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We talked about the basics of CNNs and several CNN
architectures earlier
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Visualizing and understanding conv-nets

e Study weights directly
@ Occlusion experiment

e Visualizing representation
o t-SNE
e through deconvolution
e through optimization
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Visualizing conv-nets Visualizing weights

Visualize the filters/kernels (raw weights) one-stream Alextlet

posing

conv1

only interpretable on the first layer :( — 1

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9- 8 3 Feb 2016
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Visualize the
filters/kernels
(raw weights)

you can still do it
for higher layers,
it's just not that
interesting

(these are taken
from ConvNetJS
CIFAR-10

demo)

Visualizing conv-nets Visualizing weights
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The gabor-like filters fatigue
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(d) Classifier, probability

Occlusion experiments pinege oo
[Zeiler & Fergus 2013] \

(as a function of the
position of the
square of zeros in
the original image)

B True Label: Car Wheel |

True Label: Afghan Hound
i

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 14
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(d) Classifier, probability

Occlusion experiments pinege o
[Zeiler & Fergus 2013]

(as a function of the
position of the
square of zeros in
the original image)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 15 3 Feb 201
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Visualizing conv-nets

Visualizing the representation

i

T

fc7 layer [1— |
[—

&

4096-dimensional “code” for an image
(layer immediately before the classifier)

can collect the code for many images

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 11
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Visualizing conv-nets t-SNE

Visualizing the representation

t-SNE visualization

[van der Maaten & Hinton]
Embed high-dimensional points so that
locally, pairwise distances are conserved

i.e. similar things end up in similar places.
dissimilar things end up wherever

Right: Example embedding of MNIST digits
(0-9) in 2D

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 12 3 Feb 201
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Visualizing conv-nets = t-SNE

t-SNE and SNE

e t-SNE is an improvement of SNE (Stochastic Neighborhood
Embedding)
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t-SNE and SNE

e t-SNE is an improvement of SNE (Stochastic Neighborhood
Embedding)
e SNE:

e Match the distribution of distances between points in the
original high dimensional space and the distribution of distances
between points in the reduced low-dimensional space
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dilj

KL-divergence is not symmetric
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t-SNE and SNE

e t-SNE is an improvement of SNE (Stochastic Neighborhood
Embedding)
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e Match the distribution of distances between points in the
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Visualizing conv-nets = t-SNE
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o SNE tends to have a “crowding problem”
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farther away without incurring significant cost
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Visualizing conv-nets = t-SNE

More on t-SNE

o SNE tends to have a “crowding problem”

e t-SNE resolved this by assuming a t-distribution rather than a
Gaussian distribution for the distance between points in the
reduced space

4 = (I+llyi —wl*) !
1] — —
DD Yo+ Iy = wl®)

e Student t-distribution is much more heavy tail. Allow y;’s to be
farther away without incurring significant cost
e t-SNE also symmetrized the conditional distribution: pj; = w
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Visualizing conv-nets = t-SNE

More on t-SNE

o SNE tends to have a “crowding problem”

e t-SNE resolved this by assuming a t-distribution rather than a
Gaussian distribution for the distance between points in the
reduced space

4 = (I+llyi —wl*) !
1] — —
DD Yo+ Iy = wl®)

e Student t-distribution is much more heavy tail. Allow y;’s to be
farther away without incurring significant cost

° t- SNE also symmetrized the conditional distribution: py; m

o 58 =43 (pi — ai)(L+ llyi — vill) ' (vi — )

Force spring
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More on t-SNE

e For each update, essentially summing up force exerting on a point
from all other points

(OU-ECE) izing CNN


https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf
https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf
https://distill.pub/2016/misread-tsne/
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More on t-SNE

For each update, essentially summing up force exerting on a point
from all other points
o For large dataset (with say more than 10K data points), the naive
implementation can be too slow

For far away points from a similar direction, the force can be
approximated as a net force from the center of mass from the
point cloud

e This is known as Barnes-Hut approximation

e Originally introduced from astro-physics
Can further speed things up by first putting y;’s in a quad-tree
structure

e Can quickly determine if a point cloud is sufficiently far away from

y; for Barnes-Hut approximation
o Allow one to pull out the center of mass of a point cloud quickly
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Visualizing conv-nets = t-SNE

