Generative Models

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2018
(Slides credit to Goodfellow, Larochelle, Hinton)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 1/125

Table of Contents

@ Supervised vs unsupervised learning
© Generative models
© GANs

@ Boltzmann machines and DBNs

@ Boltzmann machines
© Autoencoders

@ Conclusions

S. Cheng (OU-Tulsa) Generative Models Feb 2017 2/125

Review

@ We talked about RNN previously. RNN can be treated as a kind of
generative models. That is, able to generate samples from the model

@ We will look into more generative models:

o PixelCNN and PixelRNN
o Generative adversarial networks (GANSs)
e Variational autoencoders

S. Cheng (OU-Tulsa) Generative Models Feb 2017 3/125

Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 4 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 4/125

Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,

regression, object detection, Classification
semantic segmentation, image

captioning, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 5 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 5/125

Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification, DOG. DOG. CAT
regression, object detection,
semantic segmentation, image Object Detection

captioning, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 6 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 6/125

Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

GRASS, ,

Examples: Classification, TREE, SKY

regression, object detection,
semantic segmentation, image Semantic Segmentation
captioning, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 7 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 7/125

Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

A cat sitting on a suitcase on the floor

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Image captioning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 8 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 8/125

Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 9 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 9/125

Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Unsupervised Learning . o

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

K-means clustering

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 10 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 10/125

Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x EEERET
Just data, no labels! i e
Goal: Learn some underlying "‘
hidden structure of the data 2.4
E?(amp!es: Q'USte””Q: Principal Component Analysis
dimensionality reduction, feature (Dimensionality reduction)

learning, density estimation, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 11 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 11/125

Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Unsupervised Learning ST
L2 Loss function: i%‘;‘@
: = DRSS
Data: x -
o, <
Just data, no labels! Reconsiiucled & -.H* e
input data Encoder: 4-layer conv
Decoder Decoder: 4-layer upconv
Goal: Learn some underlying Features | 2 e
hidden structure of the data Bem=R
Encoder ,W“ﬁ
.) Input data T !s‘zw
E?(amp!es. Qlusterlng, wliid « B
dimensionality reduction, feature Autoencoders

learning, density estimation, etc. (Feature learning)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 12 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 12/125

Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x

Just data, no labels! 1-d density estimation

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 13 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 13/125

Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning
Data: (x, y) Data: x
X is data, y is label Just data, no labels!

Goal: Learn a functionto map x->y Goal: Learn some underlying
hidden structure of the data
Examples: Classification,

regression, object detection, Examples: Clustering,
semantic segmentation, image dimensionality reduction, feature
captioning, etc. learning, density estimation, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 14 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 14 /125

Supervised vs unsupervised learning

Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning
Training data is cheap
Data: (X, y) Data: x \ Holy grail: Solve
x is data, y is label Just data, no labels! unsupervised leaming

=> understand structure
of visual world

Goal: Learn a functionto map x->y Goal: Learn some underlying
hidden structure of the data
Examples: Classification,

regression, object detection, Examples: Clustering,
semantic segmentation, image dimensionality reduction, feature
captioning, etc. learning, density estimation, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 15 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 15/125

Generative models

Generative Models

Given training data, generate new samples from same distribution

o4 =

Training data ~ p_.(X) Generated samples ~p_ . (x)

Want to learn p,___(x) similar to p__,_(x)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 16 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 16 /125

Generative models

Generative Models

Given training data, generate new samples from same distribution

4 =iy

Training data ~ p,,.(X) Generated samples ~ p,__...(X)

Want to learn p,___(x) similar to p__,_(x)

model
Addresses density estimation, a core problem in unsupervised learning
Several flavors:

- Explicit density estimation: explicitly define and solve for p__..(x)

- Implicit density estimation: learn model that can sample from p (x) w/o explicitly defining it

model

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 17 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 17 /125

Generative models

Why Generative Models?
- Realistic samples for artwork, super-resolution, colorization, etc

- Generatlve models of time-series data can be used for simulation and
planning (reinforcement learning applications!)

- Training generative models can also enable inference of latent
representations that can be useful as general features

ec Radford ot al. 2016; (2) David Berthelot ot al. 2017: Philip Isola et al, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 18 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 18/125

Generative models
Discriminative models vs generative models

@ Discriminative models try to discriminate if one input is different
from another. But it is not possible to generate samples from the
models. Many classifiers are based on discriminative models, for
example, support vector machines

S. Cheng (OU-Tulsa) Generative Models Feb 2017 19/125

Generative models
Discriminative models vs generative models

@ Discriminative models try to discriminate if one input is different
from another. But it is not possible to generate samples from the
models. Many classifiers are based on discriminative models, for
example, support vector machines

@ Generative models on the other hand can generate simulated data,
for example, PixelCNN

S. Cheng (OU-Tulsa) Generative Models Feb 2017 19/125

Generative models
Discriminative models vs generative models

@ Discriminative models try to discriminate if one input is different
from another. But it is not possible to generate samples from the
models. Many classifiers are based on discriminative models, for
example, support vector machines

@ Generative models on the other hand can generate simulated data,
for example, PixelCNN

@ Many older machine learning problems are classification problems.
Discriminative models provide a more direct solution and thus were
more attractive

S. Cheng (OU-Tulsa) Generative Models Feb 2017 19/125

Generative models
Discriminative models vs generative models

Discriminative models try to discriminate if one input is different
from another. But it is not possible to generate samples from the
models. Many classifiers are based on discriminative models, for
example, support vector machines

@ Generative models on the other hand can generate simulated data,
for example, PixelCNN

Many older machine learning problems are classification problems.
Discriminative models provide a more direct solution and thus were
more attractive

Generative models have gained quite some attentions in recent years

o Generate labeled simulation data for semi-supervised learning
e Simulate data for planning and reinforcement learning

S. Cheng (OU-Tulsa) Generative Models Feb 2017 19/125

Generative models

Taxonomy of Generative Models

GAN
‘ Generative models ‘
‘ Explicit density ‘ ‘ Implicit density ‘
‘ Tractable density ‘ ‘ Approximate density ‘ ‘ Markov Chain ‘
Fully Visible Belief Nets / \ GSN
- NADE o -
- MADE ‘ Variational ‘ ‘ Markov Chain ‘
- P|erRNN/CNN Variational Autoencoder Boltzmann Machine
Change of variables models
(nonlinear ICA))))))
Figure copyright and adapted from lan Tutorial on A Networks, 2017.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 19 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 20/125

Generative models

Taxonomy of Generative Models

Today: discuss 3 most GAN
popular types of generative ‘ Generative models ‘
models today /\
‘ Explicit density ‘ ‘ Implicit density ‘
‘ Tractable density ‘ ‘ Approximate density ‘ ‘ Markov Chain ‘
. . GSN
Fully Visible Belief Nets \
- NADE : / -
- MADE ‘ Variational ‘ ‘ Markov Chain ‘

- P|erRNN/CNN |Variational Autoencoderl Boltzmann Machine
Change of variables models

(nonlinear ICA)

Figure copyright and adapted from lan Tutorial on ive A ial Networks, 2017.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 20 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 21/125

Generative models

PixelRNN and PixelCNN

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - 21 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 22/125

Generative models

Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

p(x) = Hp(a:z-|x1, ey Ti—1)
=

Likelihood of Probability of i'th pixel value
image x given all previous pixels

Then maximize likelihood of training data

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 22 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 23 /125

Generative models

Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

p(x) = Hp(a:z-|x1, ey Ti—1)
=

Likelihood of Probability of i'th pixel value
image x given all previous pixels
Complex distribution over pixel
L o . values => Express using a neural
Then maximize likelihood of training data gtwork!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 23 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 24 /125

Generative models

Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

n
p(z) = Hp(ﬂ?z'|$1, ey Ti—1)
i=1

T T Will need to define
o ordering of “previous
Likelihood of Probability of i'th pixel value pixels”

image x given all previous pixels
Complex distribution over pixel
o . values => Express using a neural
Then maximize likelihood of training data gwork!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 24 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 25/125

Generative models

PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

@ O
© O
© O
© O
© O

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 25 May 18, 2017

© 0 0 0 O
© 0 0 0 O
© 0 06 0 O

S. Cheng (OU-Tulsa) Generative Models Feb 2017 26 /125

Generative models

PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner E—O © o O
Dependency on previous pixels modeled © &6 ¢ ©
using an RNN (LSTM) O © © © O
© 06 6 0 ©
© 06 06 0 O

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 26 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 27 /125

Generative models

PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

© 0 O

© 0 0 ©
© 0 0 0 O
© 0 06 0 O

o
(@)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 27 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 28/125

Generative models

PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

o @—

o O

© 0 O

© 0 0 O
© 0 06 0 O

Drawback: sequential generation is slow!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 28 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 29/125

Generative models

PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from i .‘
corner

Dependency on previous pixels now gt /

modeled using a CNN over context region

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 29 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 30/125

Generative models

PixelCNN [van der Oord et al. 2016]

Softmax loss at each pixel

Still generate image pixels starting from i .‘
corner

Dependency on previous pixels now A /

modeled using a CNN over context region

Training: maximize likelihood of training
images

p(z) = HP(IHIL ey Ti1)
i=1

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 30 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 31/125

Generative models

PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from i .‘
corner

Dependency on previous pixels now gt /

modeled using a CNN over context region

Training is faster than PixelRNN
(can parallelize convolutions since context region
values known from training images)

Generation must still proceed sequentially
=> still slow

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 31 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 32/125

Generative models

Generation Samples
Pl AL | e S ol ﬂﬂkiﬂﬁlﬂﬂl

GREEC YN X g A L Rlw TR
BESUL TG aE R SRR Fe
e f OGRS QRS &1 'Iiil'ﬂ 2800)
- PP
T =R
SRR fﬁ&E!I

E@llﬂlﬁlﬂﬁ - iﬁkxﬂﬁﬁﬂl
32x32 CIFAR-10 32x32 ImageNet

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 32 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 33/125

Generative models

PixelRNN and PixelCNN

Pros: Improving PixelCNN performance
- Can explicitly compute likelihood - Gated convolutional layers
p(x) - Short-cut connections
- Explicit likelihood of training - Discretized logistic loss
data gives good evaluation - Multi-scale
metric - Training tricks
- Good samples - Ete...
Con: See
- Sequentia| generation => slow - Van der Oord et al. NIPS 2016
- Salimans et al. 2017
(PixelCNN++)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 33 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 34 /125

GANs

Generative adversarial networks (GANs)
Goodfellow et al. 2014

random
number
generator

generator

oo g enerator

data sample?

