Capsule Networks

Samuel Cheng

School of ECE University of Oklahoma

Spring, 2018 (Slides credit to Aurélien Géron)

- Group neurons into "capsules"
 - A capsule processes a group of information as vector rather than scalar
- "Data-driven routing"
 - Routing weights are neither fixed nor predefined
 - Routing by agreement: later layer can indirectly controlled what is sent to it

- Group neurons into "capsules"
 - A capsule processes a group of information as vector rather than scalar
- "Data-driven routing"
 - Routing weights are neither fixed nor predefined
 - Routing by agreement: later layer can indirectly controlled what is sent to it

- Group neurons into "capsules"
 - A capsule processes a group of information as vector rather than scalar
- "Data-driven routing"
 - Routing weights are neither fixed nor predefined
 - Routing by agreement: later layer can indirectly controlled what is sent to it

- Group neurons into "capsules"
 - A capsule processes a group of information as vector rather than scalar
- "Data-driven routing"
 - Routing weights are neither fixed nor predefined
 - Routing by agreement: later layer can indirectly controlled what is sent to it

Primary capsules

Equivarance

Equivarance

Primary capsules

Convolutional Layers

+ Squash

1

Squash(**u**) =
$$\frac{||\mathbf{u}||^2}{1 + ||\mathbf{u}||^2} \frac{\mathbf{u}}{||\mathbf{u}||}$$

Key idea

Every capsule in the first layer trying to predict every capsule in the next layer

Predict next layer capsules

 \bullet The transformation matrix $\mathbf{W}_{i,j}$ is supposed to be learned through training

Predict next layer capsules

Routing by agreement

- Routing weight is adjusted dynamically based on matches between input capsules and output capsules
- ullet The key idea is similar to k-mean

S. Cheng (OU-ECE)

$$b_{1,1} = b_{2,1} = \dots = b_{n,m} = 0$$

$$b_{i,j} = b_{i,j} + \langle v_j, u_{j|i} \rangle$$

- ullet "Transition" weights ${f c}$ are normalized with softmax
- The weights are set uniformly at the beginning

- The prediction of a capsule from all previous level capsules are weighted sum together with the current weight
- A squash function is used to normalized the output predictions

S. Cheng (OU-ECE) Capsule Networks March 2018 18/43

- \bullet The level of agreement is estimated by simply computing the dot production between a predicted output $\hat{\mathbf{u}}_{i,j}$ and the actual output \mathbf{v}_j (after weighted sum)
- The transition weight (before softmax) is updated by simply adding the dot product

- ullet The level of agreement is estimated by simply computing the dot production between a predicted output $\hat{\mathbf{u}}_{i,j}$ and the actual output \mathbf{v}_j (after weighted sum)
- The transition weight (before softmax) is updated by simply adding the dot product

- The level of agreement is estimated by simply computing the dot production between a predicted output $\hat{\mathbf{u}}_{i,j}$ and the actual output \mathbf{v}_j (after weighted sum)
- The transition weight (before softmax) is updated by simply adding the dot product

• The whole process is repeated using the updated transition weights

• The whole process is repeated using the updated transition weights

• The whole process is repeated using the updated transition weights

- An upside down house exists in the figure
 - But this interpretation is not encouraged since the lower rectangle and the upper triangle cannot be explained this way

Multi-class margin loss

Translated to English:

"If an object of class k is present, then ||v.|| should be no less than 0.9. If not, then $||\mathbf{v}_{\iota}||$ should be no more than 0.1."

To allow multiple classes, minimize margin loss:

$$\mathbf{L}_{k} = \mathbf{T}_{k} \max(0, m^{+} - ||\mathbf{v}_{k}||)^{2}$$

$$+ \lambda (1 - \mathbf{T}_{k}) \max(0, ||\mathbf{v}_{k}|| - m^{-})^{2}$$

 $T_{k} = 1$ iff class k is present

In the paper:

$$m^{-} = 0.1$$

 $m^{+} = 0.9$
 $\lambda = 0.5$

Net loss

Net loss

MNIST example

- ReLU Conv1
 - 9×9 kernels, stride 1, no padding, $\rightarrow 28 9 + 1 = 20$
 - 256 channels
- PrimaryCaps
 - 9×9 kernels, stride 2, no padding $\to \lfloor \frac{20-9}{2} \rfloor + 1 = 6$
 - 8 neurons per capsule
 - $32 \times 6 \times 6$ capsules
- DigiCaps
 - 16 neurons per capsule
 - 10 capsules (classes)

