Recurrent Neural Networks

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2018
(Slides credit to Stanford CS231n and Hinton et al.)

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 1/109



Table of Contents

@ Motivation

© Basic RNN

© LsT™M

@ Example: simple character-level language model
@ Example: image captioning

@ Overview of echo state networks

@ Conclusions

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 2/109



Review and Overview

o We looked into couple use cases of CNNs previously
e Recognition and localization
e Object detection
e Some use of CNNs for arts

e Up to now, the network models we have studied are all
memoryless

e We will discuss a non-memoryless model—recurrent neural
networks today
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on Why non-memo

o Almost all natural signals are sequential if we take time into
account (we just cannot escape time)

e Memory is needed to remember the past
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on Why non-memo

o Almost all natural signals are sequential if we take time into
account (we just cannot escape time)

e Memory is needed to remember the past
e They also offer a simplified solution for some problems (for
example, number addition)

o They can treat some unsupervised problems as supervised
problems

o Consider prediction of a stock: unsupervised? Supervised?
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Motivation

Engineering hacks [Hinton 20

Memoryless models for sequences

+ Autoregressive models Wy
Predict the next term in a Wi o
sequence from a fixed number of [ - ;
previous terms using “delay taps”. | input(t-2) | | input(t-1) | | input(t) |

» Feed-forward neural nets -
These generalize autoregressive hidden
models by using one or more
layers of non-linear hidden units. - - —

e.g. Bengio’s first language | input(t-2) | | input(t-1) | | input(t) |
model.
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on Why non-memoryl

Non-memoryless models

o Benefit: memories increase the expressive power of the model
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Motivation Why non-memc s models

Non-memoryless models

o Benefit: memories increase the expressive power of the model

e Typically we do not know the exact values of the hidden states
(that is why “hidden”). In many cases, the best we could do is just
to infer a probability distribution over the hidden states

o Let’s look at two classic examples
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Y on C on-memor nodels

Linear dynamical systems (Engineers love them!)

o o
@ These are generative models with real
i — continuous values as hidden states that
cannot be observed directly
o The hidden state has linear dynamics with

Gaussian noise and produces the
observations subjected to linear Gaussian

=a |[= —. .
_g iSRS noise
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Y on C on-memor nodels

Linear dynamical systems (Engineers love them!)

[e]
c
—_
©
=
=3

o o
@ These are generative models with real
i — continuous values as hidden states that
cannot be observed directly
o The hidden state has linear dynamics with

Gaussian noise and produces the
observations subjected to linear Gaussian

3 g‘ 52||132 noise
c = ||le S|l s .. .
=20=3llma e There can also be driving inputs

o To predict next output, we need to infer the
hidden state

[Hinton 2012, Week 7]
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nodels

s love them!)

o State-Space Models or Hidden Markov
Models (HMMs) have a discrete one-of-N
hidden state. Transitions between states are
stochastic and controlled by a transition
matrix. The output produced by a state are
also stochastic
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nodels

s love them!)

o State-Space Models or Hidden Markov
Models (HMMs) have a discrete one-of-N
hidden state. Transitions between states are
stochastic and controlled by a transition
matrix. The output produced by a state are
also stochastic

e We don’t know which state produced a
given output. So the state is “hidden”

e We can represent the probability
distribution across N states with N numbers

o To predict next output, we need to infer the
probability distribution over the hidden
state
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@ The only information stored in the model is which state the model
currently is in

o So with N hidden states it can only remember a maximum log(IN)
bits of information
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@ The only information stored in the model is which state the model
currently is in

o So with N hidden states it can only remember a maximum log(IN)
bits of information
o Consider the speech prediction of one half from earlier half
o The syntax needs to fit (e.g. number and tense agreement)
o The semantics needs to fit. The intonation needs to fit
e The accent, rate, volume, and vocal tract characteristics must all fit
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A fundamental limitation of state space models

@ The only information stored in the model is which state the model
currently is in

o So with N hidden states it can only remember a maximum log(IN)
bits of information
o Consider the speech prediction of one half from earlier half

o The syntax needs to fit (e.g. number and tense agreement)
o The semantics needs to fit. The intonation needs to fit
e The accent, rate, volume, and vocal tract characteristics must all fit

o All these aspects combined could be 100 bits of information that
the first half of an utterance needs to convey to the second half
2100 states

[Hinton 2012, week 7]
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3asic RNN Wi is RNN

