems are not linearly
separable

S. Cheng (OU-ECE) Neural Networks Jan 2019 9 / 221

https://www.youtube.com/watch?v=0OP1vyTiGsM

Introduction to neural networks Perceptron

Perceptron

In most cases, perceptron would be
useful if only one manages to
handcode inputs into separable
features

That was the main area of research in
many machine learning
applications—finding efficient ways to
generate good features
One attractive characteristic of deep
learning (neural networks) is that we
not only can train the classifier but
also can learn the appropriate
features automatically

S. Cheng (OU-ECE) Neural Networks Jan 2019 10 / 221

Introduction to neural networks Perceptron

Perceptron

In most cases, perceptron would be
useful if only one manages to
handcode inputs into separable
features
That was the main area of research in
many machine learning
applications—finding efficient ways to
generate good features

One attractive characteristic of deep
learning (neural networks) is that we
not only can train the classifier but
also can learn the appropriate
features automatically

S. Cheng (OU-ECE) Neural Networks Jan 2019 10 / 221

Introduction to neural networks Perceptron

Perceptron

In most cases, perceptron would be
useful if only one manages to
handcode inputs into separable
features
That was the main area of research in
many machine learning
applications—finding efficient ways to
generate good features
One attractive characteristic of deep
learning (neural networks) is that we
not only can train the classifier but
also can learn the appropriate
features automatically

S. Cheng (OU-ECE) Neural Networks Jan 2019 10 / 221

Introduction to neural networks Network architectures

Nomenclature of basic network architectures

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201677

Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

S. Cheng (OU-ECE) Neural Networks Jan 2019 11 / 221

Introduction to neural networks Network architectures

Caveat: don’t go too far for the brain analogy

Biological neurons:
Many different types
Dendrite can perform complex
non-linear operations
Synapses are not a single weight but
a complex non-linear dynamical
system
Rate code model may not be
adequate

Also see London 2005 (Slide credit:
CS231n)

S. Cheng (OU-ECE) Neural Networks Jan 2019 12 / 221

http://www.indiana.edu/~p1013447/dictionary/neucode.htm
http://www.cogsci.ucsd.edu/~sereno/201/readings/02.08-DendriteComp.pdf

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters

For neural networks, it is thus necessary to find ∂L(w;x)
∂w for a

weight in each layer
Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain rule
∂L
∂x = ∂L

∂y
∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph
Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-ECE) Neural Networks Jan 2019 13 / 221

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters
For neural networks, it is thus necessary to find ∂L(w;x)

∂w for a
weight in each layer

Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain rule
∂L
∂x = ∂L

∂y
∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph
Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-ECE) Neural Networks Jan 2019 13 / 221

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters
For neural networks, it is thus necessary to find ∂L(w;x)

∂w for a
weight in each layer
Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain rule
∂L
∂x = ∂L

∂y
∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph
Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-ECE) Neural Networks Jan 2019 13 / 221

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters
For neural networks, it is thus necessary to find ∂L(w;x)

∂w for a
weight in each layer
Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain rule
∂L
∂x = ∂L

∂y
∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph

Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-ECE) Neural Networks Jan 2019 13 / 221

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters
For neural networks, it is thus necessary to find ∂L(w;x)

∂w for a
weight in each layer
Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain rule
∂L
∂x = ∂L

∂y
∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph
Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-ECE) Neural Networks Jan 2019 13 / 221

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system
often boils down to minimizing of loss function w.r.t. some
parameters
For neural networks, it is thus necessary to find ∂L(w;x)

∂w for a
weight in each layer
Back-propagation (BP) is an efficient way to find such derivation.
Actually it is in fact just another way of spelling out the chain rule
∂L
∂x = ∂L

∂y
∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph
Computational graph can be interpreted as generalization of a
neural networks
Neuron no longer will be restricted to summation and activation
function but can be any computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-ECE) Neural Networks Jan 2019 13 / 221

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201610

e.g. x = -2, y = 5, z = -4

S. Cheng (OU-ECE) Neural Networks Jan 2019 14 / 221

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201611

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 15 / 221

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201612

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 16 / 221

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201613

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 17 / 221

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201614

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 18 / 221

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201615

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 19 / 221

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201616

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 20 / 221

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201617

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 21 / 221

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201618

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 22 / 221

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201619

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

S. Cheng (OU-ECE) Neural Networks Jan 2019 23 / 221

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201620

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 24 / 221

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201621

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

S. Cheng (OU-ECE) Neural Networks Jan 2019 25 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201628

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 26 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201629

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 27 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201630

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 28 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201631

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 29 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201632

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 30 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201633

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 31 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201634

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 32 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201635

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 33 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201636

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 34 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201637

Another example:

(-1) * (-0.20) = 0.20

S. Cheng (OU-ECE) Neural Networks Jan 2019 35 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201638

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 36 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201639

Another example:

[local gradient] x [its gradient]
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2 (both inputs!)

S. Cheng (OU-ECE) Neural Networks Jan 2019 37 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201640

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 38 / 221

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201641

Another example:

[local gradient] x [its gradient]
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2

S. Cheng (OU-ECE) Neural Networks Jan 2019 39 / 221

Back-propagation

Breaking down at different granularities

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201642

sigmoid function

sigmoid gate

S. Cheng (OU-ECE) Neural Networks Jan 2019 40 / 221

Back-propagation

Breaking down at different granularities

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201643

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2

S. Cheng (OU-ECE) Neural Networks Jan 2019 41 / 221

Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201746

add gate: gradient distributor

Patterns in backward flow

S. Cheng (OU-ECE) Neural Networks Jan 2019 42 / 221

Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201747

add gate: gradient distributor

Patterns in backward flow

Q: What is a max gate?

S. Cheng (OU-ECE) Neural Networks Jan 2019 43 / 221

Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201748

add gate: gradient distributor

Patterns in backward flow

max gate: gradient router

S. Cheng (OU-ECE) Neural Networks Jan 2019 44 / 221

Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201749

add gate: gradient distributor

Patterns in backward flow

max gate: gradient router

Q: What is a mul gate?

S. Cheng (OU-ECE) Neural Networks Jan 2019 45 / 221

Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201750

add gate: gradient distributor

Patterns in backward flow

max gate: gradient router

mul gate: gradient switcher

S. Cheng (OU-ECE) Neural Networks Jan 2019 46 / 221

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201622

f

activations

S. Cheng (OU-ECE) Neural Networks Jan 2019 47 / 221

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201623

f

activations

“local gradient”

S. Cheng (OU-ECE) Neural Networks Jan 2019 48 / 221

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201624

f

activations

“local gradient”

gradients

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 221

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201625

f

activations

gradients

“local gradient”

S. Cheng (OU-ECE) Neural Networks Jan 2019 50 / 221

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201626

f

activations

gradients

“local gradient”

S. Cheng (OU-ECE) Neural Networks Jan 2019 51 / 221

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201627

f

activations

gradients

“local gradient”

S. Cheng (OU-ECE) Neural Networks Jan 2019 52 / 221

Back-propagation

More examples: RELU

Consider a “half-linear” function with negative side chopped off.
That is,

f(x) =

{
x x ≥ 0

0 otherwise

This is known to be the rectified linear unit (RELU)
How should the gradient be propagated back?

x y

S. Cheng (OU-ECE) Neural Networks Jan 2019 53 / 221

Back-propagation

Merging gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 2017

y

51

+
x

y

1

2

∂L(y1(x), y2(x))

∂x
=

∂L

∂y1

∂y1
∂x1

+
∂L

∂y2

∂y2
∂x1

S. Cheng (OU-ECE) Neural Networks Jan 2019 54 / 221

Back-propagation

Merging gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 2017

y

51

+
x

y

1

2

∂L(y1(x), y2(x))

∂x
=

∂L

∂y1

∂y1
∂x1

+
∂L

∂y2

∂y2
∂x1

S. Cheng (OU-ECE) Neural Networks Jan 2019 54 / 221

Back-propagation

Handling vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201752

f

“local gradient”

This is now the
Jacobian matrix
(derivative of each
element of z w.r.t. each
element of x)

(x,y,z are
now vectors)

gradients

Gradients for vectorized code

S. Cheng (OU-ECE) Neural Networks Jan 2019 55 / 221

Back-propagation

Handling vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201753

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Vectorized operations

S. Cheng (OU-ECE) Neural Networks Jan 2019 56 / 221

Back-propagation

Handling vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201754

Jacobian matrix

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Vectorized operations

Q: what is the
size of the
Jacobian matrix?

S. Cheng (OU-ECE) Neural Networks Jan 2019 57 / 221

Back-propagation

Handling vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201755

Jacobian matrix

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Vectorized operations

Q: what is the
size of the
Jacobian matrix?
[4096 x 4096!]

S. Cheng (OU-ECE) Neural Networks Jan 2019 58 / 221

Back-propagation

Handling vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 2017

i.e. Jacobian would technically be a
[409,600 x 409,600] matrix :\

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Vectorized operations

Q: what is the
size of the
Jacobian matrix?
[4096 x 4096!]

in practice we process an
entire minibatch (e.g. 100)
of examples at one time:

S. Cheng (OU-ECE) Neural Networks Jan 2019 59 / 221

Back-propagation

Handling vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 2017

Q: what is the
size of the
Jacobian matrix?
[4096 x 4096!]

Q2: what does it
look like?