S. Cheng (OU-Tulsa) Generative Models Feb 2017 35/125

GANs

Generative adversarial networks (GANs)
Goodfellow et al. 2014

T~ q(x) | — D(z) z ~ p(z|z)

Prob(z ~ q(x))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 36/125

Minimax game of a GAN

o Probability of model data: p,,oq¢i(2) = [p(2)p(z|2)dz

S. Cheng (OU-Tulsa) Generative Models Feb 2017 37/125

Minimax game of a GAN

o Probability of model data: p,,oq¢i(2) = [p(2)p(z|2)dz
@ Probability of true data: py,;,(z) = q(x)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 37/125

Minimax game of a GAN

o Probability of model data: p,,oq¢i(2) = [p(2)p(z|2)dz
@ Probability of true data: py,;,(z) = q(x)

@ Discriminator wants to catch fake data

JP) = _F log D(x) — E, log(1 — D(G(2)))

IT~Pdata

=—F log D(z) — E,_,, log(l—D(z))

T~Pdata

o N.B. JP) is just cross-entropy loss for correct classification

S. Cheng (OU-Tulsa) Generative Models Feb 2017 37/125

Minimax game of a GAN

Probability of model data: p,,q4c1(2) = [p(2)p(z|2)dz

@ Probability of true data: py,;,(z) = q(x)
@ Discriminator wants to catch fake data
D) _
JP) =—E, ., logD(x)— E,log(1 — D(G(z)))
=By, 08 D@) ~ B, log(1— D(x))

o N.B. JP) is just cross-entropy loss for correct classification

Generator wants to fool the discriminator: J(&) = — (D)

o Since first term does not depend on G(-), we can simplify J(&) to

J@ = —E_log(1 — D(G(2)))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 37/125

Nash equilibrium

@ By game theory, Nash equilibriums exist
@ One equilibrium is G(-) generate indifferentiable sample as the true
data and D(-) will just make choices randomly (output 1 with
probability 0.5)
o This is the equilibrium that we are interested in

S. Cheng (OU-Tulsa) Generative Models Feb 2017 38/125

GANs

Optimal discriminator D*(z)

By calculus of variations, for any A(z),

8.JP)(D*(X) + AA(x))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 39/125

GANs

Optimal discriminator D*(z)

By calculus of variations, for any A(z),

8J PN (D*(X) + AA(x)) —0
o o N
- — aEmNPdata log(D* (,T) + AA(:U)) _ aEx'\‘prnodel log(l — D*(w) _ AA(ZE)) =0
oA oA

S. Cheng (OU-Tulsa) Generative Models Feb 2017 39/125

GANs

Optimal discriminator D*(z)

By calculus of variations, for any A(z),

0JPD(X) + AA@) | _
B2\ o
OE, .. log(D'(z)+ AA(z)) OB, , log(l—D'(z)—AA(z))
e X - ax o 0
A(x) A(x) _
7 Fepian {M} Fep o {1 — D (x) - AA(;’L‘)} -°

S. Cheng (OU-Tulsa) Generative Models Feb 2017 39/125

GANs

Optimal discriminator D*(z)

By calculus of variations, for any A(z),

OJPND*(X) + AA(x)) —0
oA B
A=0
OB, log(D'(z)+ \A(z)) OB, , log(l—D'(z)—AA(z))
- o - B\
A=0
A(z) _
= ~Eopiata { +)\A () } B b imoder L — D (z)—)\A(m)} o =0
pdata(w) pmodel()
> [[P - | acorae
S. Cheng (OU-Tulsa) Generative Models Feb 2017

39/125

GANs

Optimal discriminator D*(z)

By calculus of variations, for any A(z),

8.JP)(D*(X) + AA(x))

N =0
A=0
0B, 08D (@) £ AA() OB, lo8(1— D'(x) - AA(x))
oA oA
A=0
A(z)
_E =
= T~Pdata |: + AA ID :| szm,odel |:1 _ D*(CL') _)\A(IE):| ‘o 0
pdata pmodel()
et s] Ao
:>D*(.CC pdata(m)
pdata() + Pmodel (CC)
S. Cheng (OU-Tulsa) Generative Models Feb 2017

39/125

GANs Design tricks

Non-saturating cost function

@ The discriminator cost function
D _ .
JP) = —E,.p,.. logD(z) — E,log(1— D(G(z))) is a very
reasonable choice and usually will not be modified

S. Cheng (OU-Tulsa) Generative Models Feb 2017 40/125

GANs Design tricks

Non-saturating cost function

@ The discriminator cost function
D _ .
JP) = —E,.p,.. logD(z) — E,log(1— D(G(z))) is a very
reasonable choice and usually will not be modified

@ On the other hand, we have more freedom on choosing the generator
cost

S. Cheng (OU-Tulsa) Generative Models Feb 2017 40/125

GANs Design tricks

Non-saturating cost function

@ The discriminator cost function
JP) = _F log D(z) — E,log(1 — D(G(z))) is a very

I~Pdata
reasonable choice and usually will not be modified

@ On the other hand, we have more freedom on choosing the generator
cost

o E_log(1 — D(G(2))) is the intuitive choice for J() but it has a small
gradient when D(G(z)) is small for all z

e That is, generator is not able to fool the discriminator
o Reasonable when we just started to train the generator

S. Cheng (OU-Tulsa) Generative Models Feb 2017 40/125

GANs Design tricks

Non-saturating cost function

@ The discriminator cost function
JP) = _F log D(z) — E,log(1 — D(G(z))) is a very

I~Pdata
reasonable choice and usually will not be modified
@ On the other hand, we have more freedom on choosing the generator
cost
o E_log(1 — D(G(2))) is the intuitive choice for J() but it has a small
gradient when D(G(z)) is small for all z
e That is, generator is not able to fool the discriminator
o Reasonable when we just started to train the generator
o Instead, it is better to have J(@) = —E_log D(G(z))
o —log D(G(z)) ~ 0 when D(G(z)) ~ 1: ignore samples that
successfully fool the discriminator
e —log D(G(z)) > 0 when D(G(z)) ~ 0: emphasize samples that
cannot fool the discriminator
o When D(G(z)) ~ 1 for all z, we may need to switch back to the
original cost function. But better yet, we should better train the
discriminator

S. Cheng (OU-Tulsa) Generative Models Feb 2017 40/125

GANs Design tricks

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min 12 [Epnpase, 108 Do (2) + Eanp(ay l0g(1 — Do, (Go, ()]

g d

Alternate between:
1. Gradient ascent on discriminator

% B, 108 Do, (2) + Eanp(s) og(1 — Do, (G, ()]

2. Instead: Gradient ascent on generator, different
objective

maxE. .y 0g(Day (G, (2)) o

Instead of minimizing likelihood of discriminator being correct, now
maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient 4
signal for bad samples => works much better! Standard in practice. °

High gradignt signal

Cow gradient signal

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 41/125

GANs Design tricks

Some refinements

Training GAN is equivalent of finding the Nash equilibrium of a two-player
non-cooperative game, which itself is a very hard problem. We will men-
tion here a couple refinements to help find a better solution. You probably
would like to check out Salimans’ 16 also

One-sided label smoothing
o Fixing batch-norm

@ Mini-batch features

@ Unrolled GAN

S. Cheng (OU-Tulsa) Generative Models Feb 2017 42 /125

https://arxiv.org/pdf/1606.03498.pdf

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

@ Default discriminator cost can also be written as

cross_entropy("1",discriminator(data))

+cross_entropy("0", discriminator(samples))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 43 /125

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

@ Default discriminator cost can also be written as

cross_entropy("1",discriminator(data))

+cross_entropy("0", discriminator(samples))

@ Experiment shows that one-sided label smoothed cost enhance
system stability

cross_entropy("0.9",discriminator(data))

+cross_entropy("0", discriminator(samples))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 43 /125

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

@ Default discriminator cost can also be written as

cross_entropy("1",discriminator(data))

+cross_entropy("0", discriminator(samples))

@ Experiment shows that one-sided label smoothed cost enhance
system stability

cross_entropy("0.9",discriminator(data))

+cross_entropy("0", discriminator(samples))

e Essentially prevent extrapolating effect from extreme samples
o Generally does not reduce classification accuracy, only confidence

S. Cheng (OU-Tulsa) Generative Models Feb 2017 43 /125

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

@ It is important not to smooth the negative labels though, i.e., say

cross_entropy(1 — «,discriminator(data))

+cross_entropy(3, discriminator(samples))

with 5 > 0

Replacing positive classification targets with « and negative targets with /3, the optimal discriminator

becomes D(z) = % The presence of prodel in the numerator is problematic
: data mode . .
because, in areas where pgata 15 approximately zero and pmodel is large, erroneous samples from

Pmodel have no incentive to move nearer to the data. We therefore smooth only the positive labels to
«, leaving negative labels set to 0.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 44 /125

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

@ It is important not to smooth the negative labels though, i.e., say

cross_entropy(1 — «,discriminator(data))

+cross_entropy(3, discriminator(samples))

with 5 > 0
o Just follow the same derivation as before, we can get the optimum

D(z) as
1— a)pdam (.’IZ‘) + /Bpmodel (.’IZ‘)

Pdata (‘T> + Pmodel ($)

D) &

Replacing positive classification targets with « and negative targets with /3, the optimal discriminator

becomes D(z) = % The presence of prodel in the numerator is problematic
: data mode . .
because, in areas where pgata 15 approximately zero and pmodel is large, erroneous samples from

Pmodel have no incentive to move nearer to the data. We therefore smooth only the positive labels to
«, leaving negative labels set to 0.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 44 /125

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

@ It is important not to smooth the negative labels though, i.e., say

cross_entropy(1 — «,discriminator(data))

+cross_entropy(3, discriminator(samples))

with 5 > 0

o Just follow the same derivation as before, we can get the optimum
D(z) as

1 —)Pgata(T) + BPmode (T)
Pdata(T) + Proder ()

@ 3 > 0 tends to give undesirable bias of the discriminator to data
generated by the model

Replacing positive classification targets with « and negative targets with /3, the optimal discriminator
becomes D(x) = % The presence of pioder in the numerator is problematic
because, in areas where pgata 15 approximately zero and pmodel is large, erroneous samples from
Pmodel have no incentive to move nearer to the data. We therefore smooth only the positive labels to

«, leaving negative labels set to 0.

D) &

S. Cheng (OU-Tulsa) Generative Models Feb 2017 44 /125

GANs Design tricks

Issue on batch normalization
Goodfellow 2016

Batch normalization is preferred and highly recommended. But it can

S. Cheng (OU-Tulsa) Generative Models Feb 2017 45 /125

GANs Design tricks

Fixing batch norm

@ Reference batch norm: one possible approach is keep one reference
batch and always normalized based on that batch. That is, always
subtract mean from that of the reference batch and adjust variance

to that of the reference batch

e Can easily overfit to the particular reference batch

S. Cheng (OU-Tulsa) Generative Models Feb 2017 46 /125

GANs Design tricks

Fixing batch norm

@ Reference batch norm: one possible approach is keep one reference
batch and always normalized based on that batch. That is, always
subtract mean from that of the reference batch and adjust variance
to that of the reference batch

e Can easily overfit to the particular reference batch

@ Virtual batch norm: a partial solution by combining the reference
batch norm and conventional batch norm. Fix a reference batch, but
every time inputs are normalize to the net mean and variance of the
virtual batch containing both inputs and all elements of the reference
batch

S. Cheng (OU-Tulsa) Generative Models Feb 2017 46 /125

GANs Design tricks

Balancing G and D

@ Usually it is more preferable to have a bigger and deeper D

S. Cheng (OU-Tulsa) Generative Models Feb 2017 47 /125

GANs Design tricks

Balancing G and D

@ Usually it is more preferable to have a bigger and deeper D

@ Some researchers also run more D steps than G steps. The results
are mixed though

S. Cheng (OU-Tulsa) Generative Models Feb 2017 47 /125

GANs Design tricks

Balancing G and D

@ Usually it is more preferable to have a bigger and deeper D

@ Some researchers also run more D steps than G steps. The results
are mixed though

@ Do not try to limit D from being “too smart”

e The original theoretical justification is that D is supposed to be
perfect

S. Cheng (OU-Tulsa) Generative Models Feb 2017 47 /125

GANs Design tricks

Mode collapse
Metz et al. 2016

Below demonstrates why D should be smart.