Recurrent neural networks (RNNs)

Recurrent Neural Network

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 13 8 Feb 2016
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3asic RNN Wi is RNN

Recurrent neural networks (RNNs)

Recurrent Neural Network

usually want to
y predict a vector at
some time steps

RNN s

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 14 8 Feb 2016
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3asic RNN Wi is RNN

Recurrent neural networks (RNNs)

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

ht = fW(ht—17 wt) RNN

new state / old state input vector at

_ some time step
some function X

with parameters W

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 15 8 Feb 2016
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RNN What is RNN

Recurrent neural networks (RNNs)

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

ht = fW(ht—17 wt) RNN

Notice: the same function and the same set
of parameters are used at every time step.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 16 8 Feb 2016
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RNN What is RNN

Recurrent neural networks (RNNs)

(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

hy = fW(ht—la xt)
|

h; = tanh(Wyph_1 + Wyray)

Yt = Why hy

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 17 8 Feb 2016
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RNN training with BPTT

Back-Propagation Through Time (BPTT)

e For training, we can unroll all the time step to form a stack of
activities and backprop will then similar to regular backprop
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RNN Basic RNN training with BPTT

Back-Propagation Through Time (BPTT)

e For training, we can unroll all the time step to form a stack of
activities and backprop will then similar to regular backprop

@ The backward pass peels activities off the stack to compute the
error derivatives at each time step
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RNN Basic RNN training with BPTT

Back-Propagation Through Time (BPTT)

e For training, we can unroll all the time step to form a stack of
activities and backprop will then similar to regular backprop

@ The backward pass peels activities off the stack to compute the
error derivatives at each time step

o After the backward pass we add together the derivatives at all the
different times for each weight
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RNN B. RNN training with BPTT

An irritative extra issue

o We need to specify the initial activity state of all the hidden and
output units
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RNN Basic RNN training with BPTT

An irritative extra issue

o We need to specify the initial activity state of all the hidden and
output units

@ We could just fix these initial states to have some default value
like 0.5

e But it is better to treat the initial states as learned parameters
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RNN Basic RNN training with BPTT

An irritative extra issue

o We need to specify the initial activity state of all the hidden and
output units

@ We could just fix these initial states to have some default value
like 0.5

But it is better to treat the initial states as learned parameters

We learn them in the same way as we learn the weights

e Start off with an initial random guess for the initial states

o At the end of each training sequence, backpropagate through time
all the way to the initial states to get the gradient of the error
function with respect to each initial state

o Adjust the initial states by following the negative gradient
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RNN Basic RNN training with BPTT

Providing inputs to recurrent networks

o We can specify inputs in
several ways:
e Specify the initial states of
all the units
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RNN Basic RNN training with BPTT

Providing inputs to recurrent networks

o We can specify inputs in
several ways:

e Specify the initial states of
all the units

e Specify the initial states of
a subset of the units

e Specify the states of the
same subset of the units at
every time step
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RNN Basic RNN training with BPTT

Teaching recurrent networks to learn signals

o o We can specify targets in
X |

several ways:

e Specify desired final
activities of all the units

W1 W3 W
ol
W1 W3 W4
W1 W3 W4
2
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RNN Basic RNN training with BPTT

Teaching recurrent networks to learn signals

O o o We can specify targets in

WSO W3 W ~ i several ways:
e Specify desired final
b activities of all the units
/' . e Specify desired activities of
W1 W3 w4 all units for the last few
steps
e Good for learning

w1 W3 W4 attractors
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RNN Basic RNN training with BPTT

Teaching recurrent networks to learn signals

O o o We can specify targets in
WSO W3 W ~ i several ways:
e Specify desired final
b activities of all the units
% . e Specify desired activities of
W1 W3 w4 all units for the last few
steps
e Good for learning
WA1 W3 W4 attractors
5 e Specify the desired activity

of a subset of the units.

e The other units are
input or hidden units.

Recurrent Neural Networks March 2018 18 /109



Toy example: RNN for addition

Toy problem for RNN: binary addition

e We can train a feedforward
11001100 net to do binary addition,

but...
1

| hidden units |

i i

00100110 10100110
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RNN Toy example: RNN for addition

Toy problem for RNN: binary addition

e We can train a feedforward

11001100 net to do binary addition,
but...
ﬁ o We must decide in advance
. . the maximum number of
’ hidden units ‘ digits in each number
00100110 10100110
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RNN Toy example: RNN for addition

Toy problem for RNN: binary addition

@ We can train a feedforward
11001100 net to do binary addition,
but...