Hinton's second capsule paper

- It may not be an efficient representation to have both pose and probability embedded in one vector
- Hinton et al. suggest to split this representation into a scalar value (with the probability of activation) and a pose matrix in their followup paper

- Instead of computing agreement through similarity (inner product) between capsules across two layers, compute a dedicated pose information for each capsule of lower layer
 - Use 4×4 matrix M_i for pose of capsule i
 - The pose to the next layer is adjusted by multiplying a transform matrix. The effective pose of capsule i (lower layer) in capsule j's perspective (next layer) is $v_{i,j} = W_{i,j} M_i$
- ullet For each pose h, the agreement of the pose can be gauged by

$$cost_{i,j}^h = -\ln p_{j|i}^h,$$

where the probability $p_{j|i}^h$ is approximated as $\mathcal{N}((W_{i,j}M_i)^h; \mu_j^h, \sigma_j^h)$ and μ_j^h and σ_j^h are approximated using EM (explained later)

- The assignment probability of capsule i to capsule j, $r_{i,j}$, will be scaled by the activation of capsule i, a_i . $r_{i,j} \leftarrow a_i r_{i,j}$
- Output of capsule j: $a_j = sigmoid(\lambda(b_j \sum_h \sum_i r_{i,j} cost_{i,j}^h))$

S. Cheng (OU-ECE) Capsule Networks March 2018 31 / 43

- Instead of computing agreement through similarity (inner product) between capsules across two layers, compute a dedicated pose information for each capsule of lower layer
 - Use 4×4 matrix M_i for pose of capsule i
 - ullet The pose to the next layer is adjusted by multiplying a transform matrix. The effective pose of capsule i (lower layer) in capsule j's perspective (next layer) is $v_{i,j} = W_{i,j} M_i$
- ullet For each pose h, the agreement of the pose can be gauged by

$$cost_{i,j}^h = -\ln p_{j|i}^h,$$

where the probability $p_{j|i}^h$ is approximated as $\mathcal{N}((W_{i,j}M_i)^h; \mu_j^h, \sigma_j^h)$ and μ_j^h and σ_j^h are approximated using EM (explained later)

- The assignment probability of capsule i to capsule j, $r_{i,j}$, will be scaled by the activation of capsule i, a_i . $r_{i,j} \leftarrow a_i r_{i,j}$
- Output of capsule j: $a_j = sigmoid(\lambda(b_j \sum_h \sum_i r_{i,j} cost_{i,j}^h))$

S. Cheng (OU-ECE) Capsule Networks March 2018 31 / 43

- Instead of computing agreement through similarity (inner product) between capsules across two layers, compute a dedicated pose information for each capsule of lower layer
 - Use 4×4 matrix M_i for pose of capsule i
 - The pose to the next layer is adjusted by multiplying a transform matrix. The effective pose of capsule i (lower layer) in capsule j's perspective (next layer) is $v_{i,j} = W_{i,j}M_i$
- ullet For each pose h, the agreement of the pose can be gauged by

$$cost_{i,j}^h = -\ln p_{j|i}^h,$$

where the probability $p_{j|i}^h$ is approximated as $\mathcal{N}((W_{i,j}M_i)^h; \mu_j^h, \sigma_j^h)$ and μ_j^h and σ_i^h are approximated using EM (explained later)

- The assignment probability of capsule i to capsule j, $r_{i,j}$, will be scaled by the activation of capsule i, a_i . $r_{i,j} \leftarrow a_i r_{i,j}$
- Output of capsule j: $a_j = sigmoid(\lambda(b_j \sum_h \sum_i r_{i,j} cost_{i,j}^h))$

S. Cheng (OU-ECE) Capsule Networks March 2018 31 / 43

- Instead of computing agreement through similarity (inner product) between capsules across two layers, compute a dedicated pose information for each capsule of lower layer
 - Use 4×4 matrix M_i for pose of capsule i
 - The pose to the next layer is adjusted by multiplying a transform matrix. The effective pose of capsule i (lower layer) in capsule j's perspective (next layer) is $v_{i,j} = W_{i,j}M_i$
- ullet For each pose h, the agreement of the pose can be gauged by

$$cost_{i,j}^h = -\ln p_{j|i}^h,$$

where the probability $p^h_{j|i}$ is approximated as $\mathcal{N}((W_{i,j}M_i)^h;\mu^h_j,\sigma^h_j)$ and μ^h_j and σ^h_j are approximated using EM (explained later)