@ Basically the minmax and the minmax problem is not the same and
can lead to drastically different solutions

min max V(G,D) + max min V(G, D)

- - - -

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

S. Cheng (OU-Tulsa) Generative Models Feb 2017 48 /125

GANs Design tricks

Mode collapse
Metz et al. 2016

Below demonstrates why D should be smart.
@ Basically the minmax and the minmax problem is not the same and
can lead to drastically different solutions

min max V(G,D) + max min V(G, D)

@ D in the inner loop: converge to the correct distribution
@ (G in the inner loop: place all mass on most likely point

- -

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

S. Cheng (OU-Tulsa) Generative Models Feb 2017 48 /125

GANs Design tricks

Minibatch features
Salimans et al. 2016

@ Mode collapse can lead to low diversity of generated data

S. Cheng (OU-Tulsa) Generative Models Feb 2017 49 /125

GANs Design tricks

Minibatch features
Salimans et al. 2016

@ Mode collapse can lead to low diversity of generated data

@ One attempt to mitigate this problem is to introduce the so-called
minibatch features
e Basically classify each example by comparing the features to other
members in the minibatch
o Reject a sample if the feature to close to existing ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 49 /125

GANs Design tricks

Unrolled Gans
Metz et al. 2016

@ A more direct approach was proposed by Google brain

@ Trying to ensure that the generated sample is a solution of the
minmax rather than the maxmin problem

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

S. Cheng (OU-Tulsa) Generative Models Feb 2017 50/125

GANs Design tricks

Unrolled Gans
Metz et al. 2016

@ A more direct approach was proposed by Google brain

@ Trying to ensure that the generated sample is a solution of the
minmax rather than the maxmin problem

@ Have the generator to unroll k future steps and predict what
discriminator will think of the current sample

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

S. Cheng (OU-Tulsa) Generative Models Feb 2017 50/125

GANs Design tricks

Unrolled Gans
Metz et al. 2016

@ A more direct approach was proposed by Google brain
@ Trying to ensure that the generated sample is a solution of the
minmax rather than the maxmin problem

@ Have the generator to unroll k future steps and predict what
discriminator will think of the current sample

e Since generator is the one who unrolls, generator is in the outer loop
and discriminator is in the inner loop

o We ensure that we have solution approximating a minmax rather than
maxmin problem

. B O ¢
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

S. Cheng (OU-Tulsa) Generative Models Feb 2017 50/125

GANs DCGAN

Deep convolutional GAN (DCGAN)

Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReLU activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

8

S. Cheng (OU-Tulsa) Generative Models Feb 2017

51/125

GANs DCGAN

Deep convolutional GAN (DCGAN)

Radford et al. 2016

1024

4

!

Stride 2 16

Project and reshape
CONV 2

S. Cheng (OU-Tulsa) Generative Models

Feb 2017

Stride 2!

52 /125

GANs More applications

Generated bedroom after 5 epochs (LSUN dataset)
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 53 /125

GANs More applications

Generative Adversarial Nets: Convolutional Architectures

Interpolating g
between
random

space

Radford et al,
ICLR 2016

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 54 /125

GANs More applications

Vector arithmetics
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 55 /125

GANs More applications

Vector arithmetics
Radford et al. 2016

smiling neutral neutral
woman woman man

S. Cheng (OU-Tulsa) Generative Models

Feb 2017

55 /125

GANs More applications

Vector arithmetics
Radford et al. 2016

smiling neutral neutral

smiling man
woman woman man 9

S. Cheng (OU-Tulsa) Generative Models Feb 2017 55 /125

More applications

Vector arithmetics
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 56 /125

GANs More applications

Vector arithmetics
Radford et al. 2016

man man woman
with glasses without glasses without glasses

S. Cheng (OU-Tulsa) Generative Models Feb 2017 56 /125

GANs More applications

Vector arithmetics
Radford et al. 2016

man man woman
with glasses without glasses without glasses woman with glasses

S. Cheng (OU-Tulsa) Generative Models Feb 2017 56 /125

GANs More applications

Some failure cases

S. Cheng (OU-Tulsa) Generative Models Feb 2017 57 /125

More applications

StackGAN

Zhang et al. 201

Stage-ll Generator

! i
| Conditioning |
! Augmentation |
L i

This bird is grey with white on its
chest and has a very short beak

256 % 256
generated sample

Stage-| Generator
generated sample

,,,,,,, T JER || 1

]
- l
This bird is grey with white on its ! 1024 1 @
chest and has a very short beak) 44 |

]

| Qo
1
1

Stage-| Discriminato

This bird is grey with white on its
chest and has a very short beak

b 2017

S. Cheng (OU-Tulsa) Generative Models

https://github.com/hanzhanggit/StackGAN

GANs More applications

StackGAN

A small yellow bird with a black crown and a short black pointed
j L Dl i 4 r r
«D— - S
? . K :
f e WA o

»
,-%'*f & = 50| weg

i »“ il ‘V J
A white bird with a black crown and yellow beak

S. Cheng (OU-Tulsa) Generative Models Feb 2017 59 /125

GANs More applications

StackGAN

This flower has long thin yellow petals and a lot of yellow anthers
in the center

This flower is white, pink
that are multi colored

- - pomm

S. Cheng (OU-Tulsa) Generative Models Feb 2017 60 /125

More applications

iGAN

Zhu et al. 2016

User edits

Generated images

mm==_(Color

== m Sketch

S. Cheng (OU-Tulsa) Generative Models Feb 2017 61/125

GANs More applications

2017: Year of the GAN

Better tralnlng and generatlon

Source->Target domain transfer
Input

Output Input Output
¥

apple - orange

» summer Yosemie

-~ winier Yosemile

; = CycleGAN. Zhu et al. 2017.
BEGAN. Bertholet et al. 2017.

Fei-Fei Li & Justin Johnson & Serena Yeung

S. Cheng (OU-Tulsa) Generative Models

Lecture 13 -

Text -> Image Synthesis

this small bird has a pink

this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

Reed etal. 2017.

Many GAN applications

Pix2pix. Isola 2017. Many examples at

https://phillipi.github.io/pix2pix/

May 18, 2017

Feb 2017 62 /125

ANs More applications

See also: https://github.com/soumith/ganhacks for tips

“The GAN ZOO” and tricks for trainings GANs

. -RNN-GAN - Contextual RNN-GAN f ract Reasoning Diagram Generation
“TGAN.- Ganerative Adversarial Netiords: Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generatios
« C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

3D-GAN - Learning a Probabilstic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling (< ca” imoroving Neural Machine Transition with Conditional Sequence Generative Adversarial Nets

S¥acGAN - Fece/Aging With ConditionskCenecativelAriversari fiatwcrks « CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
« AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs = CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
« AJaGAN - AdaGAN: Boosting Generative Models « DTN - Unsupervised Cross-Domain Image Generation

« AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets « DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

« AffGAN - Amortised MAP Inference for Image Super-resolution
AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

+ DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
+ DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

+ DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

* ALl - Adversarially Learned Inference + EBGAN - Energy-based Generative Adversarial Network
« AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization « -GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Lerge-Pose Face Frontalization in the Wild
« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs * GAWWN - Learning What and Where to Draw
+ GeneGAN - GeneGAN: g Obi and from Unpaired Data

 b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks
+ Goometric GAN - Geometric GAN

+Bayasian GAN'~Deap and Fiararchical Impllcit Models + GOGAN - Gang of GAN: Generative Adversarial Networks with Maximum Margin Ranking
« BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks « GP-GAN - GP-GAN; Towards Reaheti High-Resokaion msge Blending

« BIGAN - Adversarial Feature Learning + IAN - Neural Photo Editing ith Inrospective Adversarial Networks

« BS-GAN - Boundary-Seeking Generative Adversarial Networks + 1GAN - Generative Visual Manipulation on the Natural Image Manifold

o O Condilontl Oersiiiire itcrsaiaiTicts + IcGAN - Invertible Conditional GANs for image editing
. « ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
« CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters ¥ g

« Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks

« InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.

CCGAN ~Semk: Stperyised [saming with Corsext Condftional Ganerstive Aduersarial Hetworks + LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

+ COGAN - Coupled Generative Adversarial Networks LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

S. Cheng (OU-Tulsa)

nerative Models b 2017 63 /125

GANs More applications

GANs

Don’t work with an explicit density function

Take game-theoretic approach: learn to generate from training distribution through 2-player
game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can't solve inference queries such as p(x), p(z|x)

Active areas of research:

- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

0

S. Cheng (OU-Tulsa) Generative Models Feb 2017 64 /125

Boltzmann machines and DBNs
Boltzmann machines

@ Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985

S. Cheng (OU-Tulsa) Generative Models Feb 2017 65 /125

Boltzmann machines and DBNs
Boltzmann machines

@ Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985

@ It is a binary generative model

S. Cheng (OU-Tulsa) Generative Models Feb 2017 65 /125

Boltzmann machines and DBNs
Boltzmann machines

@ Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985

@ It is a binary generative model

@ Probability of a “configuration” is
government by the Boltzmann distribution
MZE(I’)), where Z is a normalization

factor and called the partition function (a

name originated from statistical physics)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 65 /125

Boltzmann machines and DBNs
Boltzmann machines

@ Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985

@ It is a binary generative model

@ Probability of a “configuration” is
government by the Boltzmann distribution
MZE(I’)), where Z is a normalization

factor and called the partition function (a

name originated from statistical physics)

@ The energy function E(x) has a very

simple form E(z) = —2TWax — Tz

S. Cheng (OU-Tulsa) Generative Models Feb 2017 65 /125

Boltzmann machines and DBNs
Boltzmann machines

S. Cheng (OU-Tulsa)

Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985

It is a binary generative model

Probability of a “configuration” is
government by the Boltzmann distribution
MZE(I’)), where Z is a normalization
factor and called the partition function (a

name originated from statistical physics)

The energy function E(x) has a very

simple form E(z) = —2TWax — Tz

Typically some variables are hidden whereas
others are visible

Generative Models Feb 2017 65 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Restricted Boltzmann machines

@ Boltzmann machine is a very powerful model. But with
unconstrained connectivity, there are not known efficient methods to
learn data and conduct inference for practical problems

S. Cheng (OU-Tulsa) Generative Models Feb 2017 66 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Restricted Boltzmann machines

@ Boltzmann machine is a very powerful model. But with
unconstrained connectivity, there are not known efficient methods to
learn data and conduct inference for practical problems

e Consequently, restricted Boltzmann machine (RBM) (originally called
Harmonium) was introduced by Paul Smolensky in 1986. It restricted
the hidden units and the visible units from connecting to themselves

S. Cheng (OU-Tulsa) Generative Models Feb 2017 66 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Restricted Boltzmann machines

@ Boltzmann machine is a very powerful model. But with
unconstrained connectivity, there are not known efficient methods to
learn data and conduct inference for practical problems

e Consequently, restricted Boltzmann machine (RBM) (originally called
Harmonium) was introduced by Paul Smolensky in 1986. It restricted
the hidden units and the visible units from connecting to themselves

@ The model rose to prominence after fast learning algorithm was
invented by Hinton and his collaborators in mid-2000s

S. Cheng (OU-Tulsa) Generative Models Feb 2017 66 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Restricted Boltzmann machines

(OOOOOJ h— (hdden Ber

binary units)

bias W<— connections
AN
(O@OOO X «— visible layer

(binary units)

Energy function: E(z,h) = —hTWz — Tz — bTh
Distribution:

_exp(—E(z,h)) exp(h"Wz)exp(cTz) exp(bTh)

h) = =

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Conditional probabilities

GCOO000) h p(hfx) = Hp(h»: |x)

1
p(h; =1|x) =

14 exp(—(b; + W;.x))
= sigm(b; + W;.x)

L,j " row of W

QOOLQ) x

QLY h p(x/h) =[] p(zx|h)
k

1
o= T T e W)

kt column of W

= sigm(cx, + hTWé)/

S. Cheng (OU-Tulsa) Generative Models Feb 2017 68 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

(o) = P@R)___ exp(WWatcla+ bTh)/Z
g X, pla) Zh/e{o 1M exp(WTWz + Tz +bTH)/Z

S. Cheng (OU-Tulsa) Generative Models Feb 2017 69 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

(o) = P@R)___ exp(WWatcla+ bTh)/Z
g X, pla) Zh/e{o 1M exp(WTWz + Tz +bTH)/Z

exp (ZZ hW;z + bihi) - Wy
Zh/le{o,l} Zha/le{o,l} eXP(Zi hQWix + bzh;) WM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 69 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

(o) = P@R)___ exp(WWatcla+ bTh)/Z
g X, pla) Zh/e{o 1M exp(WTWz + Tz +bTH)/Z

exp (ZZ hW;z + bihi) - Wy
Zh/le{o,l} Zha/le{o,l} eXP(Zi hQWix + bzh;) WM

[T, exp (h; Wiz + b;h;)
- Zhie{&l} Zhgwe{o,1} [, exp(h; Wiz + b;hy)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 69 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

(o) = P@R)___ exp(WWatcla+ bTh)/Z
g X, pla) Zh/e{o 1M exp(WTWz + Tz +bTH)/Z

B exp (ZZ hW;z + bihi) — Wy
Zh;e{o,l} Eh;we{O,l} exp(zi RW,x + b;h)) Wy,
[, exp (h;W;z + b;h;)