ﬁ o We must decide in advance
the maximum number of
‘ digits in each number

o We expect weights to
ﬁ ﬁ process different bits to be
the same, but it is tricky to
00100110 10100110 enforce that
@ As a result, feedforward nets

do not generalize well for the
binary addition task

| hidden units
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RNN Toy example: RNN for addition

We are trying to learn this!

The algorithm for binary addition

no carry
H print 1

This is a finite state automaton. It decides what transition to make by looking at the next
column. It prints after making the transition. It moves from right to left over the two input
numbers.
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3asic RNN Toy example: RNN for addition

A little bit detail

x = [bg, b7, -+, bi]
y= [C87C77"' 701]
Z:X+y: [d87d77"' 7d1]
Z= [38737)"' 7al]

Hidden unit: h; = sigm(Wx,h[bi, Cj]T + Wh,hhi—l)
Output: d; = sigm(Wh, ,h;)

https://github.com/llSourcell /recurrent_ neural net_ demo

S. Cheng (OU-ECE)
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https://github.com/llSourcell/recurrent_neural_net_demo

Basic RNN Why RNN is difficult to train

Why training RNN is difficulty? The backward pass is

linear

@ There is a big difference between the
T T forward and backward passes
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Basic RNN Why RNN is difficult to train

Why training RNN is difficulty? The backward pass is

linear

@ There is a big difference between the
T T forward and backward passes

o In the forward pass we use squashing
functions (like the logistic) to prevent
the activity vectors from exploding
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Basic RNN Why RNN is difficult to train

Why training RNN is difficulty? The backward pass is

linear

@ There is a big difference between the
T T forward and backward passes

o In the forward pass we use squashing
functions (like the logistic) to prevent
the activity vectors from exploding

@ The backward pass, is completely
linear. If you double the error
derivatives at the final layer, all the
error derivatives will double

e The forward pass determines the
slope of the linear function used for
backpropagating through each
neuron

S. Cheng (OU-ECE) Recurrent Neural Networks
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Why RNN is difficult to train

The problem of explodmg or vanishing gradients

e What happens to the magnitude of the gradients as we
backpropagate through many layers?
o If the weights are small, the gradients shrink exponentially.
o If the weights are big the gradients grow exponentially
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RNN Why RNN is difficult to train

The problem of exploding or vanishing gradients

e What happens to the magnitude of the gradients as we
backpropagate through many layers?

o If the weights are small, the gradients shrink exponentially.
o If the weights are big the gradients grow exponentially
e Typical feed-forward neural nets can cope with these exponential
effects when they only have a few hidden layers
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RNN Why RNN is difficult to train

The problem of exploding or vanishing gradients

e What happens to the magnitude of the gradients as we
backpropagate through many layers?

o If the weights are small, the gradients shrink exponentially.
o If the weights are big the gradients grow exponentially
e Typical feed-forward neural nets can cope with these exponential
effects when they only have a few hidden layers
e In an RNN trained on long sequences (e.g. 100 time steps) the
gradients can easily explode or vanish
e We could avoid this by initializing the weights very carefully
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RNN Why RNN is difficult to train

The problem of exploding or vanishing gradients

e What happens to the magnitude of the gradients as we
backpropagate through many layers?

o If the weights are small, the gradients shrink exponentially.
o If the weights are big the gradients grow exponentially
e Typical feed-forward neural nets can cope with these exponential
effects when they only have a few hidden layers
e In an RNN trained on long sequences (e.g. 100 time steps) the
gradients can easily explode or vanish
e We could avoid this by initializing the weights very carefully

e Even with good initial weights, the dependency of the current
target output from an input many time-steps ago tends to be
numerically unstable

e So RNNs have difficulty dealing with long-range dependencies
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/ RNN is difficult to train

Understanding gradient flow dynamics
Cute backprop signal video: http://imgur.com/gallery/vaNahKE

=5 # dimensionality of hidden state
T =750 # number of time steps
Whh = np.random. randn(H,H)

# forward pass of an RNN (ignoring inmputs x)
hs = {}
ss = {}
hs[-1] = np.random.randn(H)
for t in xrange(T):
ss[t] = np.dot(whh, hs[t-1])
hs[t] = np.maximum(@, ss[t])