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Vectorized operations

Jacobian matrix

S. Cheng (OU-ECE) Neural Networks Jan 2019 60 / 221

Back-propagation

Handling vector variables

A vectorized example: f(x,W) = ‖Wx‖2 =
∑n

i=1(Wx)2i

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

f(q) = ‖q‖2 = q21 + · · · + q2n

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 221

Back-propagation

Handling vector variables
A vectorized example: f(x∈

Rn

, W∈

Rn×n

) = ‖Wx‖2 =
∑n

i=1(Wx)2i

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

f(q) = ‖q‖2 = q21 + · · · + q2n

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 221

Back-propagation

Handling vector variables
A vectorized example: f(x∈

Rn

, W∈

Rn×n

) = ‖Wx‖2 =
∑n

i=1(Wx)2i

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

f(q) = ‖q‖2 = q21 + · · · + q2n

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 221

Back-propagation

Handling vector variables
A vectorized example: f(x∈

Rn

, W∈

Rn×n

) = ‖Wx‖2 =
∑n

i=1(Wx)2i

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)

(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

f(q) = ‖q‖2 = q21 + · · · + q2n

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 221

Back-propagation

Handling vector variables
A vectorized example: f(x∈

Rn

, W∈

Rn×n

) = ‖Wx‖2 =
∑n

i=1(Wx)2i

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)

(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

f(q) = ‖q‖2 = q21 + · · · + q2n

∂qk
∂Wi,j

= δi,kxj

∂qk
∂xi

= Wk,i

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 221

Back-propagation

Handling vector variables
A vectorized example: f(x∈

Rn

, W∈

Rn×n

) = ‖Wx‖2 =
∑n

i=1(Wx)2i

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

f(q) = ‖q‖2 = q21 + · · · + q2n

∂qk
∂Wi,j

= δi,kxj

∂qk
∂xi

= Wk,i

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 221

Back-propagation

Handling vector variables
A vectorized example: f(x∈

Rn

, W∈

Rn×n

) = ‖Wx‖2 =
∑n

i=1(Wx)2i

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

f(q) = ‖q‖2 = q21 + · · · + q2n

∂f

∂qi
= 2qi

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 221

Back-propagation

Handling vector variables
A vectorized example: f(x∈

Rn

, W∈

Rn×n

) = ‖Wx‖2 =
∑n

i=1(Wx)2i

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)

1.00
(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

f(q) = ‖q‖2 = q21 + · · · + q2n

∂f

∂qi
= 2qi

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 221

Back-propagation

Handling vector variables
A vectorized example: f(x∈

Rn

, W∈

Rn×n

) = ‖Wx‖2 =
∑n

i=1(Wx)2i

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

f(q) = ‖q‖2 = q21 + · · · + q2n

∂f

∂qi
= 1.00 · ∂f

∂qi

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 221

Back-propagation

Handling vector variables
A vectorized example: f(x∈

Rn

, W∈

Rn×n

) = ‖Wx‖2 =
∑n

i=1(Wx)2i

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)

(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

f(q) = ‖q‖2 = q21 + · · · + q2n

∂f

∂qi
= 1.00 · ∂f

∂qi

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 221

Back-propagation

Handling vector variables
A vectorized example: f(x∈

Rn

, W∈

Rn×n

) = ‖Wx‖2 =
∑n

i=1(Wx)2i

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

f(q) = ‖q‖2 = q21 + · · · + q2n

∂f

∂Wi,j
=

∂f

∂q1

∂q1
∂Wi,j

+
∂f

∂q2

∂q2
∂Wi,j

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 221

Back-propagation

Handling vector variables
A vectorized example: f(x∈

Rn

, W∈

Rn×n

) = ‖Wx‖2 =
∑n

i=1(Wx)2i

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

f(q) = ‖q‖2 = q21 + · · · + q2n

∂f

∂xi
=

∂f

∂q1

∂q1
∂xi

+
∂f

∂q2

∂q2
∂xi

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 221

Back-propagation

More examples: IoU (reference)

Interception over union is commonly used to quantify
segmentation quality for image segmentation
For pixel v, Xv is the estimated mask and Yv ∈ {0, 1} is the
ground truth

IoU(X) = I(X)
U(X) , where I(X) ≈

∑
v XvYv and

U(X) ≈
∑

v(Xv + Yv −XvYv)

∂IoU(X)
∂Xv

=
U(X)

∂I(X)
∂Xv

−I(X)
∂U(X)
∂Xv

U2(X)
= U(X)Yv−I(X)(1−Yv)

U(X)2

⇒ ∂IoU(X)
∂Xv

=

{
1

U(X) Yv = 1

− I(X)
U(X)2

Yv = 0

S. Cheng (OU-ECE) Neural Networks Jan 2019 62 / 221

https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf

Back-propagation

More examples: IoU (reference)

Interception over union is commonly used to quantify
segmentation quality for image segmentation
For pixel v, Xv is the estimated mask and Yv ∈ {0, 1} is the
ground truth
IoU(X) = I(X)

U(X) , where I(X) ≈
∑

v XvYv and
U(X) ≈

∑
v(Xv + Yv −XvYv)

∂IoU(X)
∂Xv

=
U(X)

∂I(X)
∂Xv

−I(X)
∂U(X)
∂Xv

U2(X)
= U(X)Yv−I(X)(1−Yv)

U(X)2

⇒ ∂IoU(X)
∂Xv

=

{
1

U(X) Yv = 1

− I(X)
U(X)2

Yv = 0

S. Cheng (OU-ECE) Neural Networks Jan 2019 62 / 221

https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf

Back-propagation

More examples: IoU (reference)

Interception over union is commonly used to quantify
segmentation quality for image segmentation
For pixel v, Xv is the estimated mask and Yv ∈ {0, 1} is the
ground truth
IoU(X) = I(X)

U(X) , where I(X) ≈
∑

v XvYv and
U(X) ≈

∑
v(Xv + Yv −XvYv)

∂IoU(X)
∂Xv

=
U(X)

∂I(X)
∂Xv

−I(X)
∂U(X)
∂Xv

U2(X)

= U(X)Yv−I(X)(1−Yv)
U(X)2

⇒ ∂IoU(X)
∂Xv

=

{
1

U(X) Yv = 1

− I(X)
U(X)2

Yv = 0

S. Cheng (OU-ECE) Neural Networks Jan 2019 62 / 221

https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf

Back-propagation

More examples: IoU (reference)

Interception over union is commonly used to quantify
segmentation quality for image segmentation
For pixel v, Xv is the estimated mask and Yv ∈ {0, 1} is the
ground truth
IoU(X) = I(X)

U(X) , where I(X) ≈
∑

v XvYv and
U(X) ≈

∑
v(Xv + Yv −XvYv)

∂IoU(X)
∂Xv

=
U(X)

∂I(X)
∂Xv

−I(X)
∂U(X)
∂Xv

U2(X)
= U(X)Yv−I(X)(1−Yv)

U(X)2

⇒ ∂IoU(X)
∂Xv

=

{
1

U(X) Yv = 1

− I(X)
U(X)2

Yv = 0

S. Cheng (OU-ECE) Neural Networks Jan 2019 62 / 221

https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf

Back-propagation

More examples: IoU (reference)

Interception over union is commonly used to quantify
segmentation quality for image segmentation
For pixel v, Xv is the estimated mask and Yv ∈ {0, 1} is the
ground truth
IoU(X) = I(X)

U(X) , where I(X) ≈
∑

v XvYv and
U(X) ≈

∑
v(Xv + Yv −XvYv)

∂IoU(X)
∂Xv

=
U(X)

∂I(X)
∂Xv

−I(X)
∂U(X)
∂Xv

U2(X)
= U(X)Yv−I(X)(1−Yv)

U(X)2

⇒ ∂IoU(X)
∂Xv

=

{
1

U(X) Yv = 1

− I(X)
U(X)2

Yv = 0

S. Cheng (OU-ECE) Neural Networks Jan 2019 62 / 221

https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf

Back-propagation

Implementation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201775

Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

S. Cheng (OU-ECE) Neural Networks Jan 2019 63 / 221

Back-propagation

Implementation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201776

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

S. Cheng (OU-ECE) Neural Networks Jan 2019 64 / 221

Back-propagation

Implementation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201777

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

S. Cheng (OU-ECE) Neural Networks Jan 2019 65 / 221

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs

During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-ECE) Neural Networks Jan 2019 66 / 221

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs
During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-ECE) Neural Networks Jan 2019 66 / 221

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs
During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-ECE) Neural Networks Jan 2019 66 / 221

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the
output and also the corresponding local derivatives of the output
w.r.t. the inputs
During the backward pass, the local derivatives and the evaluated
outputs will be “consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory
consumption during the forward pass

Note that BP only computes the gradients. It does not perform
the optimization. Sometimes you may hear people said that they
trained their networks with BP. What they said was not literally
right. We will discuss more on optimizer later today

S. Cheng (OU-ECE) Neural Networks Jan 2019 66 / 221

Activation functions

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201628

Activation Functions

S. Cheng (OU-ECE) Neural Networks Jan 2019 67 / 221

Activation functions

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201629

Activation Functions

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

ELU

S. Cheng (OU-ECE) Neural Networks Jan 2019 68 / 221

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201630

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

S. Cheng (OU-ECE) Neural Networks Jan 2019 69 / 221

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201631

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

S. Cheng (OU-ECE) Neural Networks Jan 2019 70 / 221

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201632

sigmoid
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

S. Cheng (OU-ECE) Neural Networks Jan 2019 71 / 221

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201633

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not zero-
centered

S. Cheng (OU-ECE) Neural Networks Jan 2019 72 / 221

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201634

Consider what happens when the input to a neuron (x)
is always positive:

What can we say about the gradients on w?