- Zhie{&l} Zhgwe{o,u [, exp(h; Wiz + b;hy)
[T, exp (h; Wiz + b;h;)

<Zh; o) PR Wz + blh;)) (zhhe 01 PN W + thgw)>

S. Cheng (OU-Tulsa) Generative Models Feb 2017 69 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

p(hl) = p(z,h) exp(hT™Waz + cTz +bTh)/Z
>, p(@,h) N Eh/e{o 1y exp(WTWzx + cTx +bTh')/Z

exp (ZZ hW;z + bihi) - Wy
Zh/le{o,l} Zha/le{o,l} GXP(ZZ- hQWix + bzh;) WM

I, exp (h; Wiz + b;h;)
- Zhie{&l} Zhgwe{o,u [, exp(h; Wiz + b;hy)
[T, exp (h;W;z + b;h,)

S oy PR Wy + by)) (Zh, R WMx+th;w)>

- exp (h, Wiz + v +b;h;) | 7 N
H (Eh’e{o1}exp(h WJ?—I—((_A,_bh)) Hp ‘x

S. Cheng (OU-Tulsa) Generative Models Feb 2017 69 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

p(hl) = p(z,h) exp(hT™Waz + cTz +bTh)/Z
2o P) 3oy P TWa + T+ TR) Z
exp (ZZ hW;z + bihi) - Wy
Zh/le{o,l} Zha/le{o,l} GXP(ZZ- hQWix + bzh;) WM
[, exp (h;W;z + b;h;)
Zh;e{o,l} Zhgwe{(],l} Hl exp(h;WZx + bzh;)
[T, exp (h;W;z + b;h;)
(zh, o) PR + b h;)) (Zh/ o) P W + thgw)>
H eXp hW.’E"‘I I+bh) H h‘
= p(h;|z
(Eh’e{o 3 exp(hiWx + ¢z + b,k)) i
N.B. Can also be obtained immediately since hq, hy, -+, hj, are conditionally in-

dependent given x
S. Cheng (OU-Tulsa) Generative Models Feb 2017 69 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

exp (W,x + b;)
(Zreqoy xRz +b,10))

p(h; =1z) =

S. Cheng (OU-Tulsa) Generative Models Feb 2017 70/125

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

exp (W,x + b;)

(Zreqoy xRz +b,10))
exp (Wiz + b;)
(14 exp(W,x + b))

p(h; =1z) =

S. Cheng (OU-Tulsa) Generative Models Feb 2017 70/125

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

exp (W,x + b;)
(Zreqoy xRz +b,10))
exp (Wiz + b;)
(14 exp(W,z +b;))
= sigm(b, + W;x)

p(h; =1z) =

S. Cheng (OU-Tulsa) Generative Models Feb 2017 70/125

Boltzmann machines and DBNs Restricted Boltzmann machines

Data generation

Equipped with the conditional probabilities p(z|h) and p(h|z), we can
generate simulated data given some hidden variables i’ using Gibbs sam-

pling
Sample z” from p(x|h")
Sample h” from p(h|z’)

°
°
e Sample z” from p(z|h”)
°

S. Cheng (OU-Tulsa) Generative Models Feb 2017 71/125

Boltzmann machines and DBNs Restricted Boltzmann machines

Marginal probability p(x)

plx) = Z exp(hTWax + Tz +bTh)/ Z
he{0,1}M

S. Cheng (OU-Tulsa) Generative Models Feb 2017 72 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Marginal probability p(x)

plx) = Z exp(hTWax + Tz +bTh)/ Z
he{0,1}M

hi€{0,1} hye{0,1}

S. Cheng (OU-Tulsa) Generative Models Feb 2017 72 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Marginal probability p(x)

p(z) = Z exp(h™Wz + Tz +bTh)/Z
he{0,1}M

h1€{0,1} hp€{0,1}

T
eXp<C x) (Z e(h1W1$+b1h1)> (Z e(hMWM$+thM))
Z h,€{0,1} hp€{0,1}

S. Cheng (OU-Tulsa) Generative Models Feb 2017 72/125

Boltzmann machines and DBNs Restricted Boltzmann machines

Marginal probability p(x)

p(z) = Z exp(h™Wz + Tz +bTh)/Z
he{0,1}M

h1€{0,1} hp€{0,1}

T
eXp<C x) (Z e(h1W1$+b1h1)> (Z e(hMWM$+thM))
Z h,€{0,1} hp€{0,1}

_ %ZCT@ (1 + e(W1x+b1)> (1 + e(WMx"'bM))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 72 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Marginal probability p(x)

p(z) = Z exp(h™Wz + Tz +bTh)/Z
he{0,1}M

h1€{0,1} hp€{0,1}

T
eXp<C x) (Z e(h1W1$+b1h1)> (Z e(hMWM$+thM))
Z h,€{0,1} hp€{0,1}

_ %ZCT@ (1 + e(W1x+b1)> (1 + e(WMx"'bM))

T
_ %Z”“) exp (log(1 + eWsm+00)) 1 .. 4 log(1 + eWarm+han))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 72 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Marginal probability p(x)

p(z) = Z exp(h™Wz + Tz +bTh)/Z
he{0,1}M

h1€{0,1} hp€{0,1}

T
eXp<C x) (Z e(h1W1$+b1h1)> (Z e(hMWM$+thM))
Z h,€{0,1} hp€{0,1}

_ %ZCT@ (1 + e(W1x+b1)> (1 + e(WMx"'bM))

T
_ o) o (log(1 + eWam+00)) 1 ... 4 log(1 + e War+ba))

Z
= exp (cTac + Z log(1 + 6<Wi“bi>)> /Z

S. Cheng (OU-Tulsa) Generative Models Feb 2017 72 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

p(x) =exp [To + Z log(1 + eWiztbiy | /7

S. Cheng (OU-Tulsa) Generative Models Feb 2017 73 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

p(z) = exp (ch + Z log(1 + e(Wi”bi))) /Z

= exp (cT:L‘ + Z softplus(W,x + bz)) /Z = exp(—F(z))/Z,

where F(z) is known to be free energy, a term borrowed from statistical

physics. Note that %ius(t) = sigmod(t)
5 ! : H : H i
=5 —4 -3) .y AU/ 1 2 3 4 5

S. Cheng (OU-Tulsa) Generative Models Feb 2017 73/125

Boltzmann machines and DBNs Restricted Boltzmann machines

Training RBM

Use the cross entropy loss,

1 T
10) = 2>~ —~logp(a®)
t=1

S. Cheng (OU-Tulsa) Generative Models Feb 2017 74 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Training RBM

Use the cross entropy loss,

TZ—logp Z —log Z,

t=1

N

where Z =} exp(—F(x)).

S. Cheng (OU-Tulsa) Generative Models Feb 2017 74 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Training RBM

Use the cross entropy loss,

TZ—logp Z —log Z,

t=1

N

where Z =} exp(—F(x)). And

0 —log p(z*) _ OF (z') B Z exp(—F(x)) OF (x)
00 00 Z 00

xT

S. Cheng (OU-Tulsa) Generative Models Feb 2017 74 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Training RBM

Use the cross entropy loss,

TZ—logp Z —log Z,

where Z =} exp(—F(x)). And

N

0 —logp(z®) OF(z®) exp(—F(x)) OF (x)
09 =" L
_ OF(=W) 5 [BF(x)]
00
positive phase pegative phase

N.B. The naming of the terms is not related to the sign in the equation.
It refers to the fact that adjusting the +ve phase terms to increase the
probability of the training data and the -ve terms to decrease the probabil-

ity of the rest of x
S. Cheng (OU-Tulsa) Generative Models Feb 2017 74 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Contrastive divergence (CD-k)

The negative phase term is very hard to compute exactly as we need to
sum over all x. The natural way out is to approximate using sampling =
contrastive divergence (CD-k) training

Key idea: @ Start sampling chain at z(*
@ Obtain the point Z with k Gibbs sampling steps
© Replace the expectation by a point estimate at &

COO000) > (@lo/e/0/0/®)

~ p(h|x ~ p(x|h

(O(?OO) (OOC?OO) OO?OO
(t) 1 k

X X b

\ negative sample

N.B. CD-1 works surprisingly well in practice

S. Cheng (OU-Tulsa) Generative Models Feb 2017 75/125

Boltzmann machines and DBNs Restricted Boltzmann machines

Parameters update

alB) _ aF(z'Y) OF(%)
So we have =57~ = =55~ — =5, Recall that

F(z) = —clr — Z softplus(W;z + b;)

0F (xz)
de; P
oF(x) . .
o, sigmoid(W,x + b;)
OF () o
o, = —sigmoid(W,z + b;)x;

S. Cheng (OU-Tulsa) Generative Models Feb 2017 76 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Parameters update

alB) _ aF(z'Y) OF(%)
So we have =57~ = =55~ — =5, Recall that

F(z) = —clr — Z softplus(W;z + b;)

OF(z) _
de; P
oF(x) . .
o, sigmoid(W,x + b;)
OF () ; .
o, = —sigmoid(W,z + b;)x;

This gives us

ce=ctalz —7)
b <= b+ a(sigmoid(Wz® + b) — sigmoid(WZ + b))
W <= W + a(sigmoid(Wz'®) + b):z(t>T — sigmoid(W7 + b)z 1)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 76 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Persistent CD
Tieleman, ICML 2008

o ldea: Instead of initializing the chain to =¥, initialize the chain to
the negative sample of the last iteration

@ This has a similar effect of CD-k with a large k and yet can have
much lower complexity

i = b2 (©00000) ©O0000

~ p(hjx)” ~ p(x|h

(OO?OO) GOO00 COOOO

:) o
X comesfromthe x X =X

previous iteration V'\
negative sample

S. Cheng (OU-Tulsa) Generative Models Feb 2017 77/125

Boltzmann machines and DBNs Restricted Boltzmann machines

Gaussian-Bernoulli RBM

Extension to continuous variables

@ RBM is a binary model and thus is not suitable for continuous data

@ One simple extension to allow the visible variables = to be continuous
while keeping the hidden variables h to be binary

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Gaussian-Bernoulli RBM

Extension to continuous variables

@ RBM is a binary model and thus is not suitable for continuous data

@ One simple extension to allow the visible variables = to be continuous

while keeping the hidden variables h to be binary

@ In particular, we can simply add a quadratic term %me to the energy

function, i.e.,
1
E(z,h) = —hTWaz — Tz — bTh + §xT:c

to get Gaussian distributed p(z|h)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78 /125

Boltzmann machines and DBNs Restricted Boltzmann machines

Gaussian-Bernoulli RBM

Extension to continuous variables

@ RBM is a binary model and thus is not suitable for continuous data

@ One simple extension to allow the visible variables = to be continuous

while keeping the hidden variables h to be binary

e In particular, we can simply add a quadratic term 127z to the energy

2
function, i.e.,

1
E(z,h) = —hTWaz — Tz — bTh + §xT:c

to get Gaussian distributed p(z|h)

@ For efficient training, the input data are typically preprocessed with
zero-mean and unit variance

@ A smaller learning rate is needed compared to a regular RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78 /125

Boltzmann machines and DBNs Deep belief networks

Deep belief networks (DBN)

@ DBN is a generative model that mixes
undirected and directed connections

DBN’s graphical model o Top 2 layers' distribution p(h?, h3) is an
RBN

RBM

SBN ¢

S. Cheng (OU-Tulsa) Generative Models Feb 2017 79/125

Boltzmann machines and DBNs Deep belief networks

Deep belief networks (DBN)

@ DBN is a generative model that mixes
undirected and directed connections

DBN’s graphical model o Top 2 layers' distribution p(h?, h3) is an
RBN

@ Other layers form a Bayesian network:

o The conditional distributions of layers
given the one above it are

RBM

p(hY = 1/h®) = sigm(b") + W@ 1)
(

SBN 4 p(WY = 11h0) = sigm(b\”) + WO, pM)

e This is referred to as a sigmoid belief
network (SBN)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 79/125

Boltzmann machines and DBNs Deep belief networks

Deep belief networks (DBN)