- The assignment probability of capsule i to capsule j, $r_{i,j}$, will be scaled by the activation of capsule i, a_i . $r_{i,j} \leftarrow a_i r_{i,j}$
- Output of capsule j: $a_j = sigmoid(\lambda(b_j \sum_h \sum_i r_{i,j} cost_{i,j}^h))$

S. Cheng (OU-ECE) Capsule Networks March 2018 31/43

- Instead of computing agreement through similarity (inner product) between capsules across two layers, compute a dedicated pose information for each capsule of lower layer
 - Use 4×4 matrix M_i for pose of capsule i
 - The pose to the next layer is adjusted by multiplying a transform matrix. The effective pose of capsule i (lower layer) in capsule j's perspective (next layer) is $v_{i,j} = W_{i,j}M_i$
- ullet For each pose h, the agreement of the pose can be gauged by

$$cost_{i,j}^h = -\ln p_{j|i}^h,$$

where the probability $p^h_{j|i}$ is approximated as $\mathcal{N}((W_{i,j}M_i)^h;\mu^h_j,\sigma^h_j)$ and μ^h_j and σ^h_j are approximated using EM (explained later)

- The assignment probability of capsule i to capsule j, $r_{i,j}$, will be scaled by the activation of capsule i, a_i . $r_{i,j} \leftarrow a_i r_{i,j}$
- Output of capsule j: $a_j = sigmoid(\lambda(b_j \sum_h \sum_i r_{i,j} cost_{i,j}^h))$

S. Cheng (OU-ECE) Capsule Networks March 2018 31/43

- Instead of computing agreement through similarity (inner product) between capsules across two layers, compute a dedicated pose information for each capsule of lower layer
 - Use 4×4 matrix M_i for pose of capsule i
 - The pose to the next layer is adjusted by multiplying a transform matrix. The effective pose of capsule i (lower layer) in capsule j's perspective (next layer) is $v_{i,j} = W_{i,j}M_i$
- ullet For each pose h, the agreement of the pose can be gauged by

$$cost_{i,j}^h = -\ln p_{j|i}^h,$$

where the probability $p^h_{j|i}$ is approximated as $\mathcal{N}((W_{i,j}M_i)^h;\mu^h_j,\sigma^h_j)$ and μ^h_j and σ^h_j are approximated using EM (explained later)

- The assignment probability of capsule i to capsule j, $r_{i,j}$, will be scaled by the activation of capsule i, a_i . $r_{i,j} \leftarrow a_i r_{i,j}$
- \bullet Output of capsule $j \colon a_j = sigmoid(\lambda(b_j \sum_h \sum_i r_{i,j} cost_{i,j}^h))$

S. Cheng (OU-ECE) Capsule Networks March 2018 31/43

 $\Omega_L:$ set of capsule indices at layer L

$$cost_{j}^{h}\triangleq\sum_{i\in\Omega_{L}}r_{i,j}cost_{i,j}^{h}$$

 Ω_L : set of capsule indices at layer L

$$cost_{j}^{h}\triangleq\sum_{i\in\Omega_{L}}r_{i,j}cost_{i,j}^{h}=\sum_{i\in\Omega_{L}}-r_{i,j}\ln p_{j|i}^{h}$$

 Ω_L : set of capsule indices at layer L

$$\begin{split} cost_j^h &\triangleq \sum_{i \in \Omega_L} r_{i,j} cost_{i,j}^h = \sum_{i \in \Omega_L} -r_{i,j} \ln p_{j|i}^h \\ &= \sum_{i \in \Omega_L} -r_{i,j} \ln \left(\frac{1}{\sqrt{2\pi(\sigma_j^h)^2}} \exp\left(-\frac{(v_{i,j}^h - \mu_j^h)^2}{2(\sigma_j^h)^2}\right) \right) \end{split}$$

 Ω_L : set of capsule indices at layer L

$$\begin{split} cost_j^h &\triangleq \sum_{i \in \Omega_L} r_{i,j} cost_{i,j}^h = \sum_{i \in \Omega_L} -r_{i,j} \ln p_{j|i}^h \\ &= \sum_{i \in \Omega_L} -r_{i,j} \ln \left(\frac{1}{\sqrt{2\pi(\sigma_j^h)^2}} \exp\left(-\frac{(v_{i,j}^h - \mu_j^h)^2}{2(\sigma_j^h)^2} \right) \right) \\ &= \sum_{i \in \Omega_L} r_{i,j} \left[\ln \sqrt{2\pi} + \ln \sigma_j^h + \frac{(v_{i,j}^h - \mu_j^h)^2}{2(\sigma_j^h)^2} \right] \end{split}$$