S. Cheng (OU-ECE) Neural Networks Jan 2019 73 / 221

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201635

Consider what happens when the input to a neuron is
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical
optimal w
vector

zig zag path

allowed
gradient
update
directions

allowed
gradient
update
directions

S. Cheng (OU-ECE) Neural Networks Jan 2019 74 / 221

Activation functions Sigmoid function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201636

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not zero-
centered

3. exp() is a bit compute expensive

S. Cheng (OU-ECE) Neural Networks Jan 2019 75 / 221

Activation functions Tanh function

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201637

Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

S. Cheng (OU-ECE) Neural Networks Jan 2019 76 / 221

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201638

Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

S. Cheng (OU-ECE) Neural Networks Jan 2019 77 / 221

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201639

Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

S. Cheng (OU-ECE) Neural Networks Jan 2019 78 / 221

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201640

ReLU
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

S. Cheng (OU-ECE) Neural Networks Jan 2019 79 / 221

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201641

DATA CLOUD
active ReLU

dead ReLU
will never activate
=> never update

S. Cheng (OU-ECE) Neural Networks Jan 2019 80 / 221

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201642

DATA CLOUD
active ReLU

dead ReLU
will never activate
=> never update

=> people like to initialize
ReLU neurons with slightly
positive biases (e.g. 0.01)

S. Cheng (OU-ECE) Neural Networks Jan 2019 81 / 221

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201643

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]

S. Cheng (OU-ECE) Neural Networks Jan 2019 82 / 221

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201644

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]

S. Cheng (OU-ECE) Neural Networks Jan 2019 83 / 221

Activation functions ReLU

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201645

Activation Functions

Exponential Linear Units (ELU)

- All benefits of ReLU
- Does not die
- Closer to zero mean outputs

- Computation requires exp()

[Clevert et al., 2015]

S. Cheng (OU-ECE) Neural Networks Jan 2019 84 / 221

Activation functions Maxout neurons

Activation functions

Maxout ”Neurons” [Goodfellow et al., 2013]

Try to generalize ReLU and leaky ReLU

max(wT
1 x+ b1,w

T
2 x+ b2)

Pros

Linear regime
Does not saturate
Does not die

Cons
Double amount of parameters

S. Cheng (OU-ECE) Neural Networks Jan 2019 85 / 221

Activation functions Maxout neurons

Activation functions

Maxout ”Neurons” [Goodfellow et al., 2013]

Try to generalize ReLU and leaky ReLU

max(wT
1 x+ b1,w

T
2 x+ b2)

Pros

Linear regime
Does not saturate
Does not die

Cons
Double amount of parameters

S. Cheng (OU-ECE) Neural Networks Jan 2019 85 / 221

Activation functions Maxout neurons

Activation functions

Maxout ”Neurons” [Goodfellow et al., 2013]

Try to generalize ReLU and leaky ReLU

max(wT
1 x+ b1,w

T
2 x+ b2)

Pros

Linear regime
Does not saturate
Does not die

Cons
Double amount of parameters

S. Cheng (OU-ECE) Neural Networks Jan 2019 85 / 221

Activation functions Lesson Learned

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201647

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don’t expect much
- Don’t use sigmoid

S. Cheng (OU-ECE) Neural Networks Jan 2019 86 / 221

Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201649

Step 1: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

S. Cheng (OU-ECE) Neural Networks Jan 2019 87 / 221

Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201650

Step 1: Preprocess the data

In practice, you may also see PCA and Whitening of the data

(data has diagonal
covariance matrix)

(covariance matrix is the
identity matrix)

S. Cheng (OU-ECE) Neural Networks Jan 2019 88 / 221

Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201651

TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize
variance, to do PCA or
whitening

S. Cheng (OU-ECE) Neural Networks Jan 2019 89 / 221

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201653

- Q: what happens when W=0 init is used?

S. Cheng (OU-ECE) Neural Networks Jan 2019 90 / 221

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201654

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

S. Cheng (OU-ECE) Neural Networks Jan 2019 91 / 221

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201655

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

S. Cheng (OU-ECE) Neural Networks Jan 2019 92 / 221

Initialization Weight initialization

Weight initialization

Let’s look at some activation statistics
10 layers
500 neurons per layer
tanh(·) for activation
W = 0.01 ∗ np.random.randn(fan_in, fan_out) as described in the
last slide

S. Cheng (OU-ECE) Neural Networks Jan 2019 93 / 221

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201657

S. Cheng (OU-ECE) Neural Networks Jan 2019 94 / 221

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201658

All activations
become zero!

Q: think about the
backward pass.
What do the
gradients look like?

Hint: think about backward
pass for a W*X gate.

S. Cheng (OU-ECE) Neural Networks Jan 2019 95 / 221

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201659

Almost all neurons
completely
saturated, either -1
and 1. Gradients
will be all zero.

*1.0 instead of *0.01

S. Cheng (OU-ECE) Neural Networks Jan 2019 96 / 221

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=
n∑
i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

S. Cheng (OU-ECE) Neural Networks Jan 2019 97 / 221

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=

n∑
i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

S. Cheng (OU-ECE) Neural Networks Jan 2019 97 / 221

Initialization Weight initialization

V ar(XY) =
E[X]2V ar(Y) + E[Y]2V ar(X) + V ar(X)V ar(Y)

V ar(XY) = E[(XY)2]− E[XY]2

= E[X2]E[Y 2]− E[X]2E[Y]2

V ar(X)V ar(Y)

= (E[X2]− E[X]2)(E[Y 2]− E[Y]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y]2 + E[X]2E[Y]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y]2)

E[Y]2(E[X2]− E[X]2)− E[X]2E[Y]2

= V ar(XY)− E[X]2V ar(Y)− E[Y]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2019 98 / 221

Initialization Weight initialization

V ar(XY) =
E[X]2V ar(Y) + E[Y]2V ar(X) + V ar(X)V ar(Y)

V ar(XY) = E[(XY)2]− E[XY]2

= E[X2]E[Y 2]− E[X]2E[Y]2

V ar(X)V ar(Y)

= (E[X2]− E[X]2)(E[Y 2]− E[Y]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y]2 + E[X]2E[Y]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y]2)

E[Y]2(E[X2]− E[X]2)− E[X]2E[Y]2

= V ar(XY)− E[X]2V ar(Y)− E[Y]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2019 98 / 221

Initialization Weight initialization

V ar(XY) =
E[X]2V ar(Y) + E[Y]2V ar(X) + V ar(X)V ar(Y)

V ar(XY) = E[(XY)2]− E[XY]2

= E[X2]E[Y 2]− E[X]2E[Y]2

V ar(X)V ar(Y)

= (E[X2]− E[X]2)(E[Y 2]− E[Y]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y]2 + E[X]2E[Y]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y]2)

E[Y]2(E[X2]− E[X]2)− E[X]2E[Y]2

= V ar(XY)− E[X]2V ar(Y)− E[Y]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2019 98 / 221

Initialization Weight initialization

V ar(XY) =
E[X]2V ar(Y) + E[Y]2V ar(X) + V ar(X)V ar(Y)

V ar(XY) = E[(XY)2]− E[XY]2

= E[X2]E[Y 2]− E[X]2E[Y]2

V ar(X)V ar(Y)

= (E[X2]− E[X]2)(E[Y 2]− E[Y]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y]2 + E[X]2E[Y]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y]2)

E[Y]2(E[X2]− E[X]2)− E[X]2E[Y]2

= V ar(XY)− E[X]2V ar(Y)− E[Y]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2019 98 / 221

Initialization Weight initialization

V ar(XY) =
E[X]2V ar(Y) + E[Y]2V ar(X) + V ar(X)V ar(Y)

V ar(XY) = E[(XY)2]− E[XY]2

= E[X2]E[Y 2]− E[X]2E[Y]2

V ar(X)V ar(Y)

= (E[X2]− E[X]2)(E[Y 2]− E[Y]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y]2 + E[X]2E[Y]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y]2)

E[Y]2(E[X2]− E[X]2)− E[X]2E[Y]2

= V ar(XY)− E[X]2V ar(Y)− E[Y]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2019 98 / 221

Initialization Weight initialization

V ar(XY) =
E[X]2V ar(Y) + E[Y]2V ar(X) + V ar(X)V ar(Y)

V ar(XY) = E[(XY)2]− E[XY]2

= E[X2]E[Y 2]− E[X]2E[Y]2

V ar(X)V ar(Y)

= (E[X2]− E[X]2)(E[Y 2]− E[Y]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y]2 + E[X]2E[Y]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y]2)

E[Y]2(E[X2]− E[X]2)− E[X]2E[Y]2

= V ar(XY)− E[X]2V ar(Y)− E[Y]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2019 98 / 221

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=

n∑
i

E[wi]
2Var(xi) + E[xi]

2Var(wi) + Var(xi)Var(wi)

=

n∑
i

Var(xi)Var(wi)

= (nVar(w))Var(x)

Thus, output will have same variance as input if nVar(w) = 1. This is
known as Xavier weight initialization

S. Cheng (OU-ECE) Neural Networks Jan 2019 99 / 221

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=

n∑
i

E[wi]
2Var(xi) + E[xi]

2Var(wi) + Var(xi)Var(wi)

=

n∑
i

Var(xi)Var(wi)

= (nVar(w))Var(x)

Thus, output will have same variance as input if nVar(w) = 1. This is
known as Xavier weight initialization

S. Cheng (OU-ECE) Neural Networks Jan 2019 99 / 221

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And
number of inputs is n. Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=

n∑
i

E[wi]
2Var(xi) + E[xi]

2Var(wi) + Var(xi)Var(wi)

=

n∑
i

Var(xi)Var(wi)

= (nVar(w))Var(x)

Thus, output will have same variance as input if nVar(w) = 1. This is
known as Xavier weight initialization

S. Cheng (OU-ECE) Neural Networks Jan 2019 99 / 221

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201660

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

S. Cheng (OU-ECE) Neural Networks Jan 2019 100 / 221

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201661

but when using the ReLU
nonlinearity it breaks.