@ DBN is a generative model that mixes
undirected and directed connections

DBN’s graphical model o Top 2 layers' distribution p(h?, h3) is an
RBN

@ Other layers form a Bayesian network:

o The conditional distributions of layers
given the one above it are

RBM

p(hY = 1/h®) = sigm(b") + W@ 1)
(

SBN 4 p(WY = 11h0) = sigm(b\”) + WO, pM)

e This is referred to as a sigmoid belief
network (SBN)

@ Note that DBN is not a feed-forward
network

S. Cheng (OU-Tulsa) Generative Models Feb 2017 79/125

Boltzmann machines and DBNs Deep belief networks

History of DBNs

According to HlInton's coursera's course

@ Professor Hinton was working on algorithms to train Sigmoid belief
network but gave up after many different ideas

S. Cheng (OU-Tulsa) Generative Models Feb 2017 80/125

Boltzmann machines and DBNs Deep belief networks

History of DBNs

According to HlInton's coursera's course

@ Professor Hinton was working on algorithms to train Sigmoid belief
network but gave up after many different ideas

@ He moved on to work with RBMs and invented the CD-k algorithm
for training RBMs

S. Cheng (OU-Tulsa) Generative Models Feb 2017 80/125

Boltzmann machines and DBNs Deep belief networks

History of DBNs

According to HlInton's coursera's course

@ Professor Hinton was working on algorithms to train Sigmoid belief
network but gave up after many different ideas
@ He moved on to work with RBMs and invented the CD-k algorithm
for training RBMs
@ Since CD-k is very effective, it is very tempting to think if one can
train a Sigmoid belief network one layer at a time by treating each
layer as a RBM
o The procedure is working great. But it actually trains a different
model, the DBN instead of SBN (with some complicated math
behind), pointed out by Yee-Whye Teh

S. Cheng (OU-Tulsa) Generative Models Feb 2017 80/125

Boltzmann machines and DBNs Deep belief networks

History of DBNs

According to HlInton's coursera's course

@ Professor Hinton was working on algorithms to train Sigmoid belief
network but gave up after many different ideas

@ He moved on to work with RBMs and invented the CD-k algorithm
for training RBMs
@ Since CD-k is very effective, it is very tempting to think if one can

train a Sigmoid belief network one layer at a time by treating each
layer as a RBM

o The procedure is working great. But it actually trains a different
model, the DBN instead of SBN (with some complicated math
behind), pointed out by Yee-Whye Teh

@ DBN is actually the first successful deep neural network model and
revived the entire neural network field

S. Cheng (OU-Tulsa) Generative Models Feb 2017 80/125

Boltzmann machines and DBNs Deep belief networks

History of DBNs

According to HlInton's coursera's course

Professor Hinton was working on algorithms to train Sigmoid belief
network but gave up after many different ideas

He moved on to work with RBMs and invented the CD-k algorithm
for training RBMs
Since CD-k is very effective, it is very tempting to think if one can

train a Sigmoid belief network one layer at a time by treating each
layer as a RBM

o The procedure is working great. But it actually trains a different
model, the DBN instead of SBN (with some complicated math
behind), pointed out by Yee-Whye Teh

DBN is actually the first successful deep neural network model and
revived the entire neural network field

Try not to get confused of DBN with deep Boltzmann machines
(DBMs), where each layer is composed of an RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 80/125

Boltzmann machines and DBNs Deep belief networks

Pretraining of DBNs

DBN'’s graphical model

@ Treat the bottom two layers as an RBM

RBM ¢ o :
and train it with the input data z

SBN ¢

S. Cheng (OU-Tulsa) Generative Models Feb 2017 81/125

Boltzmann machines and DBNs Deep belief networks

Pretraining of DBNs

DBN'’s graphical model

@ Treat the bottom two layers as an RBM

RBM ¢ o :
and train it with the input data z

@ Treat the next two layers as an RBM and
train it with the 21 obtained in the last

step
SBN ¢

S. Cheng (OU-Tulsa) Generative Models Feb 2017 81/125

Boltzmann machines and DBNs Deep belief networks

Pretraining of DBNs

DBN'’s graphical model

@ Treat the bottom two layers as an RBM

RBM ¢ o :
and train it with the input data z

@ Treat the next two layers as an RBM and
train it with the 21 obtained in the last

step

SBN
{ @ Keep continuing while keeping the trained

weights

S. Cheng (OU-Tulsa) Generative Models Feb 2017 81/125

Boltzmann machines and DBNs Deep belief networks

Fine-tuning of DBN

Up-down algorithm (aka contrastive wake-sleep algorithm)

After learning many layers of features, we can fine-tune the features to
improve generation
© Do a stochastic bottom-up pass

o Construct hidden variables with reconstruction weight R (initialized as
the transpose of W)
o Use the approximated hidden variables to fine tune W

S. Cheng (OU-Tulsa) Generative Models Feb 2017 82/125

Boltzmann machines and DBNs Deep belief networks

Fine-tuning of DBN

Up-down algorithm (aka contrastive wake-sleep algorithm)

After learning many layers of features, we can fine-tune the features to
improve generation
© Do a stochastic bottom-up pass

o Construct hidden variables with reconstruction weight R (initialized as
the transpose of W)
o Use the approximated hidden variables to fine tune W

@ Do a few iterations of sampling in the top level RBM
o Adjust top-level RBM weights using CD-k

S. Cheng (OU-Tulsa) Generative Models Feb 2017 82/125

Boltzmann machines and DBNs Deep belief networks

Fine-tuning of DBN

Up-down algorithm (aka contrastive wake-sleep algorithm)

After learning many layers of features, we can fine-tune the features to
improve generation
© Do a stochastic bottom-up pass

o Construct hidden variables with reconstruction weight R (initialized as
the transpose of W)
o Use the approximated hidden variables to fine tune W

@ Do a few iterations of sampling in the top level RBM
o Adjust top-level RBM weights using CD-k
© Do a stochastic top-down pass

o Generate simulation data and use that to fine-tune the reconstruction
weights R

S. Cheng (OU-Tulsa) Generative Models Feb 2017 82/125

Boltzmann machines and DBNs Deep belief networks

MNIST example

S. Cheng (OU-Tulsa)

28 x 28
pixel
image

@ Test on MNIST dataset

Generative Models

Feb 2017

83 /125

Boltzmann machines and DBNs Deep belief networks

MNIST example

@ Test on MNIST dataset

@ Train 500 hidden units with the
image block as input

28 x 28
pixel
image

S. Cheng (OU-Tulsa) Generative Models Feb 2017 83 /125

Boltzmann machines and DBNs Deep belief networks

MNIST example

@ Test on MNIST dataset

@ Train 500 hidden units with the
image block as input

500 units

S. Cheng (OU-Tulsa) Generative Models Feb 2017 83 /125

Boltzmann machines and DBNs Deep belief networks

MNIST example

@ Test on MNIST dataset
@ Train 500 hidden units with the
image block as input

: @ Train another 500 hidden units
500 units with the trained 500 hidden

units as input

500 units

S. Cheng (OU-Tulsa) Generative Models Feb 2017 83 /125

Boltzmann machines and DBNs Deep belief networks

MNIST example

@ Test on MNIST dataset

@ Train 500 hidden units with the
image block as input

@ Train another 500 hidden units

500 units with the trained 500 hidden
lT units as input
500 units

S. Cheng (OU-Tulsa) Generative Models Feb 2017 83 /125

Boltzmann machines and DBNs Deep belief networks

MNIST example

@ Test on MNIST dataset

2000 units @ Train 500 hidden units with the
image block as input
: @ Train another 500 hidden units
500 units with the trained 500 hidden
lT units as input
@ Prepare another 2000 hidden
500 units units

S. Cheng (OU-Tulsa) Generative Models Feb 2017 83 /125

Boltzmann machines and DBNs Deep belief networks

MNIST example

Test on MNIST dataset

Train 500 hidden units with the
image block as input

: @ Train another 500 hidden units
10 labels 500 units with the trained 500 hidden

lT units as input
@ Prepare another 2000 hidden

500 units units

@ Train the 2000 hidden units
with the previously trained 500
hidden units and target labels as
input

2000 units

S. Cheng (OU-Tulsa) Generative Models Feb 2017 83 /125

Boltzmann machines and DBNs Deep belief networks

MNIST example

@ Test on MNIST dataset
2000 units @ Train 500 hidden units with the
¢ ¢ image block as input
: @ Train another 500 hidden units
10 labels 500 units with the trained 500 hidden
lT units as input
@ Prepare another 2000 hidden
500 units units

@ Train the 2000 hidden units
with the previously trained 500
hidden units and target labels as
input

o Error rate is about 1%

S. Cheng (OU-Tulsa) Generative Models Feb 2017 83 /125

Boltzmann machines and DBNs Deep belief networks

http://www.cs.toronto.edu/~hinton/adi/index.htm

S. Cheng (OU-Tulsa) Generative Models Feb 2017 84 /125

http://www.cs.toronto.edu/~hinton/adi/index.htm

Boltzmann machines and DBNs Deep belief networks

Summary of Boltzmann machines and DBN

Restricted Boltzmann machines (RBMs) and deep belief networks
(DBNs) are both generative models

@ RBMs can be trained efficiently with contrastive divergence (CD-k)
algorithm

DBNs can be trained by first pre-trained each pair of layers as an
RBM and then fine-tune with up-down algorithm

DBNs are the earliest deep neural network model and essential the
starting point of “deep learning” research

S. Cheng (OU-Tulsa) Generative Models Feb 2017 85/125

Autoencoders
Why autoencoders? Dimension reduction

@ As name suggests, the objective of dimension of reduction is to
decrease the dimension of input signals to ease later processing

e It is often a preprocessing step

S. Cheng (OU-Tulsa) Generative Models Feb 2017 86 /125

Autoencoders
Why autoencoders? Dimension reduction

@ As name suggests, the objective of dimension of reduction is to
decrease the dimension of input signals to ease later processing

e It is often a preprocessing step
e Was commonly used to compress features

S. Cheng (OU-Tulsa) Generative Models Feb 2017 86 /125

Autoencoders
Why autoencoders? Dimension reduction

@ As name suggests, the objective of dimension of reduction is to
decrease the dimension of input signals to ease later processing

e It is often a preprocessing step
e Was commonly used to compress features

@ It is a very old problem. The most representative algorithm is the
principal component analysis (PCA)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 86 /125

Autoencoders PCA

Principal component analysis (PCA)

@ Take N-dimensional data and find the M
orthogonal directions in which the data
have the most variance

S. Cheng (OU-Tulsa) Generative Models Feb 2017 87 /125

Autoencoders PCA

Principal component analysis (PCA)

@ Take N-dimensional data and find the M
orthogonal directions in which the data
have the most variance

o We can represent an N-dimensional
datapoint by its projections onto the M
principal directions (i.e., with highest
variances)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 87 /125

Autoencoders PCA

Principal component analysis (PCA)

@ Take N-dimensional data and find the M
orthogonal directions in which the data
have the most variance

o We can represent an N-dimensional
datapoint by its projections onto the M
principal directions (i.e., with highest
variances)

o This loses all information about where the
datapoint is located in the remaining
orthogonal directions

S. Cheng (OU-Tulsa) Generative Models Feb 2017 87 /125

Autoencoders PCA

PCA reconstruction

@ We reconstruct by using the mean value
(over all the data) on the N — M
directions that are not represented.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88/125

Autoencoders PCA

PCA reconstruction

@ We reconstruct by using the mean value
(over all the data) on the N — M
directions that are not represented.

o The reconstruction error is the sum over
the variances over all these unrepresented
directions

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88/125

Autoencoders PCA

PCA reconstruction

@ We reconstruct by using the mean value
(over all the data) on the N — M
directions that are not represented.

o The reconstruction error is the sum over
the variances over all these unrepresented
directions

@ The variances are just eigenvalues of
covariance matrix of the data

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88/125

Autoencoders PCA

PCA reconstruction

@ We reconstruct by using the mean value
(over all the data) on the N — M
directions that are not represented.