More on t-SNE

e For each update, essentially summing up force exerting on a point
from all other points
o For large dataset (with say more than 10K data points), the naive
implementation can be too slow
e For far away points from a similar direction, the force can be
approximated as a net force from the center of mass from the
point cloud
e This is known as Barnes-Hut approximation
e Originally introduced from astro-physics
o Can further speed things up by first putting y;’s in a quad-tree
structure
e Can quickly determine if a point cloud is sufficiently far away from
y; for Barnes-Hut approximation
o Allow one to pull out the center of mass of a point cloud quickly

@ Also check out ‘“How to use t-SNE effectively” for more details
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t-SNE visualization:

two images are
placed nearby if their
CNN codes are
close. See more:

http://cs.stanford.
edu/people/karpathy/cnnembed/

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9-13

3 Feb 2016



https://cs.stanford.edu/people/karpathy/cnnembed/

Visualizing conv-nets Deconvolution approach

Deconv approaches

1. Feed image into net

2. Pick a layer, set the gradient there to be all zero except for one 1 for
some neuron of interest “Guided

3. Backprop to image: backpropagation:”
instead

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 20 3 Feb 2016
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Deconv net

@ Appeared in Zeiler and Fergus 13, which also discussed the
occlusion experiment mentioned earlier

e Similar to backprop, but information is passed back through a
“deconv net”
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Deconv net

@ Appeared in Zeiler and Fergus 13, which also discussed the
occlusion experiment mentioned earlier

e Similar to backprop, but information is passed back through a
“deconv net”

e Relu maps back to Relu

(OU-ECE) izing CNN



r-nets Deconvolution approach

Deconv net

@ Appeared in Zeiler and Fergus 13, which also discussed the
occlusion experiment mentioned earlier

e Similar to backprop, but information is passed back through a
“deconv net”

e Relu maps back to Relu
e Unpooling only modifies locations that originally “activates” the
pooling operation
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r-nets Deconvolution approach

Deconv net

@ Appeared in Zeiler and Fergus 13, which also discussed the
occlusion experiment mentioned earlier
e Similar to backprop, but information is passed back through a
“deconv net”
e Relu maps back to Relu
e Unpooling only modifies locations that originally “activates” the
pooling operation
e Filter maps to the transpose of the filter

Visualizing CNN Feb 2017 17/84



Visualizing conv-nets = Deconvolution approach

Deconv net

Visualizing and Understanding Convolutional Networks
Zeiler & Fergus, 2013

Visualizing arbitrary neurons along the way to the top...

gl ke -.- .L
B |

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 26 3 Feb 2016
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Visualizing conv-nets = Deconvolution approach

Deconv net

Visualizing arbitrary neurons along the way to the top...

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 27 3 Feb 2016
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Visualizing conv-nets Deconvolution approach

Deconv net

Visualizing
arbitrary
neurons along
the way to the
top...

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 28 3 Feb 2016
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Visualizing conv-nets Deconvolution approach

Guided backprop

Deconv approaches

[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013]
[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014]
[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]

a) Forward pass T I b) 1|a]s 1|o|s

: i = "
Input image f HEP BT : Forward pass 2[s]a2] = [2] o]0
Feature map| Gl | 2| ] e [

! Backward pass:

Backward pass

| backpra ion
———————————————————— | of-1]3 2|-1]3
c I L ! ! |
) activation: Fi+! = relu(f!) = max(f},0) | > Tl o ST .
. ! : pin afout | Backward pass:
backpropagation: R = (f! > 0)- R;"", where RI*' = S “deconvnet” 0 [FN < JEN -3 It ) )
£ 2|03 2|-1]3]| bit weird
|
S B (R AP .
- | Backward pass: g ° -2 |gg) -1
guided Rl — (/-1 >0)- . R+ | guided 6|lojJo|] «<— |6]|-3]1
backpropagation: ' L ¥ I backpropagation olols 213

Lecture 9 - 25




Visualizing conv-nets Deconvolution approach

Guided backprop

guided backpropagation corre%pondino image crops

Visualization of patterns ? ; ) @ s mu ﬁ"ﬂﬂn
opyand myerconve. DRI 19y }JV" g\]{ ?W\’] )

(bottom) of the network
trained on ImageNet.