S. Cheng (OU-ECE) Neural Networks Jan 2019 101 / 221

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)

=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-ECE) Neural Networks Jan 2019 102 / 221

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-ECE) Neural Networks Jan 2019 102 / 221

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-ECE) Neural Networks Jan 2019 102 / 221

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-ECE) Neural Networks Jan 2019 102 / 221

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-ECE) Neural Networks Jan 2019 102 / 221

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-ECE) Neural Networks Jan 2019 102 / 221

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation
function.

S. Cheng (OU-ECE) Neural Networks Jan 2019 102 / 221

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201662

He et al., 2015
(note additional /2)

S. Cheng (OU-ECE) Neural Networks Jan 2019 103 / 221

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201663

He et al., 2015
(note additional /2)

S. Cheng (OU-ECE) Neural Networks Jan 2019 104 / 221

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201664

Proper initialization is an active area of research…

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015
…

S. Cheng (OU-ECE) Neural Networks Jan 2019 105 / 221

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201665

Batch Normalization

“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

this is a vanilla
differentiable function...

S. Cheng (OU-ECE) Neural Networks Jan 2019 106 / 221

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201666

Batch Normalization

“you want unit gaussian activations?
just make them so.”

[Ioffe and Szegedy, 2015]

XN

D

1. compute the empirical mean and
variance independently for each
dimension.

2. Normalize

S. Cheng (OU-ECE) Neural Networks Jan 2019 107 / 221

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201667

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully
Connected / (or Convolutional, as
we’ll see soon) layers, and before
nonlinearity.

Problem: do we
necessarily want a unit
gaussian input to a
tanh layer?

S. Cheng (OU-ECE) Neural Networks Jan 2019 108 / 221

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201668

Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash
the range if it wants to:

Note, the network can learn:

to recover the identity
mapping.

Normalize:

S. Cheng (OU-ECE) Neural Networks Jan 2019 109 / 221

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201669

Batch Normalization [Ioffe and Szegedy, 2015]

- Improves gradient flow through
the network

- Allows higher learning rates
- Reduces the strong dependence

on initialization
- Acts as a form of regularization

in a funny way, and slightly
reduces the need for dropout,
maybe

S. Cheng (OU-ECE) Neural Networks Jan 2019 110 / 221

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201670

Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g. can be estimated during training
with running averages)

S. Cheng (OU-ECE) Neural Networks Jan 2019 111 / 221

Regularization Dropout

Reducing testing error

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201758

How to improve single-model performance?

Regularization

S. Cheng (OU-ECE) Neural Networks Jan 2019 112 / 221

Regularization Dropout

Ensemble trick

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201646

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

S. Cheng (OU-ECE) Neural Networks Jan 2019 113 / 221

Regularization Dropout

Ensemble trick

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Fun Tips/Tricks:

- can also get a small boost from averaging multiple
model checkpoints of a single model.

47

S. Cheng (OU-ECE) Neural Networks Jan 2019 114 / 221

Regularization Dropout

Ensemble trick

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201755

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple
snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

S. Cheng (OU-ECE) Neural Networks Jan 2019 115 / 221

Regularization Dropout

Ensemble trick

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201756

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple
snapshots of a single model during training!

Cyclic learning rate schedules can
make this work even better!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

S. Cheng (OU-ECE) Neural Networks Jan 2019 116 / 221

Regularization Dropout

Ensemble trick

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201757

Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.

S. Cheng (OU-ECE) Neural Networks Jan 2019 117 / 221

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201650

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]

S. Cheng (OU-ECE) Neural Networks Jan 2019 118 / 221

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201651

Example forward
pass with a 3-
layer network
using dropout

S. Cheng (OU-ECE) Neural Networks Jan 2019 119 / 221

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201762

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous
look

cat
score

X

X

X

S. Cheng (OU-ECE) Neural Networks Jan 2019 120 / 221

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201763

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...

S. Cheng (OU-ECE) Neural Networks Jan 2019 121 / 221

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201764

Dropout: Test time

Dropout makes our output random!

Output
(label)

Input
(image)

Random
mask

Want to “average out” the randomness at test-time

But this integral seems hard …

S. Cheng (OU-ECE) Neural Networks Jan 2019 122 / 221

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201765

Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

a

x y

w
1 w

2

S. Cheng (OU-ECE) Neural Networks Jan 2019 123 / 221

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201766

Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have:
a

x y

w
1 w

2

S. Cheng (OU-ECE) Neural Networks Jan 2019 124 / 221

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201767

Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have:
During training we have:

a

x y

w
1 w

2

S. Cheng (OU-ECE) Neural Networks Jan 2019 125 / 221

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201768

Dropout: Test time
Want to approximate
the integral

Consider a single neuron.

At test time we have:

During training we have:

a

x y

w1 w2

At test time, multiply
by probability p

S. Cheng (OU-ECE) Neural Networks Jan 2019 126 / 221

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201769

Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

S. Cheng (OU-ECE) Neural Networks Jan 2019 127 / 221

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201770

Dropout Summary

drop in forward pass

scale at test time

S. Cheng (OU-ECE) Neural Networks Jan 2019 128 / 221

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201771

More common: “Inverted dropout”

test time is unchanged!

S. Cheng (OU-ECE) Neural Networks Jan 2019 129 / 221

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201774

Load image
and label

“cat”

CNN

Compute
loss

Regularization: Data Augmentation

This image by Nikita is
licensed under CC-BY 2.0

S. Cheng (OU-ECE) Neural Networks Jan 2019 130 / 221

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201775

Regularization: Data Augmentation

Load image
and label

“cat”

CNN

Compute
loss

Transform image

S. Cheng (OU-ECE) Neural Networks Jan 2019 131 / 221

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201776

Data Augmentation
Horizontal Flips

S. Cheng (OU-ECE) Neural Networks Jan 2019 132 / 221

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201777

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

S. Cheng (OU-ECE) Neural Networks Jan 2019 133 / 221

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201778

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

S. Cheng (OU-ECE) Neural Networks Jan 2019 134 / 221

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201779

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

S. Cheng (OU-ECE) Neural Networks Jan 2019 135 / 221

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201780

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B]
pixels in training set

2. Sample a “color offset”
along principal component
directions

3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

S. Cheng (OU-ECE) Neural Networks Jan 2019 136 / 221

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201781

Data Augmentation
Get creative for your problem!

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing,
- lens distortions, … (go crazy)

S. Cheng (OU-ECE) Neural Networks Jan 2019 137 / 221

Regularization Dropout

Other regularization techniques

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201772

Regularization: A common pattern
Training: Add some kind
of randomness

Testing: Average out randomness
(sometimes approximate)

S. Cheng (OU-ECE) Neural Networks Jan 2019 138 / 221

Regularization Dropout

Other regularization techniques

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201782

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation

S. Cheng (OU-ECE) Neural Networks Jan 2019 139 / 221

Regularization Dropout

Other regularization techniques

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201783

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

S. Cheng (OU-ECE) Neural Networks Jan 2019 140 / 221

Regularization Dropout

Other regularization techniques

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201784

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

S. Cheng (OU-ECE) Neural Networks Jan 2019 141 / 221

Regularization Dropout

Other regularization techniques

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201785

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

S. Cheng (OU-ECE) Neural Networks Jan 2019 142 / 221

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201714

Optimization

W_1

W_2

S. Cheng (OU-ECE) Neural Networks Jan 2019 143 / 221

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201715

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

S. Cheng (OU-ECE) Neural Networks Jan 2019 144 / 221

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201716

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

S. Cheng (OU-ECE) Neural Networks Jan 2019 145 / 221

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201717

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

S. Cheng (OU-ECE) Neural Networks Jan 2019 146 / 221

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201718

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck

S. Cheng (OU-ECE) Neural Networks Jan 2019 147 / 221

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201719

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

S. Cheng (OU-ECE) Neural Networks Jan 2019 148 / 221

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201720

Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

S. Cheng (OU-ECE) Neural Networks Jan 2019 149 / 221

Optimization Optimizers

Exponential moving average

St =

{
Y1, t = 1

α · Yt + (1− α) · St−1, t > 1

St = α
[
Yt−1 + (1− α)Yt−2 + (1− α)2Yt−3 + · · ·

]
= Yt−1+(1−α)Yt−2+(1−α)2Yt−3+···

1+(1−α)+(1−α)2+···

S. Cheng (OU-ECE) Neural Networks Jan 2019 150 / 221

Optimization Optimizers

Exponential moving average

St =

{
Y1, t = 1

α · Yt + (1− α) · St−1, t > 1

St = α
[
Yt−1 + (1− α)Yt−2 + (1− α)2Yt−3 + · · ·

]