# backward pass of the RNN
dhs = {}
dss = {}
dhs[T-1] = np.random.randn(H) # start off the chain with random gradient
for t in reversed(xrange(T)):
dss[t] = (hs[t] > ©) * dhs[t] # backprop through the nonlinearity
dhs[t-1] = np.dot(Whh.T, dss[t]) # backprop into previous hidden state

Fei-Fei Li & Andrej Karpathy & Justin Johnson 8 Feb 2016

March
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/ RNN is difficult to train

Understanding gradient flow dynamics

H=5 # d. NS of hidden state

T =250 # pupber of time steps X X X i )

Whh = np. random. randn(H,H) if the largest eigenvalue is > 1, gradient will explode
B — i i i if the largest eigenvalue is < 1, gradient will vanish

# forward pass of an RNN (ignoring inputs x)

hs = {}

ss = {}

hs[-1] = np.random.randn(H)
for t in xrange(T):

ss[t] = np.dot(whh, hs[t-1])
hs[t] = np.maximum(©, ss[t])

# backward pass of the RNN
dhs = {}
dss = {}
dhs[T-1] = np.random.randn(H) # start off/fhe chain with random gradient
for t in reversed(xrange(T)):
dss[t] = (hs[t] > ©) * dhs[t] # bgfkprop through the nonlinearity
dhs[t-1] = np.dot(Whh.T, dss[t]) # backprop into previous hidden state

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture
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RNN Why RNN is difficult to train

Four effective ways to learn an RNN

e Long Short Term Memory:
Make the RNN out of little
modules that are designed to
remember values for a long
time
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RNN Why RNN is difficult to train

Four effective ways to learn an RNN

e Long Short Term Memory:
Make the RNN out of little
modules that are designed to
remember values for a long
time

@ Hessian Free Optimization:
Deal with the vanishing
gradients problem by using a
fancy optimizer that can
detect directions with a tiny
gradient but even smaller
curvature

o The HF optimizer (
Martens & Sutskever, 2011)
is good at this
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RNN Why RNN is difficult to train

Four effective ways to learn an RNN

e Echo State Networks:
e Long Short Term Memory: Initialize the input— hidden
Make the RNN out of little and hidden—hidden and
modules that are designed to output— hidden connections

remember values for a long very carefully so that the
hidden state has a huge

time reservoir of weakly coupled
@ Hessian Free Optimization: oscillators which can be
Deal with the vanishing selectively driven by the input

gradients problem by using a
fancy optimizer that can
detect directions with a tiny
gradient but even smaller

e ESNSs only need to learn the
hidden—output connections

o Good initialization with

curvature
o The HF optimizer ( momentum: Initialize like in
Martens & Sutskever, 2011) Echo State Networks, but
is good at this then learn all of the

connections using momentum
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LSTM

Long Short Term Memory (LSTM)

e Hochreiter & Schmidhuber
(1997) solved the problem of
getting an RNN to remember
things for a long time (like
hundreds of time steps)

e Keep short-term memory
for a long period of time,
thus the name
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LSTM

Long Short Term Memory (LSTM)

e Hochreiter & Schmidhuber
(1997) solved the problem of
getting an RNN to remember
things for a long time (like
hundreds of time steps)

e Keep short-term memory
for a long period of time,
thus the name

@ They designed a memory cell
using logistic and linear units
with multiplicative
interactions
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LSTM

Long Short Term Memory (LSTM)

e Hochreiter & Schmidhuber
(1997) solved the problem of

getting an RNN to remember @ Information gets into the cell

things for a long time (like whenever its “write” gate is on
hundreds of time steps) o The information stays in the
o Keep short-term memory cell so long as its “keep” gate
for a long period of time, is on

thus the name .
o Information can be read from

the cell by turning on its
“read” gate

@ They designed a memory cell
using logistic and linear units
with multiplicative
interactions
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LSTM

nting a memory cell in a neural network

o To preserve information for a
long time in the activities of an
RNN, we use a circuit mimicking
an analog memory cell

o Information is kept in the cell
when "keep” gate is on

e Information is stored in the cell
by activating its write gate

e Information is retrieved by

input from output to activating the read gate
rest of RNN rest of RNN o We can backpropagate through

this circuit because logistics are
have nice derivatives
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LSTM