o The reconstruction error is the sum over
the variances over all these unrepresented
directions

@ The variances are just eigenvalues of
covariance matrix of the data

o PCA is “optimum”

e e Since we keep the largest variance
components, on average the distortion is
minimum among all linear dimension
reduction methods

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88/125

Autoencoders PCA

Math review: Singular value decomposition (SVD)

For any N x K matrix A (assume K < N), we can decompose it into
product of three matrices

where Uis N x N, Dis N x K, and Vis K x K. Moreover,

S. Cheng (OU-Tulsa) Generative Models Feb 2017 89 /125

Autoencoders PCA

Math review: Singular value decomposition (SVD)

For any N x K matrix A (assume K < N), we can decompose it into
product of three matrices

where Uis N x N, Dis N x K, and Vis K x K. Moreover,
e U is orthonormal, i.e., UTU =T
@ D is rectangular diagonal

e Vis orthonormal, ie., VIV =1

S. Cheng (OU-Tulsa) Generative Models Feb 2017 89 /125

Autoencoders PCA

Math review: Singular value decomposition (SVD)

For any N x K matrix A (assume K < N), we can decompose it into
product of three matrices

where Uis N x N, Dis N x K, and Vis K x K. Moreover,
e U is orthonormal, i.e., UTU =T
@ D is rectangular diagonal
e Vis orthonormal, ie., VIV =1

Has nice geometric interpretation. Roughly speaking, any linear transform
can be decompose into rotation, scaling, and rotation again

S. Cheng (OU-Tulsa) Generative Models Feb 2017 89 /125

Autoencoders PCA

SVD and PCA

o Let X =[xy, %9, , x| be the matrix with columns as data vectors.
We can decompose X = UXV7 using SVD

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90/125

Autoencoders PCA

SVD and PCA

o Let X =[xy, %9, , x| be the matrix with columns as data vectors.
We can decompose X = UXV7 using SVD
xxT

@ Assume X is zero-mean, the covariance matrix C is just C' ~ =4

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90/125

Autoencoders PCA

SVD and PCA

o Let X =[xy, %9, , x| be the matrix with columns as data vectors.
We can decompose X = UXV7 using SVD
@ Assume X is zero-mean, the covariance matrix C is just C' = XfT

e Note that C ~ USVT(USVTT = UX2UT, thus singular values are
just square root of eigenvalues

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90/125

Autoencoders PCA

SVD and PCA

o Let X =[xy, %9, , x| be the matrix with columns as data vectors.
We can decompose X = UXV7 using SVD

. . . - T
@ Assume X is zero-mean, the covariance matrix C is just C' = XX

2
e Note that C ~ USVI(UXVT)T = UX2UT, thus singular values are

just square root of eigenvalues
e Since PCA is in effect keeping the M largest eigenvalues of the

covariance matrix, it is the same as keeping the M largest singular
values of X

S. Cheng (OU-Tulsa) Generative Models

Feb 2017 90/125

Autoencoders PCA

SVD and PCA

o Let X =[xy, %9, , x| be the matrix with columns as data vectors.
We can decompose X = UXV7 using SVD

. . . - T
@ Assume X is zero-mean, the covariance matrix C is just C' = Xf

e Note that C ~ USVT(USVTT = UX2UT, thus singular values are
just square root of eigenvalues
e Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X

@ One can easily verify that. Let X = USVT, where © only keeps the
M largest singular values, then

Error = Z(m —)z —12)

%

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90/125

Autoencoders PCA

SVD and PCA

o Let X =[xy, %9, , x| be the matrix with columns as data vectors.
We can decompose X = UXV7 using SVD

. . . - T
@ Assume X is zero-mean, the covariance matrix C is just C' = Xf

e Note that C ~ USVT(USVTT = UX2UT, thus singular values are
just square root of eigenvalues
e Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X
@ One can easily verify that. Let X = UXVT, where X only keeps the
M largest singular values, then

Error = Z(m —)Tz —2) = tr(X — X)T(X — X))

%

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90/125

Autoencoders PCA

SVD and PCA

o Let X =[xy, %9, , x| be the matrix with columns as data vectors.
We can decompose X = UXV7 using SVD
@ Assume X is zero-mean, the covariance matrix C is just C' = XfT

e Note that C ~ USVT(USVTT = UX2UT, thus singular values are
just square root of eigenvalues
e Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X
@ One can easily verify that. Let X = UXVT, where X only keeps the
M largest singular values, then

Error = Z(m —)Tz —2) = tr(X — X)T(X — X))

=tr(V(Z - S)UTU(Z — S)V7T)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90/125

Autoencoders PCA

SVD and PCA

o Let X =[xy, %9, , x| be the matrix with columns as data vectors.
We can decompose X = UXV7 using SVD
@ Assume X is zero-mean, the covariance matrix C is just C' = XfT

e Note that C ~ USVT(USVTT = UX2UT, thus singular values are
just square root of eigenvalues
e Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X
@ One can easily verify that. Let X = UXVT, where X only keeps the
M largest singular values, then

Error = Z(m —)Tz —2) = tr(X — X)T(X — X))

=tr(V(Z = S)WUTU(E - S)VT) = tr(V(Z -)= — S)V7T)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90/125

Autoencoders PCA

SVD and PCA

o Let X =[xy, %9, , x| be the matrix with columns as data vectors.
We can decompose X = UXV7 using SVD
@ Assume X is zero-mean, the covariance matrix C is just C' = XfT

e Note that C ~ USVT(USVTT = UX2UT, thus singular values are
just square root of eigenvalues
e Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X
@ One can easily verify that. Let X = UXVT, where X only keeps the
M largest singular values, then

Error = Z(m —)Tz —2) = tr(X — X)T(X — X))
=tr(V(Z = S)WUTU(E - S)VT) = tr(V(Z -)= — S)V7T)
=tr(T=)VNHV(Z - %))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90/125

Autoencoders PCA

SVD and PCA

o Let X =[xy, %9, , x| be the matrix with columns as data vectors.
We can decompose X = UXV7 using SVD
@ Assume X is zero-mean, the covariance matrix C is just C' = XfT

e Note that C ~ USVT(USVTT = UX2UT, thus singular values are
just square root of eigenvalues
e Since PCA is in effect keeping the M largest eigenvalues of the
covariance matrix, it is the same as keeping the M largest singular
values of X
@ One can easily verify that. Let X = UXVT, where X only keeps the
M largest singular values, then

Error = Z(m —)Tz —2) = tr(X — X)T(X — X))
=tr(V(Z = S)WUTU(E - S)VT) = tr(V(Z -)= — S)V7T)
=tr((Z =)VHV(Z - D)) = tr((Z — £)?)
=Sum of eigenvalues excluding the M largest ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90/125

Autoencoders PCA

Optimal linear decoder = optimal linear encoder

o PCA is optimum when things are “linear”

S. Cheng (OU-Tulsa) Generative Models Feb 2017 91/125

Autoencoders PCA

Optimal linear decoder = optimal linear encoder

o PCA is optimum when things are “linear”

@ Interesting to know that as far as decoding is linear, the optimal
encoding is linear (PCA) as well

S. Cheng (OU-Tulsa) Generative Models Feb 2017 91/125

Autoencoders PCA

Optimal linear decoder = optimal linear encoder

o PCA is optimum when things are “linear”

@ Interesting to know that as far as decoding is linear, the optimal
encoding is linear (PCA) as well

o That is, if X = Wh(X) for some optimal W
o = h(X) =TX for some optimal T

S. Cheng (OU-Tulsa) Generative Models Feb 2017 91/125

Autoencoders PCA

Optimal linear decoder = optimal linear encoder

o PCA is optimum when things are “linear”

@ Interesting to know that as far as decoding is linear, the optimal
encoding is linear (PCA) as well

o That is, if X = Wh(X) for some optimal W
o = h(X) =TX for some optimal T

S. Cheng (OU-Tulsa) Generative Models Feb 2017 91/125

Autoencoders PCA

Autoencoders

X [O@OAOOO] o Autoencoder is a way to

perform dimension reduction

W* = WT with neural networks
(tied weights) h(:U) — sigm(b + Wx)
T=c+ W*h(x)

h(x) (O@QOOJ

\%%

x (OOO000)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 92 /125

Autoencoders PCA

Autoencoders

X [O@OAOOO] o Autoencoder is a way to

perform dimension reduction
W* = WT with neural networks

(tied weights) h(z) = sigm(b + Wz)
z

h(x) [O@(A)OOJ — ¢+ W*h(z)

\%%

x (OOO000)

@ loss = |z — z|

S. Cheng (OU-Tulsa) Generative Models Feb 2017 92 /125

Autoencoders PCA

Autoencoders

X [O@OAOOO] o Autoencoder is a way to

perform dimension reduction
W* = WT with neural networks

(tied weights) h(x) = sigm(b+ Wz)
h(x) (OBOOO) B et Whia)
A @ loss = |z — z|
W

o N.B., as the decoder is linear,
the optimum autoencoder is

X [OOOOOOJ just equivalent to PCA

S. Cheng (OU-Tulsa) Generative Models Feb 2017 92 /125

Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

output vector

t @ When using multiple layers,
PCA is no longer optimal for
continuous input

T

code

T

T

input vector

S. Cheng (OU-Tulsa) Generative Models Feb 2017 93 /125

Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

output vector

t @ When using multiple layers,
PCA is no longer optimal for
continuous input

t @ The introduced nonlinearity can
efficiently represent data that
lies on a non-linear manifold

code

T

T

input vector

S. Cheng (OU-Tulsa) Generative Models Feb 2017 93 /125

Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

output vector

t @ When using multiple layers,
PCA is no longer optimal for
continuous input

t @ The introduced nonlinearity can
code efficiently represent data that
1_ lies on a non-linear manifold

@ It was an old idea (dated back
to 80's) but it was considered
t to be very hard to train

input vector

S. Cheng (OU-Tulsa) Generative Models Feb 2017 93 /125

Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

output vector

Ll

@ First really successful deep
autoencoder was trained in
t 2006 by Hinton's group

code

T

T

input vector

S. Cheng (OU-Tulsa) Generative Models Feb 2017 94 /125

Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

output vector

Ll

@ First really successful deep
autoencoder was trained in

t 2006 by Hinton's group
code @ |t uses layer-by-layer RBM
1_ pre-training as described earlier

@ Just use regular backprob for
fine-tuning

T

input vector

S. Cheng (OU-Tulsa) Generative Models Feb 2017 94 /125

Autoencoders Deep autoencoders

Deep autoencoder vs PCA

Original data

Deep autoencoder
reconstruction

PCA reconstruction

From Hinton and Salakhutdinov, Science, 2006

S. Cheng (OU-Tulsa) Generative Models Feb 2017 95 /125

Autoencoders Deep autoencoders

Deep autoencoder for 400,000 business documents
Hinton 2006

First compress all documents to 2 numbers using deep auto.
Then use different colors for different document categories

Interbank Markets Monetary/Economic

- s i

Energy Markets PR 3 O & W g
TR ey s Disasters and
- Accidents

el
vy
Leading Ecnomic -~
Indicators ,,‘3"(

Government
Accounts/ Borrowings
Earnings

S. Cheng (OU-Tulsa) Generative Models Feb 2017 96 /125

Autoencoders Deep autoencoders

Deep autoencoder for 400,000 image retrieval
Hinton 2006

T
Q«ﬂ | » S .
. ,,,‘) » 4 o Leftmost column
e Ly NN el . " .
< — ¥ is the search

image.