= Yt−1+(1−α)Yt−2+(1−α)2Yt−3+···
1+(1−α)+(1−α)2+···

S. Cheng (OU-ECE) Neural Networks Jan 2019 150 / 221

Optimization Optimizers

Exponential moving average

St =

{
Y1, t = 1

α · Yt + (1− α) · St−1, t > 1

St = α
[
Yt−1 + (1− α)Yt−2 + (1− α)2Yt−3 + · · ·

]
= Yt−1+(1−α)Yt−2+(1−α)2Yt−3+···

1+(1−α)+(1−α)2+···

S. Cheng (OU-ECE) Neural Networks Jan 2019 150 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201617

Momentum update

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

S. Cheng (OU-ECE) Neural Networks Jan 2019 151 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201618

Momentum update

- Allows a velocity to “build up” along shallow directions
- Velocity becomes damped in steep direction due to quickly changing sign

S. Cheng (OU-ECE) Neural Networks Jan 2019 152 / 221

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

sgd
momentum

S. Cheng (OU-ECE) Neural Networks Jan 2019 153 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201620

Nesterov Momentum update

gradient
step

momentum
step

actual step

Ordinary momentum update:

S. Cheng (OU-ECE) Neural Networks Jan 2019 154 / 221

Optimization Optimizers

Optimizers

Reference: https://stats.stackexchange.com/questions/179915/whats-the-difference-between-momentum-
based-gradient-descent-and-nesterovs-acc

S. Cheng (OU-ECE) Neural Networks Jan 2019 155 / 221

https://stats.stackexchange.com/questions/179915/whats-the-difference-between-momentum-based-gradient-descent-and-nesterovs-acc
https://stats.stackexchange.com/questions/179915/whats-the-difference-between-momentum-based-gradient-descent-and-nesterovs-acc

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201621

Nesterov Momentum update

gradient
step

momentum
step

actual step

momentum
step

“lookahead” gradient
step (bit different than
original)

actual step

Momentum update Nesterov momentum update

S. Cheng (OU-ECE) Neural Networks Jan 2019 156 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201622

Nesterov Momentum update

gradient
step

momentum
step

actual step

momentum
step

“lookahead” gradient
step (bit different than
original)

actual step

Momentum update Nesterov momentum update

Nesterov: the only difference...

vt = µvt−1 − ε∇f(xt−1+µvt−1)

xt = xt−1 + vt

We want to deal with ∇f(xt−1) instead

S. Cheng (OU-ECE) Neural Networks Jan 2019 157 / 221

Optimization Optimizers

Optimizers

vt = µvt−1 − ε∇f(xt−1+µvt−1)

xt = xt−1 + vt

Pick x̃t = xt + µvt,

vt = µvt−1 − ε∇(x̃t−1)

x̃t = xt + µvt = xt−1 + vt + µvt

= x̃t−1 − µvt−1 + vt + µvt

= x̃t−1 + vt + µ(vt − vt−1)

S. Cheng (OU-ECE) Neural Networks Jan 2019 158 / 221

Optimization Optimizers

Optimizers

vt = µvt−1 − ε∇f(xt−1+µvt−1)

xt = xt−1 + vt

Pick x̃t = xt + µvt,

vt = µvt−1 − ε∇(x̃t−1)

x̃t = xt + µvt = xt−1 + vt + µvt

= x̃t−1 − µvt−1 + vt + µvt

= x̃t−1 + vt + µ(vt − vt−1)

S. Cheng (OU-ECE) Neural Networks Jan 2019 158 / 221

Optimization Optimizers

Optimizers

vt = µvt−1 − ε∇f(xt−1+µvt−1)

xt = xt−1 + vt

Pick x̃t = xt + µvt,

vt = µvt−1 − ε∇(x̃t−1)

x̃t = xt + µvt = xt−1 + vt + µvt

= x̃t−1 − µvt−1 + vt + µvt

= x̃t−1 + vt + µ(vt − vt−1)

S. Cheng (OU-ECE) Neural Networks Jan 2019 158 / 221

Optimization Optimizers

Optimizers

vt = µvt−1 − ε∇f(xt−1+µvt−1)

xt = xt−1 + vt

Pick x̃t = xt + µvt,

vt = µvt−1 − ε∇(x̃t−1)

x̃t = xt + µvt = xt−1 + vt + µvt

= x̃t−1 − µvt−1 + vt + µvt

= x̃t−1 + vt + µ(vt − vt−1)

S. Cheng (OU-ECE) Neural Networks Jan 2019 158 / 221

Optimization Optimizers

Optimizers

vt = µvt−1 − ε∇f(xt−1+µvt−1)

xt = xt−1 + vt

Pick x̃t = xt + µvt,

vt = µvt−1 − ε∇(x̃t−1)

x̃t = xt + µvt = xt−1 + vt + µvt

= x̃t−1 − µvt−1 + vt + µvt

= x̃t−1 + vt + µ(vt − vt−1)

S. Cheng (OU-ECE) Neural Networks Jan 2019 158 / 221

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

sgd
momentum
nag

S. Cheng (OU-ECE) Neural Networks Jan 2019 159 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201627

AdaGrad update

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

[Duchi et al., 2011]

S. Cheng (OU-ECE) Neural Networks Jan 2019 160 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201628

Q: What happens with AdaGrad?

AdaGrad update

S. Cheng (OU-ECE) Neural Networks Jan 2019 161 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201629

Q2: What happens to the step size over long time?

AdaGrad update

S. Cheng (OU-ECE) Neural Networks Jan 2019 162 / 221

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

nag
adagrad

S. Cheng (OU-ECE) Neural Networks Jan 2019 163 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201630

RMSProp update [Tieleman and Hinton, 2012]

S. Cheng (OU-ECE) Neural Networks Jan 2019 164 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201631

Introduced in a slide in
Geoff Hinton’s Coursera
class, lecture 6

S. Cheng (OU-ECE) Neural Networks Jan 2019 165 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201632

Introduced in a slide in
Geoff Hinton’s Coursera
class, lecture 6

Cited by several papers as:

S. Cheng (OU-ECE) Neural Networks Jan 2019 166 / 221

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

nag
adagrad
rmsprop

S. Cheng (OU-ECE) Neural Networks Jan 2019 167 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201634

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

S. Cheng (OU-ECE) Neural Networks Jan 2019 168 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201635

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum

S. Cheng (OU-ECE) Neural Networks Jan 2019 169 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201636

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum

S. Cheng (OU-ECE) Neural Networks Jan 2019 170 / 221

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201737

Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that
first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models!

S. Cheng (OU-ECE) Neural Networks Jan 2019 171 / 221

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

nag
rmsprop
adam

S. Cheng (OU-ECE) Neural Networks Jan 2019 172 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201638

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these
learning rates is best to use?

S. Cheng (OU-ECE) Neural Networks Jan 2019 173 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201639

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

S. Cheng (OU-ECE) Neural Networks Jan 2019 174 / 221

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201742

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!

More critical with SGD+Momentum,
less common with Adam

S. Cheng (OU-ECE) Neural Networks Jan 2019 175 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201640

Second order optimization methods

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: what is nice about this update?

S. Cheng (OU-ECE) Neural Networks Jan 2019 176 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Inverting Hessian is very expensive (O(N3)). Avoiding that resulting in
so-called Quasi-Newton methods

Rank-1 inverse Hessian update (simple but not too commonly
used)
Rank-2 inverse Hessian update

BFGS (most popular) and DFS
LBFGS

Does not store the entire inverse Hessian
Tradeoff space with time and accuracy

S. Cheng (OU-ECE) Neural Networks Jan 2019 177 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Inverting Hessian is very expensive (O(N3)). Avoiding that resulting in
so-called Quasi-Newton methods

Rank-1 inverse Hessian update (simple but not too commonly
used)

Rank-2 inverse Hessian update
BFGS (most popular) and DFS
LBFGS

Does not store the entire inverse Hessian
Tradeoff space with time and accuracy

S. Cheng (OU-ECE) Neural Networks Jan 2019 177 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Inverting Hessian is very expensive (O(N3)). Avoiding that resulting in
so-called Quasi-Newton methods

Rank-1 inverse Hessian update (simple but not too commonly
used)
Rank-2 inverse Hessian update

BFGS (most popular) and DFS
LBFGS

Does not store the entire inverse Hessian
Tradeoff space with time and accuracy

S. Cheng (OU-ECE) Neural Networks Jan 2019 177 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Inverting Hessian is very expensive (O(N3)). Avoiding that resulting in
so-called Quasi-Newton methods

Rank-1 inverse Hessian update (simple but not too commonly
used)
Rank-2 inverse Hessian update

BFGS (most popular) and DFS

LBFGS
Does not store the entire inverse Hessian
Tradeoff space with time and accuracy

S. Cheng (OU-ECE) Neural Networks Jan 2019 177 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Inverting Hessian is very expensive (O(N3)). Avoiding that resulting in
so-called Quasi-Newton methods

Rank-1 inverse Hessian update (simple but not too commonly
used)
Rank-2 inverse Hessian update

BFGS (most popular) and DFS
LBFGS

Does not store the entire inverse Hessian
Tradeoff space with time and accuracy

S. Cheng (OU-ECE) Neural Networks Jan 2019 177 / 221

Optimization Optimizers

Quasi-Newton methods (watch this)

Ref:
1 https://www.youtube.com/watch?v=uo2z0AT_83k
2 Nocedal & Wright - Numerical Optimization (B ↔ H)
3 http://users.ece.utexas.edu/ cmcaram/EE381V_2012F/Lec-

ture_10_Scribe_Notes.final.pdf
The inverse of Hessian H is expensive to compute. Want to
approximate it iteratively instead