Backpropagation through a memory cell

{17)

read
0
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LSTM

RNN: 1
hﬁ:tanhW'(Zfz:i) L N T R R R
et Wi £ 3 2 e i e
£ 3 2 N e e 3
£ 3 2 e e e

depth

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 67 8 Feb 2016
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LSTM

RNN: 1
hﬁ:tanhW’(Z;_l) ++ t ¢+ttt
b g i S A s i
LSTM Wl [41’1.)(271.] — — — ot
i\ /sigm Tfffff 1t
i _ | sigm Wl(ht )
0 Slgfill hi—l —= —= — —= — —
g/ e fffffff
d=fod +iog depth
hi:o@tanh(cﬁ) O I O ) By

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 68 8 Feb 2016
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LSTM

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from
below (x)

sigmoid | — | i
sigmoid | — | f
w — i sigm
vector from sigmoid | — | o F| _ [ sigm | yr hyt
before (h) — [ sigm s
tanh | —|g 9 tanh
L L ] ! ;
g=f0c¢_1+i0g
4nx2n 4n 4'n ht‘ - o@t;.nlh(c')
t t

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 70 8 Feb 2016
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LSTM

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

cell
state ¢

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 71

Recurrent Neural Networks

i sigm
7] - (3| we
o sigm
g tanh

hl = 0 ® tanh(c})

-1
hy
hi_y

)

March 2018

8 Feb 2016
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LSTM

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

cell
state ¢

° i sigm
fl_ sigm W (h:t_ 1 )
o sigm (A

[i] [o] g tanh
d=sod.[riog]

hl = 0 ® tanh(cl)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 72 8 Feb 2016
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LSTM

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

cell
state ¢

C

sigm

i
f _ S}gm Wl hi—l
o sigm Rs s
n ° g tanh
h d=fod_+iog

hl = 0 ® tanh(c)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 73 8 Feb 2016
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LSTM

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

cell
state ¢

higher layer, or
prediction

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Neural Networks

n ° g tanh
h d=fod_+iog
L | [[rl =0 tanh(ch)

C

sigm

1
f — S}gm Wl (
0 sigm

-1
hy
hi_y

)

Lecture 10 - 74 8 Feb 2016

March 2018
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LSTM

cell
state ¢

LSTM

one timestep one timestep

7]

IxpS

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 75 8 Feb 2016
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LSTM

state — — I

RNN f f f

11 [T T}
LSTM @ ® &

(ignoring
forget gates)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 76 8 Feb 2016
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LSTM

34-layer plain 34-layer residual .
Recall:
“ H ”
PlainNets” vs. ResNets
ResNet is to PlainNet what LSTM is to RNN, kind of.
[xconv.e8,2 | [convesrz |
pool, /2 pool, /2 « Plaint net * Residual net
[ :': ] x
'
[ 3ecowme | [ 3ocome | ) — - Fe) Ty
[ R ] [ 3ecomer | x
[ 36comes | [ 36w | relu &
3x3 conv, 64 3x3 conv, 64 H(x) = F(X) t+x
[ 13,72 CEawmh |
17 L2

3x3 conv, 128

33 conv, 128

[ 33,128 | 3x3conv, 128 |

3x3 conv, 128 3x3 conv, 128
k2

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 77 8 Feb 2
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LSTM

LSTM variants and friends [An Empitical Exploration of

Recurrent Network Architectures,
Jozefowicz et al., 2015]

[LSTM: A Search Space Odyssey, BLTEL:
Greff et al., 2015]

sigm(Wez: + b.)
sigm(Waze + Wiahy +0,)

Ca

+ 0n o

e tanh(Wis(r © hy) + tanh(z,) + ) © 2
he®(1-2)
GRU [Learning phrase MUT2:
representations using rmn er]coder— s = sigm(Wez, + Wik +b,)
decoder for statistical machine r o= sigm(ze+ Wichs +b;)
translation, Cho et al. 2014] hest = tanh(Win(r @ he) + Wanze + ) © 2
+ mo(-z)
ry = sigm Wz + Wiehy—1 +by)
MUT3:
= Ml il TS s g
= sigm(Wz e + Wigheo1 + b,) 3 = sigm(War+ Wi tanh(h) + k)
hy = tanh(Winas + Win(re © he_1) + bn) % 5 S ik b
= hepr = tanh(Win(r © he) + Wonzs +by) © 2
he = zzOhiy+(1—2)Ohe + ho(1-2)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 81 8 Feb 2016
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Example: s e character-level la model

Modelling text: why working with characters?