Other columns
are the images
= that have the
T - =8 most similar
< feature activities
in the last hidden
layer.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 97 /125

Autoencoders ~ Stacked autoencoders

Stacked autoencoders

Alternative pretraining approach

@ Besides pre-training
using RBMs, we may
also “expand” a deep
autoencoders as a
stack of shallow

lput - Features| - Output autoecoders

S. Cheng (OU-Tulsa) Generative Models Feb 2017 98 /125

Autoencoders ~ Stacked autoencoders

Stacked autoencoders

Alternative pretraining approach

1

5

o
;3 . . .
@ @ Besides pre-training

4

using RBMs, we may
Q_’ also “expand” a deep
O autoencoders as a
stack of shallow
hput Features! Output autoecoders

S. Cheng (OU-Tulsa) Generative Models Feb 2017 98 /125

Autoencoders ~ Stacked autoencoders

Stacked autoencoders

Alternative pretraining approach

@ Besides pre-training

— ry-01n using RBMs, we may
—>ryetin also “expand” a deep
—>#tr=214 autoencoders as a
stack of shallow
lput - Features| - Output autoecoders

&— @ Shallow

— autoencoders are

@_> easier to train than

o— RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 98 /125

Autoencoders ~ Stacked autoencoders

Denoising autoencoders
Vincent et al. 2008

X
[O@QQOO] @ |dea: representation should be robust to

W= W' introduction of noise
h(x) (tied weights) o Randomly assign bits to zero for binary

GO OOOO00) case

@ Similar to dropout but for inputs
W onIy

3(0/0/0/0/010)

A noise process

v P(Xx)

x (000000

S. Cheng (OU-Tulsa) Generative Models Feb 2017 99 /125

Autoencoders ~ Stacked autoencoders

Denoising autoencoders
Vincent et al. 2008

X
[O@QQOO] @ |dea: representation should be robust to

W= W' introduction of noise
h(x) (tied weights) o Randomly assign bits to zero for binary

GO OOOO00) case

@ Similar to dropout but for inputs

W onIy
o Gaussian additive noise for continuous

3(0/0/0/0/010) case

A noise process

v P(Xx)

x (000000

S. Cheng (OU-Tulsa) Generative Models Feb 2017 99 /125

Autoencoders ~ Stacked autoencoders

Denoising autoencoders
Vincent et al. 2008

X
[O@QQOO] @ |dea: representation should be robust to

W= W' introduction of noise
h(x) (tied weights) o Randomly assign bits to zero for binary

GO OOOO00) case

@ Similar to dropout but for inputs

W onIy
o Gaussian additive noise for continuous

3(0/0/0/0/010) case

A miS(eMP‘rO)ce“ @ Loss function compares with noiseless
p(X[x .
input x

x (000000

S. Cheng (OU-Tulsa) Generative Models Feb 2017 99 /125

(%)
—
[}
e
(®)
O
c
()
(©)
s
=
[0}
o0
c
@
(@)
c
[
a

100 /125

~
—
(=]
(o
Qa

7]
w

Autoencoders ~ Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

@ ldea: encourage robustness of the model by forcing the hidden units
to be insensitive to slight change of inputs

S. Cheng (OU-Tulsa) Generative Models Feb 2017 101 /125

Autoencoders ~ Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

@ ldea: encourage robustness of the model by forcing the hidden units
to be insensitive to slight change of inputs

@ Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

L(z) = L(z) + M|V h(2)[F

S. Cheng (OU-Tulsa) Generative Models Feb 2017 101 /125

Autoencoders ~ Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

@ ldea: encourage robustness of the model by forcing the hidden units
to be insensitive to slight change of inputs

@ Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

L(z) = L(z) + M|V h(2)[F

@ Pros and cons
e + deterministic gradient = can use second order optimizers

S. Cheng (OU-Tulsa) Generative Models Feb 2017 101 /125

Autoencoders ~ Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

@ ldea: encourage robustness of the model by forcing the hidden units
to be insensitive to slight change of inputs

@ Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

L(z) = L(z) + M|V h(2)[F

@ Pros and cons
e + deterministic gradient = can use second order optimizers
e + could be more stable than denoising autoencoder, which needs to

use a sampled gradient

S. Cheng (OU-Tulsa) Generative Models Feb 2017 101 /125

Autoencoders ~ Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

@ ldea: encourage robustness of the model by forcing the hidden units
to be insensitive to slight change of inputs

@ Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

L(z) = L(z) + M|V h(2)[F

@ Pros and cons
e + deterministic gradient = can use second order optimizers
e + could be more stable than denoising autoencoder, which needs to

use a sampled gradient
o - Need to compute Jacobian of hidden layer

S. Cheng (OU-Tulsa) Generative Models Feb 2017 101 /125

Autoencoders ~ Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

@ ldea: encourage robustness of the model by forcing the hidden units
to be insensitive to slight change of inputs

@ Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

L(z) = L(z) + M|V h(2)[F

@ Pros and cons

+ deterministic gradient = can use second order optimizers

+ could be more stable than denoising autoencoder, which needs to
use a sampled gradient

o - Need to compute Jacobian of hidden layer
o - More complex than denoising autoencoder, which just needs to add

one two lines of code
Feb 2017 101 /125

S. Cheng (OU-Tulsa) Generative Models

Autoencoders ~ Stacked autoencoders

Remark on pretraining

What are the disadvantages of pretraining deep
neural networks by stacking autoencoders?

Answer | | Request~ | Follow 55 Comment Downvote Ly
1 Answer

Yoshua Bengio, My lab has been one of the three that started the deep learning
) approach, back in 2006, along with Hinton's...

The same disadvantage as other layer-wise pre-training techniques: it is greedy,
i.e., it does not try to tune the lower layers in a way that will make the work of
higher layers easier. But that will change soon with a new approach I am
working on!

S. Cheng (OU-Tulsa) Generative Models Feb 2017 102 /125

Autoencoders ~ Stacked autoencoders

Remark on pretraining

Ian Goodfellow, Lead author of the Deep Learning textbook:
¥ http://www.deeplearningbook.org
Answered Sep 28, 2016 - Upvoted b aditya Prakas!

and Abhinav Maurya, PhD Student

Autoencoders are useful for some things, but turned out not to be nearly as
necessary as we once thought. Around 10 years ago, we thought that deep nets
would not learn correctly if trained with only backprop of the supervised cost.
We thought that deep nets would also need an unsupervised cost, like the
autoencoder cost, to regularize them. When Google Brain built their first very
large neural network to recognize objects in images, it was an autoencoder (and
it didn’t work very well at recognizing objects compared to later approaches).
Today, we know we are able to recognize images just by using backprop on_til.e

e —— i —
supervised cost as long as there is enough labeled data. There are other tasks

where we do still use autoencoders, but they're not the fundamental solution to
training deep nets that people once thought they were going to be.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 103 /125

Autoencoders ~ Variational autoencoders

Variational autoencoders

“Generative autoencoders” = variational autoencoders
@ Instead of spitting out an approximate for the input

@ The network spits out parameters of a distribution

S. Cheng (OU-Tulsa) Generative Models Feb 2017 104 /125

Autoencoders ~ Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

X ~ N(p, o2 _ pe)pe(alz) _ _ pla)py(al2)
(o) ° p(al?) =BG = Toopeelsias

S. Cheng (OU-Tulsa) Generative Models Feb 2017 105 /125

Autoencoders ~ Variational autoencoders

Variational autoencoder

Kingma and Willing 2014

)
2
2

=
ql\D

o plale) = B = RS

e For simplicity, pick p(z) N(z0,1)
and py(x|z) = N(u, 0?), the posterior
p(z|z) is still intractable since

computing p(x) needs to integrate over
all possible z

NN with 6

N — T m—

S. Cheng (OU-Tulsa) Generative Models Feb 2017 105 /125

Autoencoders ~ Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

)
2
2

=
ql\D

o plale) = B = RS

e For simplicity, pick p(z) N(z0,1)
and py(x|z) = N(u, 0?), the posterior
p(z|z) is still intractable since
computing p(x) needs to integrate over

NN with 6 all possible z
o We might use MAP or Monte Carlo
sampling (MCMC) to estimate p(z|x)
; but
p(z]z) e MAP: - too biased

o MCMC: - too expensive
e = Variational inference

S. Cheng (OU-Tulsa) Generative Models Feb 2017 105 /125

Autoencoders ~ Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

1« e Instead of trying to find the exact

posterior p(z|z), approximate it as a
Gaussian distribution with parameters
obtained through an NN

S. Cheng (OU-Tulsa) Generative Models Feb 2017 106 /125

Autoencoders ~ Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

@ Instead of trying to find the exact
posterior p(z|z), approximate it as a
Gaussian distribution with parameters
obtained through an NN

S. Cheng (OU-Tulsa) Generative Models Feb 2017 106 /125

Autoencoders ~ Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

@ Instead of trying to find the exact
posterior p(z|z), approximate it as a
Gaussian distribution with parameters
obtained through an NN

e Unfortunately, the loss —log p(x) is still
intractable, but we can approximate
log p(z) with a lower bound

S. Cheng (OU-Tulsa) Generative Models Feb 2017 106 /125

Autoencoders ~ Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

1« e Instead of trying to find the exact

posterior p(z|z), approximate it as a
Gaussian distribution with parameters
obtained through an NN

e Unfortunately, the loss —log p(x) is still
intractable, but we can approximate
log p(z) with a lower bound

@ Instead of minimizing the loss, or
maximizing log p(z) directly, we will
maximize its lower bound instead

S. Cheng (OU-Tulsa) Generative Models Feb 2017 106 /125

Autoencoders ~ Variational autoencoders

Variational lower bound (EBLO)

Po(x|2)p(2)

log p(z) = log P (l)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 107 /125

Autoencoders ~ Variational autoencoders

Variational lower bound (EBLO)

oen(z) = lo po(x|2)p(2) o po(z|2)p(2) 44 (2]7)
log p(z) = log (L) =1 FEERPREES

S. Cheng (OU-Tulsa) Generative Models Feb 2017 107 /125

Autoencoders ~ Variational autoencoders

Variational lower bound (EBLO)

oen(z) = lo po(x|2)p(2) o po(z|2)p(2) 44 (2]7)
log p(z) = log (L) =1 FEERPREES
q¢(z|x)
p(z|z)

q¢(2]w)
=lo z|z) —lo +lo
gpg(z|2) —log)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 107 /125

Autoencoders ~ Variational autoencoders

Variational lower bound (EBLO)

oen(z) = lo po(x|2)p(2) o po(z|2)p(2) 44 (2]7)
log p(z) = log (L) =1 FEERPREES

q¢(2]m) q¢(z|x)
= logpy(z|z) — log + log
olele) —log =y 8)
Since the above is true for all z,
q4(2|) q4(2|7)

logp(m)ZEzN%(z\z) log py(z|z) — log 2(2) + log p(2|z)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 107 /125

Autoencoders ~ Variational autoencoders

Variational lower bound (EBLO)

oen(z) = lo po(x|2)p(2) o po(z|2)p(2) 44 (2]7)
log p(z) = log (L) =1 FEERPREES
(2]z) q4(z|2)

9
= logpy(z|z) — log + log
olelz) —log = 5 p(zl2)

Since the above is true for all z,

q4(2]T) q4(2|@)
log p(z) = Bz qyz12) log py(z|2) — log ZT) + log ;(le)
= E g q,(zl2) l0g pg(z|2)] — KL(qy(2|2)|p(2)) + K L(q,(z|z) |p(z]z))
EBLO(z, 6, ¢) “Evidence Lower BOund” =0

S. Cheng (OU-Tulsa) Generative Models Feb 2017 107 /125

Autoencoders ~ Variational autoencoders

Variational lower bound (EBLO)

oen(z) = lo po(x|2)p(2) o po(z|2)p(2) 44 (2]7)
log p(z) = log (L) =1 FEERPREES
(2]z) q4(z|2)

9
= logpy(z|z) — log + log
olelz) —log = 5 p(zl2)

Since the above is true for all z,

q4(2]T) q4(2|@)
log p(z) = Bz qyz12) log py(z|2) — log ZT) + log ;(le)
= E g q,(zl2) l0g pg(z|2)] — KL(qy(2|2)|p(2)) + K L(q,(z|z) |p(z]z))
EBLO(z, 6, ¢) “Evidence Lower BOund” =0

Training: 0%, ¢" = argmaxg 4 > . EBLO(z"), 0, ¢)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 107 /125

Autoencoders ~ Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

Maximizing EBLO means that:
e Want small K'L(q,(z|z)|p(2)) (the difference between the approx
distribution from p(z))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 108 /125

Autoencoders ~ Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

Maximizing EBLO means that:
e Want small K'L(q,(z|z)|p(2)) (the difference between the approx
distribution from p(z))

e This turns out to have closed-form solution since we are dealing with
Gaussian distributions