Quasi-Newton methods:
1 Approximate Newton direction

dk = −Bkgk,

where Bk ≈ H−1 and gk = ∇J(θk)
2 Line search: θk+1 = θk + αkdk
3 Update gk+1 = ∇J(θk+1)
4 Approximate inverse Hessian

Bk+1 = update_formula(Bk, θk+1 − θk, gk+1 − gk)

S. Cheng (OU-ECE) Neural Networks Jan 2019 178 / 221

https://www.youtube.com/watch?v=uo2z0AT_83k
https://www.youtube.com/watch?v=uo2z0AT_83k#https://www.youtube.com/watch?v=uo2z0AT_83k
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf

Optimization Optimizers

Quasi-Newton methods (watch this)

Ref:
1 https://www.youtube.com/watch?v=uo2z0AT_83k
2 Nocedal & Wright - Numerical Optimization (B ↔ H)
3 http://users.ece.utexas.edu/ cmcaram/EE381V_2012F/Lec-

ture_10_Scribe_Notes.final.pdf
The inverse of Hessian H is expensive to compute. Want to
approximate it iteratively instead
Quasi-Newton methods:

1 Approximate Newton direction

dk = −Bkgk,

where Bk ≈ H−1 and gk = ∇J(θk)

2 Line search: θk+1 = θk + αkdk
3 Update gk+1 = ∇J(θk+1)
4 Approximate inverse Hessian

Bk+1 = update_formula(Bk, θk+1 − θk, gk+1 − gk)

S. Cheng (OU-ECE) Neural Networks Jan 2019 178 / 221

https://www.youtube.com/watch?v=uo2z0AT_83k
https://www.youtube.com/watch?v=uo2z0AT_83k#https://www.youtube.com/watch?v=uo2z0AT_83k
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf

Optimization Optimizers

Quasi-Newton methods (watch this)

Ref:
1 https://www.youtube.com/watch?v=uo2z0AT_83k
2 Nocedal & Wright - Numerical Optimization (B ↔ H)
3 http://users.ece.utexas.edu/ cmcaram/EE381V_2012F/Lec-

ture_10_Scribe_Notes.final.pdf
The inverse of Hessian H is expensive to compute. Want to
approximate it iteratively instead
Quasi-Newton methods:

1 Approximate Newton direction

dk = −Bkgk,

where Bk ≈ H−1 and gk = ∇J(θk)
2 Line search: θk+1 = θk + αkdk

3 Update gk+1 = ∇J(θk+1)
4 Approximate inverse Hessian

Bk+1 = update_formula(Bk, θk+1 − θk, gk+1 − gk)

S. Cheng (OU-ECE) Neural Networks Jan 2019 178 / 221

https://www.youtube.com/watch?v=uo2z0AT_83k
https://www.youtube.com/watch?v=uo2z0AT_83k#https://www.youtube.com/watch?v=uo2z0AT_83k
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf

Optimization Optimizers

Quasi-Newton methods (watch this)

Ref:
1 https://www.youtube.com/watch?v=uo2z0AT_83k
2 Nocedal & Wright - Numerical Optimization (B ↔ H)
3 http://users.ece.utexas.edu/ cmcaram/EE381V_2012F/Lec-

ture_10_Scribe_Notes.final.pdf
The inverse of Hessian H is expensive to compute. Want to
approximate it iteratively instead
Quasi-Newton methods:

1 Approximate Newton direction

dk = −Bkgk,

where Bk ≈ H−1 and gk = ∇J(θk)
2 Line search: θk+1 = θk + αkdk
3 Update gk+1 = ∇J(θk+1)

4 Approximate inverse Hessian

Bk+1 = update_formula(Bk, θk+1 − θk, gk+1 − gk)

S. Cheng (OU-ECE) Neural Networks Jan 2019 178 / 221

https://www.youtube.com/watch?v=uo2z0AT_83k
https://www.youtube.com/watch?v=uo2z0AT_83k#https://www.youtube.com/watch?v=uo2z0AT_83k
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf

Optimization Optimizers

Quasi-Newton methods (watch this)

Ref:
1 https://www.youtube.com/watch?v=uo2z0AT_83k
2 Nocedal & Wright - Numerical Optimization (B ↔ H)
3 http://users.ece.utexas.edu/ cmcaram/EE381V_2012F/Lec-

ture_10_Scribe_Notes.final.pdf
The inverse of Hessian H is expensive to compute. Want to
approximate it iteratively instead
Quasi-Newton methods:

1 Approximate Newton direction

dk = −Bkgk,

where Bk ≈ H−1 and gk = ∇J(θk)
2 Line search: θk+1 = θk + αkdk
3 Update gk+1 = ∇J(θk+1)
4 Approximate inverse Hessian

Bk+1 = update_formula(Bk, θk+1 − θk, gk+1 − gk)

S. Cheng (OU-ECE) Neural Networks Jan 2019 178 / 221

https://www.youtube.com/watch?v=uo2z0AT_83k
https://www.youtube.com/watch?v=uo2z0AT_83k#https://www.youtube.com/watch?v=uo2z0AT_83k
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpk = qk,
where pk = θk+1 − θk and qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk
⇒ u(vT pk) = qk −Hkpk ⇒ u = 1

vT pk
(qk −Hkpk)

We are free to pick v. But since we know H has to be symmetric,
let’s pick v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 179 / 221

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively
approximate H.

That is (known as secant equation) Hpk = qk,
where pk = θk+1 − θk and qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk
⇒ u(vT pk) = qk −Hkpk ⇒ u = 1

vT pk
(qk −Hkpk)

We are free to pick v. But since we know H has to be symmetric,
let’s pick v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 179 / 221

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpk = qk,
where pk = θk+1 − θk and qk = ∇J(θk+1)−∇J(θk)

Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk
⇒ u(vT pk) = qk −Hkpk ⇒ u = 1

vT pk
(qk −Hkpk)

We are free to pick v. But since we know H has to be symmetric,
let’s pick v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 179 / 221

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpk = qk,
where pk = θk+1 − θk and qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT

⇒ (Hk + uvT)pk = qk
⇒ u(vT pk) = qk −Hkpk ⇒ u = 1

vT pk
(qk −Hkpk)

We are free to pick v. But since we know H has to be symmetric,
let’s pick v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 179 / 221

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpk = qk,
where pk = θk+1 − θk and qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk

⇒ u(vT pk) = qk −Hkpk ⇒ u = 1
vT pk

(qk −Hkpk)

We are free to pick v. But since we know H has to be symmetric,
let’s pick v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 179 / 221

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpk = qk,
where pk = θk+1 − θk and qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk
⇒ u(vT pk) = qk −Hkpk

⇒ u = 1
vT pk

(qk −Hkpk)

We are free to pick v. But since we know H has to be symmetric,
let’s pick v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 179 / 221

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpk = qk,
where pk = θk+1 − θk and qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk
⇒ u(vT pk) = qk −Hkpk ⇒ u = 1

vT pk
(qk −Hkpk)

We are free to pick v. But since we know H has to be symmetric,
let’s pick v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 179 / 221

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpk = qk,
where pk = θk+1 − θk and qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk
⇒ u(vT pk) = qk −Hkpk ⇒ u = 1

vT pk
(qk −Hkpk)

We are free to pick v. But since we know H has to be symmetric,
let’s pick v = qk −Hkpk.

Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 179 / 221

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively
approximate H. That is (known as secant equation) Hpk = qk,
where pk = θk+1 − θk and qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk
⇒ u(vT pk) = qk −Hkpk ⇒ u = 1

vT pk
(qk −Hkpk)

We are free to pick v. But since we know H has to be symmetric,
let’s pick v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 179 / 221

Optimization Optimizers

Updating B

Recall that we need Bk = H−1
k to approximate the Newton

direction (dk = −Bkgk)

We don’t need to invert the matrix Hk directly. Note that
Hpk = qk give us Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Similarly, given Bqk = pk, we have

Bk+1 = Bk +
1

wT qk
wwT

with w = pk −Bkqk

S. Cheng (OU-ECE) Neural Networks Jan 2019 180 / 221

Optimization Optimizers

Updating B

Recall that we need Bk = H−1
k to approximate the Newton

direction (dk = −Bkgk)
We don’t need to invert the matrix Hk directly. Note that
Hpk = qk give us Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Similarly, given Bqk = pk, we have

Bk+1 = Bk +
1

wT qk
wwT

with w = pk −Bkqk

S. Cheng (OU-ECE) Neural Networks Jan 2019 180 / 221

Optimization Optimizers

Updating B

Recall that we need Bk = H−1
k to approximate the Newton

direction (dk = −Bkgk)
We don’t need to invert the matrix Hk directly. Note that
Hpk = qk give us Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Similarly, given Bqk = pk, we have

Bk+1 = Bk +
1

wT qk
wwT

with w = pk −Bkqk

S. Cheng (OU-ECE) Neural Networks Jan 2019 180 / 221

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art

Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.
Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk
⇒ Hkpk +

1
αqkq

T
k pk +

1
βHkpkp

T
kH

T
k pk = qk. By inspection, this can

be satisfied if we pick α = qTk pk and β = −pTkHT
k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 181 / 221

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art
Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.
Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk
⇒ Hkpk +

1
αqkq

T
k pk +

1
βHkpkp

T
kH

T
k pk = qk. By inspection, this can

be satisfied if we pick α = qTk pk and β = −pTkHT
k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 181 / 221

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art
Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.