 Ω_L : set of capsule indices at layer L

$$\begin{split} cost_j^h &\triangleq \sum_{i \in \Omega_L} r_{i,j} cost_{i,j}^h = \sum_{i \in \Omega_L} -r_{i,j} \ln p_{j|i}^h \\ &= \sum_{i \in \Omega_L} -r_{i,j} \ln \left(\frac{1}{\sqrt{2\pi(\sigma_j^h)^2}} \exp\left(-\frac{(v_{i,j}^h - \mu_j^h)^2}{2(\sigma_j^h)^2} \right) \right) \\ &= \sum_{i \in \Omega_L} r_{i,j} \left[\ln \sqrt{2\pi} + \ln \sigma_j^h + \frac{(v_{i,j}^h - \mu_j^h)^2}{2(\sigma_j^h)^2} \right] \end{split}$$
 Note that in EM update $(\sigma_j^h)^2 \leftarrow \frac{\sum_i r_{i,j} (v_{i,j}^h - \mu_j^h)^2}{\sum_i r_{i,j}} \end{split}$

 Ω_L : set of capsule indices at layer L

$$\begin{split} \cosh_j^h &\triangleq \sum_{i \in \Omega_L} r_{i,j} cost_{i,j}^h = \sum_{i \in \Omega_L} -r_{i,j} \ln p_{j|i}^h \\ &= \sum_{i \in \Omega_L} -r_{i,j} \ln \left(\frac{1}{\sqrt{2\pi(\sigma_j^h)^2}} \exp\left(-\frac{(v_{i,j}^h - \mu_j^h)^2}{2(\sigma_j^h)^2} \right) \right) \\ &= \sum_{i \in \Omega_L} r_{i,j} \left[\ln \sqrt{2\pi} + \ln \sigma_j^h + \frac{(v_{i,j}^h - \mu_j^h)^2}{2(\sigma_j^h)^2} \right] \\ \text{Note that in EM update } (\sigma_j^h)^2 \leftarrow \frac{\sum_i r_{i,j} (v_{i,j}^h - \mu_j^h)^2}{\sum_i r_{i,j}} \\ &= \sum_{i \in \Omega_L} r_{i,j} \left[\underbrace{\ln \sqrt{2\pi} + \frac{1}{2}}_{k_i} + \ln \sigma_j^h \right] \end{split}$$

 k_{j} is obtained through training in Hinton's paper

M-step: Estimating statistics (means and variances)

$$\forall i \in \Omega_L, \forall j \in \Omega_{L+1}: r_{i,j} \leftarrow a_i r_{i,j}$$

E-step: Estimating assigning probabilities

M-step: Estimating statistics (means and variances)

$$\begin{split} \forall i \in \Omega_L, \forall j \in \Omega_{L+1} : r_{i,j} \leftarrow a_i r_{i,j} \\ \forall h, \forall j \in \Omega_{L+1} : \mu_j^h \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} v_{i,j}^h}{\sum_{i \in \Omega_L} r_{i,j}} \end{split}$$

E-step: Estimating assigning probabilities

M-step: Estimating statistics (means and variances)

$$\begin{split} \forall i \in \Omega_L, \forall j \in \Omega_{L+1} : r_{i,j} \leftarrow a_i r_{i,j} \\ \forall h, \forall j \in \Omega_{L+1} : \mu_j^h \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} v_{i,j}^h}{\sum_{i \in \Omega_L} r_{i,j}} \\ \forall h, \forall j \in \Omega_{L+1} : (\sigma_j^h)^2 \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} (v_{i,j}^h - \mu_j)^2}{\sum_{i \in \Omega_L} r_{i,j}} \end{split}$$