@ The web is composed of character strings

@ Any learning method powerful enough to understand the world by
reading the web ought to find it trivial to learn which strings make
words (this turns out to be true, as we shall see)
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Example: s e character-level la model

Modelling text: why working with characters?

@ The web is composed of character strings

@ Any learning method powerful enough to understand the world by
reading the web ought to find it trivial to learn which strings make
words (this turns out to be true, as we shall see)

o Pre-processing text to get words is a big hassle

What about morphemes (prefixes, suffixes etc)
What about subtle effects like “sn” words?

What about New York vs new York Minster roof?
What about Finnish

o ymmartdmattomyydellansdkasn

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 41 /109



Example: simple character-level language model

Simplest model: a first attempt

Character-level
language model
example RNN pus

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 18 8 Feb 2016
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Example: simple character-level language model

Simplest model: a first attempt

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training ;
sequence: input layer g
“hello” 0

input chars:  “h” “e” w @

o-=00
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Example: simple character-level language model

Simplest model: a first attempt

Character-level
h: = tanh(Wpphi— Wanz
language model t (Winht—1 + Wanzt)
example
vocabulary: PR - S N 3 TR
[h,e,l,o] 0.9 0.1 03 0.7
Example traini B I R I =
xample training - . 8 .
sequence: input layer g (1) (1) (1)
“hello” 0| 0 L O ] L O]
input chars:  “h” el e &=
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Example: simple character-level language model

Simplest model: a first attempt

target chars: ‘e” i Mk “0”
Character-level T WE 5
language model ovputiaver | 501 30| (48| |oa
example [44] 1.2 1] [22]

T T W_hy
vocabulary: PR - S N 3 TR
[h,e,l,o] 0.9 0.1 03 0.7

.. T T TW_xh
Example training mE T R B
sequence: input layer g (1] (1) (1)
“hello” L o | 0 | o | 0
= S

input chars:  “h” “e”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 21 8 Feb 2016
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Example: simple character-level language model

Sampling

o Start the model with its default hidden state

o Give it a “burn-in” sequence of characters and let it update its
hidden state after each character

@ Then look at the probability distribution it predicts for the next
character

o Pick a character randomly from that distribution and tell the net
that this was the character that actually occurred

e i.e. tell it that its guess was correct, whatever it guessed

o Continue to let it pick characters until bored
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Example: simple character-level language model

min-char-rnn.py gist: 112 lines of Python

(https://gist.qgithub.
com/karpathy/d4dee566867f8291f086)
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min-char-rnn.py gist

Data I/O

Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License

import numpy as np

data = open('input.txt', 'r').read()
chars = list(set(data))

data_size, vocab_size = len(data), len(chars)

print 'data has %d characters, %d unique.' % (data_size, vocab_size)
char_to_ix = { ch:i for i,ch in enumerate(chars) }

ix_to_char = { i:ch for i,ch in enumerate(chars) }




min-char-rnn.py gist

Initializations

hidden_size = 100 i | lay
seq_length = 25 #
learning_rate = le-1

1odel paramete

Wxh = np.random.randn(hidden_size, vocab_size)*0.01 input to hidd
whh = np.random.randn(hidden_size, hidden_size)*0.01 hi

why = np.random.randn(vocab_size, hidden_size)*0.01 id

bh = np.zeros((hidden_size, 1)) i ria

by = np.zeros((vocab_size, 1)) # outy

target chars:

output layer

recall: TS

input layer

input chars: “h"




min-char-rnn.py gist

Main loop
np=9,0
mwxh, mwhh, mWwhy = np.zeros_like(Wxh),
mbh, mby = np.zeros_like(bh),
smooth_loss

np. zeros_Like(whh),
np.zeros_like(by)
-np.log(1.0/vocab_size)*seq_length

np.zeros_Like(Why)

while True:
if prseq_length+1 >= len(data) or n == 0:
hprev = np.zeros((hidden_size, 1))
pi==0 f f

inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100
sample_ix

sample(hprev, inputs[e], 200)
join(ix_to_char[ix] for ix in sample_ix)
% (txt, )

loss, dWxh, dwhh, dwhy, dbh, dby,
smooth_loss
if n % 100

hprev = lossFun(inputs, targets,
smooth_loss * ©.999 + loss * ©.001

= 0: print 'iter %d, loss: %f' % (n,

hprev)