Each row corresponds to
one filter.

The visualization using
“guided backpropagation” is

guided backpropagation

based on the top 10 image
patches activating this filter
taken from the ImageNet
dataset.

[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 24 3 Feb 2016
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Visualizing conv-nets

Finding salient map of an object

Deconvolution approach

—
e S
1 13 1 sense
J RS i A ] X oo
5 v 3 o "
[ | ¥ v ¥
4
:;? 5 n aa %, 1000
) War
25 b
Mas . pocley 4066 406
Sride | g | P pooing
m A4

Repeat:
1. Forward an image

2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest

3. Backprop to image
4. Do an ‘image update”

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 38

3 Feb 20

S. Cheng (OU-ECE) 1alizing CNN

Feb 2017



Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

- Use grabcut for
segmentation

Lecture 9 - 37 3 Feb

izing CNN



Visualizing Activations
http://yosinski.com/deepvis

YouTube video
https://www.youtube.com/watch?v=AgkflQ4|GaM
(4min)

Fei-Fei Li & Andrej Karpathy & Justin J

(OU-ECE)

Lecture 9



http://yosinski.com/deepvis
http://yosinski.com/deepvis

Visualizing conv-nets Optimization to Image

imally activate a neuron

H H H H one-stream AlexNet
Visualize patches that maximally activate neurons
H 18
I___h
| S—
7
ol 2 ” pool5
o
H
il
= &
sf
Figure 4: Top regions for six pool; units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts, =
such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6). N N 5

Rich feature hierarchies for accurate object detection and semantic segmentation
[Girshick, Donahue, Darrell, Malik]




Visualizing conv-nets Optimization to Image

Recovering original image

Question: Given a CNN code, is it
possible to reconstruct the original
image?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 44 3 Feb 2016
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Visualizing conv-nets Optimization to Image

Recovering original image

Find an image such that:
- Its code is similar to a given code
- It “looks natural” (image prior regularization)

x* = argmin £(®(x), D) + AR (x)

xERHXWXC

U(B(x), Bo) = [|2(x) — Pol|”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 45 3 Feb 2016

S. Cheng (OU-ECE) Visualizing CNN Feb 2017 28 /84



Visualizing conv-nets Optimization to Image

Recovering original image

Understanding Deep Image Representations by Inverting Them
[Mahendran and Vedaldi, 2014]

original image .
reconstructions

from the 1000
log probabilities
for ImageNet
(ILSVRC)
classes

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 46 3 Feb 2016
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Visualizing conv-nets Optimization to Image

Recovering original image

Reconstructions from the representation after last last pooling layer
(immediately before the first Fully Connected layer)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 47 3 Feb 2016

Visualizing CNN Feb 2017 30/84



Visualizing conv-nets Optimization to Image

Recovering original image

Reconstructions from intermediate layers

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 -48 3 Feb 2016

g (OU-ECE) Visualizing CNN Feb 2017 31/84



Visualizing conv-nets Optimization to Image

Class model visualization

Optimization to Image

2 " s dense dense
1 1
ANl —
|| ] : 3 ’ H }
1IN - B3 13 13
Input s 3 3
28 mage - 384 { 384 56
(RGB) Max
6
Max Max pooling 4096 4096
suide \| g5 | P8 200/ ng
24\ || ofa
3

Q: can we find an image that maximizes
some class score?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 29

Visualizing CNN

3 Feb 2016

Feb 2017

32/84



Visualizing conv-nets Optimization to Image

Class model visualization

Optimization to Image arg max|S.(1)|— Al /13

score for class c (before Softmax)

< 7 " s dense dense
1 1
11 N . —_—
M 5|} ~ Nt N 3
\ by Py 3 13 ISt
Input 5\ N v 3\
28 mage - 384 | E) 256
(RGB) Max
26
Max Max pooling 4096 4096
stide \| g | PO pooling