E-step: Estimating assigning probabilities

M-step: Estimating statistics (means and variances)

$$\begin{split} \forall i \in \Omega_L, \forall j \in \Omega_{L+1} : r_{i,j} \leftarrow a_i r_{i,j} \\ \forall h, \forall j \in \Omega_{L+1} : \mu_j^h \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} v_{i,j}^h}{\sum_{i \in \Omega_L} r_{i,j}} \\ \forall h, \forall j \in \Omega_{L+1} : (\sigma_j^h)^2 \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} (v_{i,j}^h - \mu_j)^2}{\sum_{i \in \Omega_L} r_{i,j}} \\ \forall h, \forall j \in \Omega_{L+1} : cost_j^h \leftarrow (k_j + \ln \sigma_j^h) \sum_{i \in \Omega_L} r_{i,j} \end{split}$$

E-step: Estimating assigning probabilities

M-step: Estimating statistics (means and variances)

$$\begin{split} \forall i \in \Omega_L, \forall j \in \Omega_{L+1} : r_{i,j} \leftarrow a_i r_{i,j} \\ \forall h, \forall j \in \Omega_{L+1} : \mu_j^h \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} v_{i,j}^h}{\sum_{i \in \Omega_L} r_{i,j}} \\ \forall h, \forall j \in \Omega_{L+1} : (\sigma_j^h)^2 \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} (v_{i,j}^h - \mu_j)^2}{\sum_{i \in \Omega_L} r_{i,j}} \\ \forall h, \forall j \in \Omega_{L+1} : cost_j^h \leftarrow (k_j + \ln \sigma_j^h) \sum_{i \in \Omega_L} r_{i,j} \\ \forall j \in \Omega_{L+1} : a_j \leftarrow sigmoid(\lambda(b_j - \sum_h cost_j^h)) \end{split}$$

E-step: Estimating assigning probabilities

M-step: Estimating statistics (means and variances)

$$\begin{split} \forall i \in \Omega_L, \forall j \in \Omega_{L+1} : r_{i,j} \leftarrow a_i r_{i,j} \\ \forall h, \forall j \in \Omega_{L+1} : \mu_j^h \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} v_{i,j}^h}{\sum_{i \in \Omega_L} r_{i,j}} \\ \forall h, \forall j \in \Omega_{L+1} : (\sigma_j^h)^2 \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} (v_{i,j}^h - \mu_j)^2}{\sum_{i \in \Omega_L} r_{i,j}} \\ \forall h, \forall j \in \Omega_{L+1} : cost_j^h \leftarrow (k_j + \ln \sigma_j^h) \sum_{i \in \Omega_L} r_{i,j} \\ \forall j \in \Omega_{L+1} : a_j \leftarrow sigmoid(\lambda(b_j - \sum_h cost_j^h)) \end{split}$$

E-step: Estimating assigning probabilities

M-step: Estimating statistics (means and variances)

$$\begin{split} \forall i \in \Omega_L, \forall j \in \Omega_{L+1} : r_{i,j} \leftarrow a_i r_{i,j} \\ \forall h, \forall j \in \Omega_{L+1} : \mu_j^h \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} v_{i,j}^h}{\sum_{i \in \Omega_L} r_{i,j}} \\ \forall h, \forall j \in \Omega_{L+1} : (\sigma_j^h)^2 \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} (v_{i,j}^h - \mu_j)^2}{\sum_{i \in \Omega_L} r_{i,j}} \\ \forall h, \forall j \in \Omega_{L+1} : cost_j^h \leftarrow (k_j + \ln \sigma_j^h) \sum_{i \in \Omega_L} r_{i,j} \\ \forall j \in \Omega_{L+1} : a_j \leftarrow sigmoid(\lambda(b_j - \sum_h cost_j^h)) \end{split}$$

E-step: Estimating assigning probabilities

$$\forall i \in \Omega_L, \forall j \in \Omega_{L+1}: p_{i,j} \leftarrow \prod_h \mathcal{N}(v_{i,j}^h; \mu_j^h, \sigma_j^h)$$

M-step: Estimating statistics (means and variances)

$$\begin{split} \forall i \in \Omega_L, \forall j \in \Omega_{L+1} : r_{i,j} \leftarrow a_i r_{i,j} \\ \forall h, \forall j \in \Omega_{L+1} : \mu_j^h \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} v_{i,j}^h}{\sum_{i \in \Omega_L} r_{i,j}} \\ \forall h, \forall j \in \Omega_{L+1} : (\sigma_j^h)^2 \leftarrow \frac{\sum_{i \in \Omega_L} r_{i,j} (v_{i,j}^h - \mu_j)^2}{\sum_{i \in \Omega_L} r_{i,j}} \\ \forall h, \forall j \in \Omega_{L+1} : cost_j^h \leftarrow (k_j + \ln \sigma_j^h) \sum_{i \in \Omega_L} r_{i,j} \\ \forall j \in \Omega_{L+1} : a_j \leftarrow sigmoid(\lambda(b_j - \sum_h cost_j^h)) \end{split}$$