smooth_loss)

for param, dparam, mem in zip([Wxh, Whh, why, bh, by],

[dwxh, dwhh, dwhy, dbh, dby],
[mexh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam

param += -learning_rate * dparam / np.sqrt(mem + le-8)

p += seq_length
n+=1




min-char-rnn.py gist

Main loop
np=9,0
mwxh, mwhh, mWwhy = np.zeros_like(Wxh),
mbh, mby = np.zeros_like(bh),
smooth_loss

np. zeros_Like(whh),
np.zeros_like(by) ’
-np.log(1.0/vocab_size)*seq_length

np.zeros_Like(Why)

while True:
if p+seq_length+l >= len(data) or n == 0:
hprev = np.zeros((hidden_size,1))
p=0 fi F

inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100
sample_ix

sample(hprev, inputs[e], 200)
join(ix_to_char[ix] for ix in sample_ix)
% (txt, )

loss, dWxh, dwhh, dwhy, dbh, dby,
smooth_loss
if n % 100

hprev = lossFun(inputs, targets,
smooth_loss * ©.999 + loss * 0.001
= 0: print 'iter %d, loss:

hprev)

' % (n, smooth_loss)

for param, dparam, mem in zip([Wxh, Whh, why, bh, by],

[dwxh, dwhh, dwhy, dbh, dby],
[mexh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam

param += -learning_rate * dparam / np.sqrt(mem + le-8)

p += seq_length
n+=1




min-char-rnn.py gist

Main loop
np=9,0
mwxh, mwhh, mWwhy = np.zeros_like(Wxh),
mbh, mby = np.zeros_like(bh),
smooth_loss

np. zeros_Like(whh),
np.zeros_like(by)
-np.log(1.0/vocab_size)*seq_length

np.zeros_Like(Why)

while True:
if prseq_length+1 >= len(data) or n == 0:
hprev = np.zeros((hidden_size, 1))
pi==0 f f

inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100
sample_ix

sample(hprev, inputs[@], 200)
join(ix_to_char[ix] for ix in sample_ix)

% (txt, )

loss, dWxh, dwhh, dwhy, dbh, dby,
smooth_loss
if n % 100

hprev = lossFun(inputs, targets,
smooth_loss * ©.999 + loss * ©.001

= 0: print 'iter %d, loss: %f' % (n,

hprev)

smooth_loss)

for param, dparam, mem in zip([Wxh, Whh, why, bh, by],

[dwxh, dwhh, dwhy, dbh, dby],
[mexh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam

param += -learning_rate * dparam / np.sqrt(mem + le-8)

p += seq_length
n+=1




min-char-rnn.py gist

Main loop
np=9,0
mwxh, mwhh, mWwhy = np.zeros_like(Wxh),
mbh, mby = np.zeros_like(bh),
smooth_loss
while True:

np. zeros_Like(whh),
np.zeros_like(by)
-np.log(1.0/vocab_size)*seq_length

np.zeros_Like(Why)

if prseq_length+1 >= len(data) or n == 0:

hprev = np.zeros((hidden_size, 1))

pi==0 f f
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100
sample_ix

sample(hprev, inputs[e], 200)
join(ix_to_char[ix] for ix in sample_ix)
% (txt, )

loss, dWxh, dwhh, dwhy, dbh, dby,
smooth_loss
if n % 100

hprev = lossFun(inputs, targets,
smooth_loss * ©.999 + loss * ©.001

= 0: print 'iter %d, loss:

hprev)

' % (n, smooth_loss)

for param, dparam, mem in zip([Wxh, Whh, why, bh, by],

[dwxh, dwhh, dwhy, dbh, dby],
[mexh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam

param += -learning_rate * dparam / np.sqrt(mem + le-8)

p += seq_length
n+=1




min-char-rnn.py gist

Main loop
np=9,0
mwxh, mwhh, mWwhy = np.zeros_like(Wxh),
mbh, mby = np.zeros_like(bh),
smooth_loss
while True:

np. zeros_Like(whh),
np.zeros_like(by)
-np.log(1.0/vocab_size)*seq_length

np.zeros_Like(Why)

if prseq_length+1 >= len(data) or n == 0:

hprev = np.zeros((hidden_size, 1))

pi==0 f f
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100
sample_ix

sample(hprev, inputs[e], 200)
join(ix_to_char[ix] for ix in sample_ix)
% (txt, )

loss, dWxh, dwhh, dwhy, dbh, dby,
smooth_loss
if n % 100

hprev = lossFun(inputs, targets,
smooth_loss * ©.999 + loss * ©.001

= 0: print 'iter %d, loss:

hprev)