Need to pick u and w, qk and Hkpk are reasonable choice
Again, we want Hk+1pk = qk
⇒ Hkpk +

1
αqkq

T
k pk +

1
βHkpkp

T
kH

T
k pk = qk. By inspection, this can

be satisfied if we pick α = qTk pk and β = −pTkHT
k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 181 / 221

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art
Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.
Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk
⇒ Hkpk +

1
αqkq

T
k pk +

1
βHkpkp

T
kH

T
k pk = qk. By inspection, this can

be satisfied if we pick α = qTk pk and β = −pTkHT
k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 181 / 221

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art
Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.
Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk
⇒ Hkpk +

1
αqkq

T
k pk +

1
βHkpkp

T
kH

T
k pk = qk.

By inspection, this can
be satisfied if we pick α = qTk pk and β = −pTkHT

k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 181 / 221

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art
Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.
Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk
⇒ Hkpk +

1
αqkq

T
k pk +

1
βHkpkp

T
kH

T
k pk = qk. By inspection, this can

be satisfied if we pick α = qTk pk and β = −pTkHT
k pk.

Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 181 / 221

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are
other variations (such as DFP). But BFGS is considered the state
of the art
Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.
Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk
⇒ Hkpk +

1
αqkq

T
k pk +

1
βHkpkp

T
kH

T
k pk = qk. By inspection, this can

be satisfied if we pick α = qTk pk and β = −pTkHT
k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 181 / 221

Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT)−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT)
(
A−1 − A−1uvTA−1

1+vTA−1u

)

= AA−1 + uvTA−1−AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u
= I + uvTA−1 − uvTA−1 = I

S. Cheng (OU-ECE) Neural Networks Jan 2019 182 / 221

Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT)−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT)
(
A−1 − A−1uvTA−1

1+vTA−1u

)
= AA−1 + uvTA−1

−AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u
= I + uvTA−1 − uvTA−1 = I

S. Cheng (OU-ECE) Neural Networks Jan 2019 182 / 221

Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT)−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT)
(
A−1 − A−1uvTA−1

1+vTA−1u

)
= AA−1 + uvTA−1−AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u
= I + uvTA−1 − uvTA−1 = I

S. Cheng (OU-ECE) Neural Networks Jan 2019 182 / 221

Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT)−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT)
(
A−1 − A−1uvTA−1

1+vTA−1u

)
= AA−1 + uvTA−1−AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u
= I + uvTA−1 − uvTA−1 = I

S. Cheng (OU-ECE) Neural Networks Jan 2019 182 / 221

Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT)−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT)
(
A−1 − A−1uvTA−1

1+vTA−1u

)
= AA−1 + uvTA−1−AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1 = I

S. Cheng (OU-ECE) Neural Networks Jan 2019 182 / 221

Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT)−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT)
(
A−1 − A−1uvTA−1

1+vTA−1u

)
= AA−1 + uvTA−1−AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u
= I + uvTA−1 − uvTA−1 = I

S. Cheng (OU-ECE) Neural Networks Jan 2019 182 / 221

Optimization Optimizers

Inverse Hessian update for BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and

(A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))

= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D − HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p

⇒ Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 183 / 221

Optimization Optimizers

Inverse Hessian update for BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and

(A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))

= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D − HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p

⇒ Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 183 / 221

Optimization Optimizers

Inverse Hessian update for BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and

(A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))

= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D − HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p

⇒ Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 183 / 221

Optimization Optimizers

Inverse Hessian update for BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and

(A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))

= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D − HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p

⇒ Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 183 / 221

Optimization Optimizers

Inverse Hessian update for BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and

(A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))

= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D − HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p

⇒ Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 183 / 221

Optimization Optimizers

Inverse Hessian update for BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and

(A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))

= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)

· · ·

(D − HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p

⇒ Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 183 / 221

Optimization Optimizers

Inverse Hessian update for BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and

(A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))

= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D − HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p

⇒ Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 183 / 221

Optimization Optimizers

Inverse Hessian update for BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and

(A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))

= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D − HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p

⇒ Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 183 / 221

Optimization Optimizers

Inverse Hessian update for BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and

(A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))

= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D − HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p

⇒ Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 183 / 221

Optimization Optimizers

Summary of BFGS

Initialize Initialize inverse Hessian approximation B ← B0. Can set
B ← I if no initial estimate; k ← 0; Pick a random
starting point θ0

Loop 1 Get search direction dk = −Bk∇J(θk)
2 Conduct line search to find optimum

θk+1 = θk + αkdk
3 pk ← θk+1 − θk; qk ← ∇J(θk+1)−∇J(θk);

Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
4 k ← k + 1; Exit if ‖∇J(θk)‖ < ε

S. Cheng (OU-ECE) Neural Networks Jan 2019 184 / 221

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed,
set x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to
pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume
the “spacing” of each iteration is
proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 185 / 221

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed,
set x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to
pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume
the “spacing” of each iteration is
proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 185 / 221

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed,
set x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to
pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume
the “spacing” of each iteration is
proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 185 / 221

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed,
set x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to
pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume
the “spacing” of each iteration is
proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 185 / 221

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed,
set x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to
pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume
the “spacing” of each iteration is
proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 185 / 221

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed,
set x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to
pick x4

How to pick x2 given x1 and x3?

Golden-section search simply assume
the “spacing” of each iteration is
proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 185 / 221

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed,
set x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to
pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume
the “spacing” of each iteration is
proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 185 / 221

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed,
set x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to
pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume
the “spacing” of each iteration is
proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 185 / 221

Optimization Optimizers

Golden-section search

a + c = b and c
a = a

b

⇒ b−a
a = a

b
⇒ b

a − 1 = 1
b/a

⇒
(b

a
)2 − b

a − 1 = 0

b
a
=

1 +
√
5

2
= 1.618034 . . . , ϕ

↑
golden
ratio

S. Cheng (OU-ECE) Neural Networks Jan 2019 186 / 221

Optimization Optimizers

Golden-section search

a + c = b and c
a = a

b
⇒ b−a

a = a
b

⇒ b
a − 1 = 1

b/a

⇒
(b

a
)2 − b

a − 1 = 0

b
a
=

1 +
√
5

2
= 1.618034 . . . , ϕ

↑
golden
ratio

S. Cheng (OU-ECE) Neural Networks Jan 2019 186 / 221

Optimization Optimizers

Golden-section search

a + c = b and c
a = a

b
⇒ b−a

a = a
b

⇒ b
a − 1 = 1

b/a

⇒
(b

a
)2 − b

a − 1 = 0

b
a
=

1 +
√
5

2
= 1.618034 . . . , ϕ

↑
golden
ratio

S. Cheng (OU-ECE) Neural Networks Jan 2019 186 / 221

Optimization Optimizers

Golden-section search

a + c = b and c
a = a

b
⇒ b−a

a = a
b

⇒ b
a − 1 = 1

b/a

⇒
(b

a
)2 − b

a − 1 = 0

b
a
=

1 +
√
5

2
= 1.618034 . . . , ϕ

↑
golden
ratio

S. Cheng (OU-ECE) Neural Networks Jan 2019 186 / 221

Optimization Optimizers

Golden-section search

a + c = b and c
a = a

b
⇒ b−a

a = a
b

⇒ b
a − 1 = 1

b/a

⇒
(b

a
)2 − b

a − 1 = 0

b
a
=

1 +
√
5

2
= 1.618034 . . . , ϕ

↑
golden
ratio

S. Cheng (OU-ECE) Neural Networks Jan 2019 186 / 221

Optimization Optimizers

Inverse Hessian update for BFGS

Like rank-1 update, we can also rearrange the variables to obtain
an update rule for B = H−1

Instead of Hk+1pk = qk, we want Bk+1qk = pk.

Thus we have

Bk+1 = Bk +
pkp

T
k

pTk qk
−

Bkqkq
T
k Bk

qTk B
T
k qk

Note that this update rule of B is different from before. Actually
this is the update rule of DFP. An older approach that is
considered worse compared with BFGS

S. Cheng (OU-ECE) Neural Networks Jan 2019 187 / 221

Optimization Optimizers

Inverse Hessian update for BFGS

Like rank-1 update, we can also rearrange the variables to obtain
an update rule for B = H−1

Instead of Hk+1pk = qk, we want Bk+1qk = pk. Thus we have

Bk+1 = Bk +
pkp

T
k

pTk qk
−

Bkqkq
T
k Bk

qTk B
T
k qk

Note that this update rule of B is different from before. Actually
this is the update rule of DFP. An older approach that is
considered worse compared with BFGS

S. Cheng (OU-ECE) Neural Networks Jan 2019 187 / 221

Optimization Optimizers

Some theoretical notes

A prettier but more technical explanation of BFGS/DFP involves
weighted matrix norm

Comparing with rank-1 update, we have more degree of freedom
and thus can impose more requirement. Besides

1 Bk+1qk = pk (secant equation)
2 Bk+1 � 0 (symmetric and positive definite),

we also require each update to be small. Namely,

‖Bk+1 −Bk‖W → min,

where ‖A‖W = ‖W 1/2AW 1/2‖F is the weighted Frobenius norm

⇒

{
BFGS W = H

DFP W = H−1

S. Cheng (OU-ECE) Neural Networks Jan 2019 188 / 221

Optimization Optimizers

Some theoretical notes

A prettier but more technical explanation of BFGS/DFP involves
weighted matrix norm
Comparing with rank-1 update, we have more degree of freedom
and thus can impose more requirement. Besides

1 Bk+1qk = pk (secant equation)
2 Bk+1 � 0 (symmetric and positive definite),

we also require each update to be small.