E-step: Estimating assigning probabilities

$$\begin{split} \forall i \in \Omega_L, \forall j \in \Omega_{L+1} : p_{i,j} \leftarrow \prod_h \mathcal{N}(v_{i,j}^h; \mu_j^h, \sigma_j^h) \\ \forall i \in \Omega_L, \forall j \in \Omega_{L+1} : r_{i,j} \leftarrow \frac{a_j p_{i,j}}{\sum_{j' \in \Omega_{L+1}} a_{j'} p_{i,j'}} \end{split}$$

33 / 43

Initialize: $r_{i,j} \leftarrow 1/|\mathcal{N}_i|$

Initialize: $r_{i,j} \leftarrow 1/|\mathcal{N}_i|$

M-step:

$$r_{i,j} \leftarrow a_i r_{i,j}$$

M-step:

$$cost^h_j = -\sum_i r_{i,j} \ln p^h_{j|i} = -\sum_i r_{i,j} \ln \ \mathcal{N}(v^h_{i,j}; \mu^h_j, \sigma^h_j)$$

$$cost^h_j = -\sum_i r_{i,j} \ln p^h_{j|i} = -\sum_i r_{i,j} \ln \ \mathcal{N}(v^h_{i,j}; \mu^h_j, \sigma^h_j)$$

$$\begin{aligned} r_{i,j} \leftarrow a_i r_{i,j} \\ & \text{Estimate } \mu_j^h, \sigma_j^h \\ v_{1,1} &= W_{1,1} M_1 & cost_j^h \leftarrow (k_j + \ln \sigma_j^h) \sum_i r_{i,j} \\ a_2, M_2 & \longrightarrow a_1 \leftarrow \operatorname{sigmoid} \left(\lambda(b_1 - \sum_h cost_1^h)\right) \\ a_3, M_3 & \longrightarrow a_2 \leftarrow \operatorname{sigmoid} \left(\lambda(b_2 - \sum_h cost_2^h)\right) \\ & \vdots & \vdots \\ \vdots & & \vdots \\ a_n, M_n & \longrightarrow a_m \leftarrow \operatorname{sigmoid} \left(\lambda(b_m - \sum_h cost_m^h)\right) \end{aligned}$$

E-step:

$$p_{i,j} \leftarrow \prod_h \mathcal{N}(v_{i,j}^h; \mu_j^h, \sigma_j^h)$$

E-step:

$$p_{i,j} \leftarrow \prod_h \mathcal{N}(v_{i,j}^h; \mu_j^h, \sigma_j^h)$$

$$r_{i,j} \leftarrow \frac{a_j p_{i,j}}{\sum_j a_j p_{i,j}}$$

M-step:

Temperature and λ

- In $a_j \leftarrow sigmoid(\lambda(b_j \sum_h cost_j^h))$, λ is set to the inverse of a "temperature" parameter
- ullet It is similar to simulated annealing that temperature decreases as we get better approximate of the assigning probability $r_{i,j}$
- ullet The paper does not specify the detail control of λ
 - ullet A blog by J Hui tried setting λ to 1 initially and then incrementing it by 1 after each routing iteration. The result seems to work fine

Spread loss

• To make training less sensitive to initialization and hyper-parameter, the authors used spread loss, which is given by

$$L = \sum_{i \neq t} \max(0, m - (a_t - a_i))^2$$

ullet m is a margin of error, which starts with 0.2 and increase by 0.1 after each epoch of training. It stops at the maximum of 0.9

Reference

- Understanding dynamic routing between capsules
- Understanding matrix capsule with EM routing

We went through a lot...