Q: can we find an image that maximizes
some class score?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 30 3 Feb 201

S. Cheng (OU-ECE) Visualizing CNN Feb 2017
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Visualizing conv-nets Optimization to Image

Class model visualization

Optimization to Image

1. feed in

zeros.

zero image — T
B i 5

2. set the gradient of the scores vector to be [0,0,....1,....,0], then backprop to image

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 31 3 Feb 2016

Visualizing CNN Feb 2017 34 /84



Visualizing conv-nets Optimization to Image

Class model visualization

Optimization to Image

1. feed in . —
zeros. 8 ) — [N
zero image S - ‘ 111

2. set the gradient of the scores vector to be [0,0,....1,....,0], then backprop to image
3. do a small “image update”
4. forward the image through the network.

5. go back to 2. arg max S.(D|- A3

score for class ¢ (before Softmax)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 32 3 Feb 2016
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', Zing conv-nets Optimization to Ima

Class model visualization

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

1. Find images that maximize some class score:

dumbbell

dalmatian

bell pepper

Fei-Fei Li & j i Lecture 9 - 33

017 36 /84



', Zing conv-nets Optimization to Ima

Class model visualization

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

1. Find images that maximize some class score:

washing machine

computer keyboard

ostrich limousine

Fei-Fei Li & Andrej i Lecture 9 - 3 Feb 2016

(OU-ECE)



Visualizing conv-nets Optimization to Image

Class model visualization

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]

Proposed a different form of regularizing the image

\

arg max S.(I) — M3

More explicit scheme:
Repeat:
- Update the image x with gradient from some unit of interest
- Blur x a bit
- Take any pixel with small norm to zero (to encourage sparsity)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 39 3 Feb 2016
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Visualizing conv-nets Optimization to Image

Class model visualization

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]
http://yosinski.com/deepvis

Flamingo Hartebeest Billiard Table

Ground Beetle Indian Cobra Station Wagon Black Swan

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 40 3 Feb 2016
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Visualizing conv-nets Optimization to Image

Class model visualization

Pirate Ship Rocking Chair Teddy Bear Windsor Tie Pitcher

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 41 3 Feb 2016
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Visualizing conv-nets Optimization to Image

Class model visualization
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Visualizing conv-nets Optimization to Image

Class model visualization

Layer 4

Layer2 Layer3

R O S A 2 T =25 5 R - o A A R M M
Layer 1

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 43 3 Feb 2016
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Visualizing conv-nets Optimization to Image

Class model visualization

Visualizing CNN features: Gradient Ascent

Adding “multi-faceted” visualization gives even nicer results:
(Plus more careful regularization, center-bias)

Reconstructions of multiple feature types (facets) recognized Corresponding example training set images recognized
by the same “grocery store” neuron by the same neuron as in the "grocery store" class

" Pl

Nguyen etal, Visualization Types of Features L Networks”, ICML
Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016; reproduced with permission.
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Visualizing conv-nets Optimization to Image

Class model visualization

Visualizing CNN features: Gradient Ascent

bell pepper cardoon strawberry orange pmeapple

beer bottle i breakwater  breastplate “broon caldron cinema ‘cowboy boot

entertainment  gasmask grand piano  hourglass  jack-0-lantern

lampshade monitor mosque  motor scooter pirate planetarium radio sarong ‘schooner
Nguyon ot a, “Mulifaceted Featuro Visualzation; Uncovering tho Difiernt Types of Featuros Leamad By Each Neuron in Dep Noural Networks”, ICML Visualzation or Dogp Learming Workshop 2016
Figuros opyright Anh Nguyon, Jason Yosinsk,and Jeff Clune, 201 eproduced with parmission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 32 May 10, 2017

S. Cheng (OU-ECE) Visualizing CNN Feb 2017 44 /84



onv-nets Optimization to Image

Class model visualization

Algorithm 1 Multifaceted Feature Visualization

Input: a set of images U and a number of facets k&
1. for each image in U, compute high-level (here fc7)
hidden code ®;
2. Reduce the dimensionality of each code ®; from 4096
to 50 via PCA.
3. Run t-SNE visualization on the entire set of codes ®;
to produce a 2-D embedding (examples in Fig. 2).
4. Locate k clusters in the embedding via k-means.
for each cluster
5. Compute a mean image xq by averaging the 15
images nearest to the cluster centroid.
6. Run activation maximization (see Section 2.2), but
initialize it with x¢ instead of a random image.
Output: a set of facet visualizations {x1, Xz, ..., Xk }.