Namely,

‖Bk+1 −Bk‖W → min,

where ‖A‖W = ‖W 1/2AW 1/2‖F is the weighted Frobenius norm

⇒

{
BFGS W = H

DFP W = H−1

S. Cheng (OU-ECE) Neural Networks Jan 2019 188 / 221

Optimization Optimizers

Some theoretical notes

A prettier but more technical explanation of BFGS/DFP involves
weighted matrix norm
Comparing with rank-1 update, we have more degree of freedom
and thus can impose more requirement. Besides

1 Bk+1qk = pk (secant equation)
2 Bk+1 � 0 (symmetric and positive definite),

we also require each update to be small. Namely,

‖Bk+1 −Bk‖W → min,

where ‖A‖W = ‖W 1/2AW 1/2‖F is the weighted Frobenius norm

⇒

{
BFGS W = H

DFP W = H−1

S. Cheng (OU-ECE) Neural Networks Jan 2019 188 / 221

Optimization Optimizers

Some theoretical notes

A prettier but more technical explanation of BFGS/DFP involves
weighted matrix norm
Comparing with rank-1 update, we have more degree of freedom
and thus can impose more requirement. Besides

1 Bk+1qk = pk (secant equation)
2 Bk+1 � 0 (symmetric and positive definite),

we also require each update to be small. Namely,

‖Bk+1 −Bk‖W → min,

where ‖A‖W = ‖W 1/2AW 1/2‖F is the weighted Frobenius norm

⇒

{
BFGS W = H

DFP W = H−1

S. Cheng (OU-ECE) Neural Networks Jan 2019 188 / 221

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian

The matrix is too big to be stored in deep learning setting
(millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk

and qk are much smaller
Instead of storing Bk, we can store the previous last several p and
q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead
of just once) and the estimate is less accurate
Storage requirement decreases drastically

S. Cheng (OU-ECE) Neural Networks Jan 2019 189 / 221

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian
The matrix is too big to be stored in deep learning setting
(millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk

and qk are much smaller
Instead of storing Bk, we can store the previous last several p and
q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead
of just once) and the estimate is less accurate
Storage requirement decreases drastically

S. Cheng (OU-ECE) Neural Networks Jan 2019 189 / 221

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian
The matrix is too big to be stored in deep learning setting
(millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk

and qk are much smaller

Instead of storing Bk, we can store the previous last several p and
q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead
of just once) and the estimate is less accurate
Storage requirement decreases drastically

S. Cheng (OU-ECE) Neural Networks Jan 2019 189 / 221

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian
The matrix is too big to be stored in deep learning setting
(millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk

and qk are much smaller
Instead of storing Bk, we can store the previous last several p and
q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead
of just once) and the estimate is less accurate
Storage requirement decreases drastically

S. Cheng (OU-ECE) Neural Networks Jan 2019 189 / 221

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian
The matrix is too big to be stored in deep learning setting
(millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk

and qk are much smaller
Instead of storing Bk, we can store the previous last several p and
q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead
of just once) and the estimate is less accurate

Storage requirement decreases drastically

S. Cheng (OU-ECE) Neural Networks Jan 2019 189 / 221

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or
inverse Hessian
The matrix is too big to be stored in deep learning setting
(millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk

and qk are much smaller
Instead of storing Bk, we can store the previous last several p and
q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead
of just once) and the estimate is less accurate
Storage requirement decreases drastically

S. Cheng (OU-ECE) Neural Networks Jan 2019 189 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201643

L-BFGS

- Usually works very well in full batch, deterministic mode
i.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting L-BFGS to large-scale, stochastic
setting is an active area of research.

S. Cheng (OU-ECE) Neural Networks Jan 2019 190 / 221

Optimization Optimizers

Optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201644

- Adam is a good default choice in most cases

- If you can afford to do full batch updates then try out
L-BFGS (and don’t forget to disable all sources of noise)

In practice:

S. Cheng (OU-ECE) Neural Networks Jan 2019 191 / 221

Optimization Babysitting learning process

Babysitting learning process

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201672

Step 1: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

S. Cheng (OU-ECE) Neural Networks Jan 2019 192 / 221

Optimization Babysitting learning process

Babysitting learning process

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201673

Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

input
layer hidden layer

output layer
CIFAR-10
images, 3072
numbers

10 output
neurons, one
per class

50 hidden
neurons

S. Cheng (OU-ECE) Neural Networks Jan 2019 193 / 221

Optimization Babysitting learning process

Babysitting learning process

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201674

Double check that the loss is reasonable:

returns the loss and the
gradient for all parameters

disable regularization

loss ~2.3.
“correct “ for
10 classes

S. Cheng (OU-ECE) Neural Networks Jan 2019 194 / 221

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201675

Double check that the loss is reasonable:

crank up regularization

loss went up, good. (sanity check)

S. Cheng (OU-ECE) Neural Networks Jan 2019 195 / 221

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201676

Lets try to train now…

Tip: Make sure that
you can overfit very
small portion of the
training data The above code:

- take the first 20 examples from
CIFAR-10

- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

S. Cheng (OU-ECE) Neural Networks Jan 2019 196 / 221

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201677

Lets try to train now…

Tip: Make sure that
you can overfit very
small portion of the
training data

Very small loss,
train accuracy 1.00,
nice!

S. Cheng (OU-ECE) Neural Networks Jan 2019 197 / 221

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201678

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

S. Cheng (OU-ECE) Neural Networks Jan 2019 198 / 221

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201679

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

Loss barely changing

S. Cheng (OU-ECE) Neural Networks Jan 2019 199 / 221

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201680

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is
probably too low

S. Cheng (OU-ECE) Neural Networks Jan 2019 200 / 221

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201681

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is
probably too low

Notice train/val accuracy goes to 20%
though, what’s up with that? (remember
this is softmax)

S. Cheng (OU-ECE) Neural Networks Jan 2019 201 / 221

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201682

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Okay now lets try learning rate 1e6. What could
possibly go wrong?

S. Cheng (OU-ECE) Neural Networks Jan 2019 202 / 221

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201683

cost: NaN almost
always means high
learning rate...

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

S. Cheng (OU-ECE) Neural Networks Jan 2019 203 / 221

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201684

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we
should be cross-validating is
somewhere [1e-3 … 1e-5]

S. Cheng (OU-ECE) Neural Networks Jan 2019 204 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201685

Hyperparameter Optimization

S. Cheng (OU-ECE) Neural Networks Jan 2019 205 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201690

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012

S. Cheng (OU-ECE) Neural Networks Jan 2019 206 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201686

Cross-validation strategy

I like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

S. Cheng (OU-ECE) Neural Networks Jan 2019 207 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201687

For example: run coarse search for 5 epochs

nice

note it’s best to optimize
in log space!

S. Cheng (OU-ECE) Neural Networks Jan 2019 208 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201688

Now run finer search...

adjust range

53% - relatively good
for a 2-layer neural net
with 50 hidden neurons.

S. Cheng (OU-ECE) Neural Networks Jan 2019 209 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201689

Now run finer search...

adjust range

53% - relatively good
for a 2-layer neural net
with 50 hidden neurons.

But this best cross-
validation result is
worrying. Why?

S. Cheng (OU-ECE) Neural Networks Jan 2019 210 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201691

Hyperparameters to play with:
- network architecture
- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function

S. Cheng (OU-ECE) Neural Networks Jan 2019 211 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201692

My cross-validation
“command center”

S. Cheng (OU-ECE) Neural Networks Jan 2019 212 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201693

Monitor and visualize the loss curve

S. Cheng (OU-ECE) Neural Networks Jan 2019 213 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201694

Loss

time

S. Cheng (OU-ECE) Neural Networks Jan 2019 214 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201695

Loss

time

Bad initialization
a prime suspect

S. Cheng (OU-ECE) Neural Networks Jan 2019 215 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201696

lossfunctions.tumblr.com Loss function specimen

S. Cheng (OU-ECE) Neural Networks Jan 2019 216 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201697

lossfunctions.tumblr.com

S. Cheng (OU-ECE) Neural Networks Jan 2019 217 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201698

lossfunctions.tumblr.com

S. Cheng (OU-ECE) Neural Networks Jan 2019 218 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201699

Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?

S. Cheng (OU-ECE) Neural Networks Jan 2019 219 / 221

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016
10

0

Track the ratio of weight updates / weight magnitudes:

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

S. Cheng (OU-ECE) Neural Networks Jan 2019 220 / 221

Conclusions

Conclusions (What we know in 2017)

BP is just chain rule in calculus
Use ReLU. Never use Sigmoid (use Tanh instead)
Input preprocessing is no longer very important

Do subtract mean
Whitening and normalizing are not much needed

Weight initialization on the other hand is extremely important for
deep networks
Use batch normalization if you can
Use dropout
Use Adam (or maybe RMSprop) for optimizer. If you don’t have
much data, can consider LBFGS
Need to babysit your learning for real-world problems
Never use grid search for tuning your hyperparameters

S. Cheng (OU-ECE) Neural Networks Jan 2019 221 / 221

	Review
	SVM
	Introduction to neural networks
	Perceptron
	Network architectures

	Back-propagation
	Activation functions
	Sigmoid function
	Tanh function
	ReLU
	Maxout neurons
	Lesson Learned

	Initialization
	Input preprocessing
	Weight initialization

	Regularization
	Batch normalization
	Dropout

	Optimization
	Optimizers
	Babysitting learning process
	Hyperparameter optimization

	Conclusions