- Backprop
- Regularization, weight initialization
- CNN
 - R-CNN, faster R-CNN
 - deep dream
- RNN
- Generative models
 - GANs
 - Variational autoencoders
 - Boltzmann machine
- Neural Turing machines
- Deep Q-learning

Mainly two things happened

- Inexpensive computational power
 - GPUs
 - TPUs...
- Large dataset available
 - ImageNet
 - MS COCO
 - Kaggle...
- And persistent efforts of many Al researchers
 - Hinton (Toronto, Google)
 - Yann Lecun (NYU, Facebook)
 - Bengio (Montreal)

- Mainly two things happened
 - Inexpensive computational power
 - GPUs
 - TPUs...
 - Large dataset available
 - ImageNet
 - MS COCO
 - Kaggle...
- And persistent efforts of many Al researchers
 - Hinton (Toronto, Google)
 - Yann Lecun (NYU, Facebook)
 - Bengio (Montreal)

- Mainly two things happened
 - Inexpensive computational power
 - GPUs
 - TPUs...
 - Large dataset available
 - ImageNet
 - MS COCO
 - Kaggle...
- And persistent efforts of many Al researchers
 - Hinton (Toronto, Google)
 - Yann Lecun (NYU, Facebook)
 - Bengio (Montreal)

- Mainly two things happened
 - Inexpensive computational power
 - GPUs
 - TPUs...
 - Large dataset available
 - ImageNet
 - MS COCO
 - Kaggle...
- And persistent efforts of many Al researchers
 - Hinton (Toronto, Google)
 - Yann Lecun (NYU, Facebook)
 - Bengio (Montreal)

Four missing pieces of AI (by Lecun)

- Theoretical Understanding for Deep Learning
 - What is the geometry of the objective function in deep networks?
 - Why the ConvNet architecture works so well? [Mallat, Bruna, Tygert...]
- Integrating Representation/Deep Learning with Reasoning, Attention, Planning and Memory
 - A lot of recent work on reasoning/planning, attention, memory, learning "algorithms"
 - Memory-augmented neural nets
 - "Differentiable" algorithm
- Integrating supervised, unsupervised and reinforcement learning into a single "algorithm"
 - Boltzmann machines would be nice if they worked
 - Stacked What-Where Auto-Encoders, Ladder Networks...
- Effective ways to do unsupervised learning
 - Discovering the structure and regularities of the world by observing it and living in it like animals and human do

S. Cheng (OU-ECE) Capsule Networks March 2018 40 / 43

- Will look into (shallow) machine learning models not discussed in this class
 - SVM
 - Decision trees
 - Graphical models...
- Why relevant?
 - They are still very useful when you do not have enough data and do not need to have state-of-the-art accuracy
 - New ideas almost never came from scratch. They all are just some modification of old ideas
 - Standing on the shoulders of giants!

- Will look into (shallow) machine learning models not discussed in this class
 - SVM
 - Decision trees
 - Graphical models...
- Why relevant?
 - They are still very useful when you do not have enough data and do not need to have state-of-the-art accuracy
 - New ideas almost never came from scratch. They all are just some modification of old ideas
 - Standing on the shoulders of giants!

- Will look into (shallow) machine learning models not discussed in this class
 - SVM
 - Decision trees
 - Graphical models...
- Why relevant?
 - They are still very useful when you do not have enough data and do not need to have state-of-the-art accuracy
 - New ideas almost never came from scratch. They all are just some modification of old ideas
 - Standing on the shoulders of giants!

- Will look into (shallow) machine learning models not discussed in this class
 - SVM
 - Decision trees
 - Graphical models...
- Why relevant?
 - They are still very useful when you do not have enough data and do not need to have state-of-the-art accuracy
 - New ideas almost never came from scratch. They all are just some modification of old ideas
 - Standing on the shoulders of giants!

Final words

- 'When I was doing my Ph.D., my advisor would tell me that (I was wasting my time) every week. And I would say, "give me six months and I will prove you that it works." And every six months, I'd say that again'
- Don't easily believe something wouldn't work just because someone told you so
 - Try it yourself!
- If you really believe in it, be persistent and enjoy your last laugh

Final words

- 'When I was doing my Ph.D., my advisor would tell me that (I was wasting my time) every week. And I would say, "give me six months and I will prove you that it works." And every six months, I'd say that again'
- Don't easily believe something wouldn't work just because someone told you so
 - Try it yourself!
- If you really believe in it, be persistent and enjoy your last laugh

Final words

- 'When I was doing my Ph.D., my advisor would tell me that (I was wasting my time) every week. And I would say, "give me six months and I will prove you that it works." And every six months, I'd say that again'
- Don't easily believe something wouldn't work just because someone told you so
 - Try it yourself!
- If you really believe in it, be persistent and enjoy your last laugh

Wish you all good luck with your finals and presentations!

Don't forget project submission!

And have a fruitful sem-break!

Please fill in evaluation!