Visualizing CNN Feb 2017



Forward and backward passes

N = ___..J:?_}__- — candle
Tr == banana

c2 L[\ c4 c5

== convertible

fc6 upconvolutional convolutional fc8
v ) fc6 fc7

Deep generator network Y J
(prior) DNN being visualized

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, Jeff Clune, ”Synthesizing
the preferred inputs for neurons in neural networks via deep generator networks”

(OU-ECE) izing CNN



Visualizing conv-nets Optimization to Im

ualization

French loaf

chest running shoe water jug pool table broom cellphone aircraft carrier entertainment ctr jean

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, Jeff Clune, ”Synthesizing
the preferred inputs for neurons in neural networks via deep generator networks”




CNN for arts = Deep dream

DeepDream https://github.com/google/deepdream

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 50 3 Feb 2016
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def

def

objective L2(dst):
dst.diff[:] = dst.data

make_step(net, step_size=1.5, end='inception 4c/output',
jitter=32, clip=True, objective=objective L2):
‘''Basic gradient ascent step.'''

src
dst

net.blobs['data'] # input image is stored in Net's 'data' blob
net.blobs[end]

ox, oy = np.random.randint(-jitter, jitter+l, 2)
src.data[@] = np.roll(np.roll(src.data[e], ox, -1), oy, -2) # apply jitter shift

net.forward(end=end)

objective(dst) # specify the optimization objective
net.backward(start=end)

g = src.diff[0]

# apply normalized ascent step to the input image
src.data[:] += step size/np.abs(g).mean() * g

src.data[0] = np.roll(np.roll(src.data[®], -ox, -1), -oy, -2) # unshift image
if clip:

bias = net.transformer.mean['data']
src.data[:] = np.clip(src.data, -bias, 255-bias)

-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 -5




def

A R
dst.diff[:] = dst.data

DeepDream: setdx =x:)

def make_step(net, step_size=1.5, end='inception 4c/output',
jitter=32, clip=True, objective=objective L2):

‘''Basic gradient ascent step.'''

dst net.blobs[end]

src = net.blobs['data'] # input image is stored in Net's 'data' blob

ox, oy = np.random.randint(-jitter,

src.data[@] = np.roll(np.roll(src.data[e], ox,

jitter+l, 2)

-1), oy, -2) # apply jitter shift

net.forward(end=end)

net.backward(start=end)

objective(dst) # specify the optimization objective

g = src.al

# apply normalized ascent step to the input image
src.data[:] += step size/np.abs(g).mean() * g

“‘image update”

jitter regularizer

src.data[@] = np.roll(np.roll(src.data[®], -ox, -1),

-0y, -2) # unshift image

if clip:

bias = net.transformer.mean['data']

src.data[:] = np.clip(src.data,

-bias, 255-bias)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 9 - 52

3 Feb 20




CNN for arts Deep dream

inception_4c/output

DeepDream modifies the image in a way that “boosts” all activations, at any layer

this creates a feedback loop: e.g. any slightly detected dog face will be made more
and more dog like over time

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 53 3 Feb 2016
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CNN for arts = Deep dream

inception_4c/output
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CNN for arts Deep dream

inception_3b/5x5_reduce
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CNN for arts Deep dream

nage is icansed B

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 47 May 10, 2017
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https://github.com/jcjohnson/neural-style/blob/master/examples/multigpu_scripts/starry_stanford.sh
https://github.com/jcjohnson/neural-style/blob/master/examples/multigpu_scripts/starry_stanford.sh

CNN for arts = Deep dream

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 48 May 10, 2017
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NeuralStyle