S. Cheng (OU-Tulsa) Generative Models Feb 2017 108 /125

Autoencoders ~ Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

Maximizing EBLO means that:
e Want small K'L(q,(z|z)|p(2)) (the difference between the approx
distribution from p(z))

e This turns out to have closed-form solution since we are dealing with
Gaussian distributions

o Want large E7_; (2/a) [log pg(x|2)] (expected log prob of the evidence
with approx distribution)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 108 /125

Autoencoders ~ Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

Maximizing EBLO means that:
e Want small K'L(q,(z|z)|p(2)) (the difference between the approx
distribution from p(z))

e This turns out to have closed-form solution since we are dealing with
Gaussian distributions

o Want large E7_; (2/a) [log pg(x|2)] (expected log prob of the evidence
with approx distribution)

e need to backprop through a random node z
e can be solved by the "reparametrization trick”

S. Cheng (OU-Tulsa) Generative Models Feb 2017 108 /125

Autoencoders ~ Variational autoencoders

Reparametrization trick

Original form Reparameterised form
- - - - - - - ------=--=-7 1 r--—--—---------- - --=-=-=- 1
| I I I
: f : : Backprop f |
|
| N |
: ~ q(z|p.x) : : /97 L2, = 9(d,x,g) :
| I
| o2 |
: ¢ & : : of/ 0o ¢ X ~ ple) :
: : : = aL-,-"aq)i :
| o _____ | l_ o ______ I
: Deterministic node [Kingma, 2013]
[Bengio, 2013]
. [Kingma and Welling 2014]
. Random node [Rezende et al 2014]

S. Cheng (OU-Tulsa) Generative Models Feb 2017 109 /125

Autoencoders ~ Variational autoencoders

Variational autoencoders

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e) |)] - Dict(as(z | 2) || po(2))

L(zD,0,¢)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 83 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 110 /125

Autoencoders ~ Variational autoencoders

Variational autoencoders

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e) |)] - Dict(as(z | 2) || po(2))

L(zD,0,¢)

Let’s look at computing the bound

(forward pass) for a given minibatch of
input data

Input Data | T ‘

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13- 84 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 111 /125

Autoencoders ~ Variational autoencoders

Variational autoencoders

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e) |)] - Dict(as(z | 2) || po(2))

L(zD,0,¢)

LMz | [Zaga |

Encoder network

q9(2[2)
Input Data | x ‘

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 85 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 112 /125

Autoencoders ~ Variational autoencoders

Variational autoencoders

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e) |)] - Dict(as(z | 2) || po(2))

L(zD,0,¢)

Make approximate
posterior distribution
close to prior

LMz | [Zaga |

Encoder network
q4(z[x)
Input Data | T ‘

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13- 86 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 113 /125

Autoencoders ~ Variational autoencoders

Variational autoencoders

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e) |)] - Dict(as(z | 2) || po(2))

L(zD,0,¢)
Make approximate Sample 2 from ZIJ; ~ N(lez’ Ezlz)
posterior distribution /
close to prior | Hz|x ‘ | z)z|:c ‘
Encoder network
q9(z|2)
Input Data | x ‘

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13- 87 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 114 /125

Autoencoders ~ Variational autoencoders

Variational autoencoders

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e) |)] - Dict(as(z | 2) || po(2)) |

Hz|z ‘ | 2$|z ‘
L(zD,0,¢)

Decoder network
po(z|z)

Sample z from z|z ~ N »
Make approximate P I (/‘l‘zliw z|1:)

posterior distribution
close to prior

"
[Hele | [Zaga |

Encoder network
q4(z[x)
Input Data | T ‘

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13- 88 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 115 /125

Autoencoders ~ Variational autoencoders

Variational autoencoders

Variational Autoencoders

r | i |
Putting it all t “maximizing the Loz
utting : 9 likelihood of ~ Sample x|z from Z|z ~ N (fg)z, Xg)2)
likelihoogrfower bound original input
being
E: [logno(a” | Z)] — Dicr(as(2 | 27) || po(2)) reconstructed | Mgz ‘ | x|z ‘

Decoder network

po(|2)

L(zD,0,¢)

Sample z from z|z ~ N »
Make approximate P I (/‘l‘zliw z|1:)
posterior distribution
close to prior

Encoder network

qs(2[2)
Input Data | T ‘

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 89 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 116 /125

Autoencoders ~ Variational autoencoders

Variational autoencoders

Variational Autoencoders

Maximize

| & |

I?utt?ng itall t Tmaximizing the | Cihood of Sample x|z from z|z ~ ,/\/’(lez, Ezlz)
likelihoog'Tower bound original input

being
E. [logpo(z? | z)] — Dir(ge(z | 2?) || po(2)) reconstructed | Mgz ‘ | x|z ‘

Decoder network

po(|2)

L(zD,0,¢)

Sample z from z|z ~ N »
Make approximate P I (/‘l‘zliw z|1:)
posterior distribution
close to prior

Encoder network
For every minibatch of input (z|a:)
data: compute this forward 99
pass, and then backprop! Input Data | T ‘

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 90 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 117 /125

Autoencoders ~ Variational autoencoders

Variational autoencoders

Variational Autoencoders: Generating Data!

Use decoder network. Now sample z from prior!

| z |
Sample x|z from |2 ~ N (fy) 2, X)2)

L Hels [B
Decoder network

po(z|2)

Sample z from z ~ N(0,)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 91 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models

Feb 2017

118 /125

0
4
7]

T
o
o
c
o
I}

2
S
©
©
c

2

=
©

=
J
>

Autoencoders

Variational autoencoders

Data!

ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!

QANANNNNNNNNNN S SNNNSNS
QAAIVNNHEEELELL LN~
VAWM hbhboveww~~
QU NIV e ~~
QOOVNNNNHEBBIVVV W e~~~
QO0DNHNINMNMHBABIVIVIVD = ——
QOO OHINMMMEONBIII S = = ——
QOOOMMNMMMM;DDIID P = —
CODOOMMMMMM®DDD D = = —
QOOOMMMMMMNM®O®DD D e —
QO MMM N 000000 e o o o = —
QOMMMM M0 000000 oo —
QA ol o404 0% 07070000 00 b &n on om0 e
GANNNE PPt~
daddddfFrrrrrrrssoe~~
Jaddddocrrrrrrrrraan~
Vaddddoorrrrrrrrrranns
Sddddagorrrrrrrrrrrann
AdITTTrTrrrrrrIrrrnan
SFTTTTTCrC oo ORI R™NNN

z:azlz

@

4
Sample z from z ~ N(0,)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Haz|z

Sample x|z from |2 ~ N (fy) 2, X)2)

Decoder network
po(z|2)

92 May 18, 2017

Lecture 13 -

()
c
>
o)

>
@©
c
0]
o
©

n

o3
c
o
(2]
=

<
o

S

=

=
(2]
>
=

o3

=

©

w

©

w

119/125

Feb 2017

Generative Models

S. Cheng (OU-Tulsa)

0
4
7]

T
o
o
c
o
I}

2
S
©
©
c

2

=
©

=
J
>

Autoencoders

Variational autoencoders

Data

Data manifold for 2-d z

ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!

QANANNNNNNNNNN S SNNNSNS
QAAIVNNHEEELELL LN~
VAWM hbhboveww~~
QU NIV e ~~
QOOVNNNNHEBBIVVV W e~~~
QO0DNHNINMNMHBABIVIVIVD = ——
QOO OHINMMMEONBIII S = = ——
QOOOMMNMMMM;DDIID P = —
CODOOMMMMMM®DDD D = = —
QOOOMMMMMMNM®O®DD D e —
QO MMM N 000000 e o o o = —
QOMMMM M0 000000 oo —
QA ol o404 0% 07070000 00 b &n on om0 e
GANNNE PPt~
daddddfFrrrrrrrssoe~~
Jaddddocrrrrrrrrraan~
Vaddddoorrrrrrrrrranns
Sddddagorrrrrrrrrrrann
AdITTTrTrrrrrrIrrrnan
SFTTTTTCrC oo ORI R™NNN

:clz) Vary z,
|

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample x|z from |z ~ N(Mz|27 by
‘ z:azlz

@

4
Sample z from z ~ N(0,)

Haz|z

Decoder network
po(z|2)

Vary z,
93

May 18, 2017

Lecture 13 -

()
c
>
o)

>
@©
c
0]
o
©

n

o3
c
o
(2]
=

<
o

S

=

=
(2]
>
=

o3

=

©

w

©

w

120/ 125

Feb 2017

Generative Models

S. Cheng (OU-Tulsa)

Autoencoders

Variational autoencoders

Variational autoencoders

Variational Autoencoders: Ge

Diagonal prior on z
=> independent

latent variables Degree of smile

\

Vary z,

Different
dimensions of z
encode
interpretable factors
of variation

Fei-Fei Li & Justin Johnson & Serena Yeung

S. Cheng (OU-Tulsa) Generative Models

SEEEEEEEES
i

adlasle

nerating Data!

25

Lecture 13- 94 May 18, 2017

Feb 2017 121 /125

Autoencoders ~ Variational autoencoders

Variational autoencoders

Variational Autoencoders: Generating Data!

R etk b b

Diagonal prior on z

;j]:j 5§§Z1§|2 r;t Degree of smile :::::g'gﬁr‘&a
A ¥

Different \ ég-'&a 4_‘ 5.5.

dimensions of z Varyz, | =%

encode ?-v’-'

interpretable factors | Gdesleslasleslzslzslesles

of variation _ﬁl!
-

\ BREEEREES

Also good feature representation that - =
can be computed using q¢(z|x)! FEFEFEFEFEERS
Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary zz —

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 95 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 122 /125

Autoencoders ~ Variational autoencoders

Variational autoencoders

Variational Autoencoders: Generating Data!

Labeled Faces in the Wild
32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 96 May 18, 2017

S. Cheng (OU-Tulsa) Generative Models Feb 2017 123 /125

Autoencoders ~ Variational autoencoders

Summary of variational autoencoders

@ Probabilistic spin to traditional autoencoders to allow data
generation. Use variational lower bound to workaround intractable
density estimation

Pros e Systematic approach to generative models (train
end-to-end)
o Allows inference of q,(z[z) that can be used for feature
representation
Cons e Maximizes lower bound rather than exact cost function.
Less direct than say PixelRNN/PixelCNN
e Samples generated are lower quality compared to the
state-of-the-art (GANs)
o Follow-up research:

o More flexible approximations, e.g., richer model in approximating the
posterior (typically just use diagonal Gaussian in the basic model)

o Incorporating structure in latent variables

e Disentangled variational autoencoder

S. Cheng (OU-Tulsa) Generative Models Feb 2017 124 /125

https://arxiv.org/abs/1709.05047

Conclusions

Conclusions

@ Conventional autoencoders are important tools for dimension
reduction and data representation in general

S. Cheng (OU-Tulsa) Generative Models Feb 2017 125 /125

Conclusions

Conclusions

@ Conventional autoencoders are important tools for dimension
reduction and data representation in general
@ Generative models are some very exciting hot topics in deep learning

o Especially useful for datasets with few or no labels
e Many other possible applications yet to be discovered

S. Cheng (OU-Tulsa) Generative Models Feb 2017 125 /125

Conclusions

Conclusions

@ Conventional autoencoders are important tools for dimension
reduction and data representation in general
@ Generative models are some very exciting hot topics in deep learning

o Especially useful for datasets with few or no labels
e Many other possible applications yet to be discovered

@ We discuss several generative models, in particular

e Variational autoencoders: autoencoders -+ variational inference
o Generative adversarial networks (GANs): more recent and gaining lots
of interests

S. Cheng (OU-Tulsa) Generative Models Feb 2017 125 /125

	Supervised vs unsupervised learning
	Generative models
	GANs
	Design tricks
	DCGAN
	More applications

	Boltzmann machines and DBNs
	Restricted Boltzmann machines
	Deep belief networks

	Autoencoders
	PCA
	Deep autoencoders
	Stacked autoencoders
	Variational autoencoders

	Conclusions