[ A Neural Algorithm of Artistic Style by Leon A. Gatys,
Alexander S. Ecker, and Matthias Bethge, 2015]
good implementation by Justin in Torch:

https://github.com/jcjohnson/neural-style

(OU-ECE)




N [mﬂm,‘ - 5 DyISE
make your own easily on deepart.io

rej Karpathy & Justin Johnson Lecture 9 - 58 3 Feb 2016
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CNN for arts = Neural style

Step 1: Extract content targets (ConvNet activations of all layers
for the given content image)

content activations

e.g.
at CONV5_1 layer we would have a [14x14x512] array of target activations

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 59 3 Feb 2016
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CNN for arts = Neural style

Step 2: Extract style targets (Gram matrices of ConvNet
activations of all layers for the given style image)

style gram matrices
_ Ty
e.g. G=V'V
at CONV1 layer (with [224x224x64] activations) would give a [64x64] Gram
matrix of all pairwise activation covariances (summed across spatial locations)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 60 3 Feb 2016
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CNN for arts = Neural style

Step 3: Optimize over image to have:
- The content of the content image (activations match content)
- The style of the style image (Gram matrices of activations match style)

Liotai (7. @, T) = 0 Leontent (. &) + BLatyic(d, T)

(+Total Variation regularization (maybe))

match content

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 61 3 Feb 2016
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Style
image

Output
image
(Start with
noise)

Content
image

Ys

Style Target

Zé,relulj ¢,relu2.2 eq‘),reluS.B £¢.re1u4_3

style style style

Y

Ye

Content Target ¢

Serena Yeun

Gatys, Ecker, and Bethge, “image style transfor
Figure adapled from Johnson, Alahi, and Fei-Fei

@, relu3_3
feat

using convolutional neural networks”, CVPR 2016
i, “Perceptual Losses for Real-Time Style Transfer and

¥, ECCV 2016. Copyright

Lecture 11 -
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67 May 10, 2017




Style
image

Output
image

Content
image

Neural style

Style Target

Ysh

14

style

style

¢, relul_2 £¢,relu2_2 eq‘),reluS.B £¢.re1u4_3
style

style

Y

0

Ye '-----==——-—mm- -1 :

@, relu3_3
feat

Gatys, Ecker, and Bethge, “image style ransfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fe, “Perceptual Losses for Real-Time Style Transfer and

¥, ECCV 2016. Copyright

Lecture 11 -

6. Repr

68 May 10, 2017
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CNN for arts = Neural style

Neural Style Transfer

Example outputs from

my implementation
(in Torch)

Gatys, Ecker, and Belhge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015

(OU-ECE)



CNN for arts = Neural style

Neural Style Transfer

More weight to
content loss b o style loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 70 May 10, 2017
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CNN for arts = Neural style

Neural Style Transfer

Resizing style image before running style transfer
algorithm can transfer different types of features

Larger style _ _ Smaller style
image - o image

Gatys, Ecker, and Belhge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015

ei Li & Justin Johnso e11- 71 May

(OU-ECE)



Neural Style Transfer: Multiple Style Images

Mix style from multiple images by taking a weighted average of Gram matrices

S

Gatys, Ecker, and Belhge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015

Fei-Fei Li & Justin Johns Serena Yeung Lecture 11 - May 10, 2017
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CNN for arts Neural style

:E

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 73 May 10, 2017
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CNN for arts = Neural style

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 74 May 10, 2017
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CNN for arts Neural style

S. Cheng (OU-ECE) Visualizing CNN Feb 2017 69 /84



CNN for arts Neural style

Neural Style Transfer

Problem: Style transfer
requires many forward /
backward passes through
VGG; very slow!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 76 May 10, 2017
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CNN for arts Neural style

Neural Style Transfer

Problem: Style transfer
requires many forward /
backward passes through
VGG; very slow!

Solution: Train another
neural network to perform
style transfer for us!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 77 May 10, 2017
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CNN for arts = Neural style

FaSt Style TranSfer (1) Train a feedforward network for each style

(2) Use pretrained CNN to compute same losses as before
(3) After training, stylize images using a single forward pass

Style Target gorelul2 pprelud2 yorelus3 yorelud
st

—|_> style style yle style
""""""""" ! Yshy 4 #1404 .
1 : SRR I IS I AR A 1
Ak :
1 y ! :
| |
1 ! 1
\ s 11T
_ Feedforward Net _ | Y ! Loss Network 10} i
POl 1 I
e¢,relu3_3
Content Target feat

Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016
Figure copyright Springer, 2016. Reproduced for educational purposes.

Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 78 May 10, 2017
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Style Style
The Starry Night, The Muse,
Vincent van Gogh, icass

Slow Fasf Slow Fast

Johon, A, ad o ol Parcaphsl Losesfor Rea-Ti St Tracala nd Supe Reschor, ECCV 2018
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CNN for arts = Neural style

Fast Style Transfer

Content Texture nets (ours) Gatys ctal. Style

Concurrent work from Ulyanov et al, comparable results

T nd Styized Images”, ICML 2016
arXiv 2016
rea Viedaldi, and Victor Lempitsky, 2016. Reproduced with

Ulyanov et al, “Texture
Ulyanov et al, The
e

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 -

(OU-ECE)



18, AT Y
Replacing batch normalization with Instance Normalization improves results

Ulyanov et al, “Texture Networks: Feed-forward Synthesis of Textures and Sty 1CML 2016
Ulyanov et al,

3
16. Reproduced with

Lecture 11 - May 10, 2017
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>
i
7]
i
I
3
o
Z.

Z
Z
)
20
=]
I
&

N for arts

Different normalizations
Layer Norm

Batch Norm
C: channel; N: batch size; H;W: height and width




One Network, Many Styles

Dumoulin, Shlens, and Kudlur, “A Learned Representation for Artistic Style", ICLR 2017.
P Jonathon Shiens,

ei Li & Justin J Serena Yeung Lecture 11 -

(OU-ECE) /isualizing Feb 2017



Use the same network for multiple
styles using conditional instance
normalization: learn separate scale
and shift parameters per style

<l

Xoom= (X-H)/ 0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 83 May

(OU-ECE)



We can pose an optimization over the input
image to maximize any class score.
That seems useful.

Question: Can we use this to “fool” ConvNets?

spoiler alert: yeah

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 62 3 Feb 2016
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conv-net

correct B +distort ostrich
3 Feb 2016
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Fooling conv-net

[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Nguyen, Yosinski, Clune, 2014]

>99.6%

confidences robin cheetah armadillo lesser panda

(OU-ECE)



Fooling conv-net

[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Nguyen, Yosinski, Clune, 2014]

N s e
PP p——
RN —

PR E——

>99.6%

3 )
confidences king penguin starfish I baseball electric guitar

1“
118000000001
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one
ooe

Leapponnnti
LIs000000B RN Y

1800
1000

I freight car ]l remote control H pea;ock » " African grey I

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 65 3 Feb 201
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Fooling conv-net

These kinds of results were around even before ConvNets...
[Exploring the Representation Capabilities of the HOG Descriptor, Tatu et al., 2011]

Identical HOG represention

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 66 3 Feb 2016
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Fooling conv-net

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
[Goodfellow, Shlens & Szegedy, 2014]

“primary cause of neural networks’ vulnerability to adversarial
perturbation is their linear nature”
(and very high-dimensional, sparsely-populated input spaces)

In particular, this is not a problem with Deep Learning, and
has little to do with ConvNets specifically. Same issue
would come up with Neural Nets in any other modalities.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 9 - 78 3 Feb 2016
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Conclusions

e Can use optimization and backprop/deconv to visualize weight

e Can be used to find salient map as well
o Probably many other uses for this trick as well. Be imaginative!
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Conclusions

e Can use optimization and backprop/deconv to visualize weight

e Can be used to find salient map as well
o Probably many other uses for this trick as well. Be imaginative!

e CNN for arts (how about not visual data, how about music?)

o Unfortunately, like any other “linear” based classifier, conv-net
with softmax layer at the end can be easily fooled
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