' % (n, smooth_loss)

for param, dparam, mem in zip([Wxh, Whh, why, bh, by],

[dwxh, dwhh, dwhy, dbh, dby],
[mxh, mwhh, mWhy, mbh, mby]):
mem += dparam * dparam

param += -learning_rate * dparam / np.sqrt(mem + le-8)

p += seq_length

n+=1




min-char-rnn.py gist

Loss function

- forward pass (compute loss)

def lossFun(inputs, targets, hprev)

inputs, targets are both list of integers

hprev 1s Hx1 array of initial hidden state
returns the loss

gradients on model parameters,

xs, hs, ys, ps = (}, (3, 1 O
hs(-1) = np.copy(hprev)

, and last hidden state

backward pass (compute param gradient)

loss = ©
for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size,

1)

xs[t][nputs[e]] = 1

PS[L] = np.tamn(np.GoL(Wxh XS[L1) ¢ np.GoL(HN, Ns[E-1]) + b)
ys[t] = np.dot(why, hs[t]) + by

ps[t] = np.exp(ys[t]) / np.sum(np. =xp(y<1-1)

loss += -np.log(ps[t] [cargets[t] 0

dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros. nxe(unh), np.zeros_like(why)
don, dby = np.zeros_like(bh), np.zeros_Like(by

dnnex = np.zeros_Like(hs[o])

for € in reversed(
np.copy(ps(t])
ay[eargets[c]]

nge(len(inputs))):

np.dot(dy, hs[t].T)
y

dh = np.dot(Why.T, dy) + dhnext
dhraw = (1 - hs[t] * hs[t]) * dh
dbh

+= dhraw
np.dot(dhraw, xs[t].T)
np.dot (dhraw, hs(t-1).T)
dhnext = np.dot(Whh. T, dhraw)
Tor dparam in [dxh, Gahh, dahy, dbh, dby

np.clip(dparam, -5, 5
return loss,

5, out=dparan)
dWxh, dWnh, dehy, dbh, dby, hs[len(inputs)-1]




min-char-rnn.py gist

def lossFun(inputs, targets, hprev):
inputs, targets are both list of integers.
hprev is Hx1 array of initial hidden state

returns the loss, gradients on model parameters, and last hidden state

xs, hs, ys, ps = {}, { 3 O
hs[-1] = np.copy(hprev)
loss = @

for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size,1))
xs[t][inputs[t]] = 1
hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(whh,
p.dot(Why, hs[t]) + by

p.exp(ys[t]) / np.sum(np.exp(ys[t]))

ys[t] =
ps[t] =
loss += -np.log(ps[t][targets[t],0])

hs[t-1]) + bh)

/

hy = tanh(Wpphy 1 + Wopy)
Y = Whyht

Softmax classifier




min-char-rnn.py gist

dwxh, dwhh, dwhy = np.zeros_like(Wxh), np.zeros_like(Wwhh), np.zeros_like(Why)

dbh, dby = np.zeros_like(bh), np.zeros_like(by)

dhnext = np.zeros_like(hs[0])

for t in reversed(xrange(len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1 prop int
dwhy += np.dot(dy, hs[t].T)
dby += dy
dh = np.dot(why.T, dy) + dhnext back
dhraw = (1 - hs[t] * hs[t]) * dh
dbh += dhraw
dwxh += np.dot(dhraw, xs[t].T)
dwhh += np.dot(dhraw, hs[t-1].T)
dhnext = np.dot(Whh.T, dhraw)

for dparam in [dwxh, dwhh, dwhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam)

return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(i

nputs)-1]

recall:

targot chars: e
0
. |22
outputlayer | %2
4

03
01
09

input chars:




min-char-rnn.py gist

def sample(h, seed_ix, n):
wun
sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step
X = np.zeros((vocab_size, 1))
x[seed_ix] = 1
ixes = []
for t in xrange(n):
h = np.tanh(np.dot(wxh, x) + np.dot(whh, h) + bh)
y = np.dot(why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
ix = np.random.choice(range(vocab_size), p=p.ravel())
X = np.zeros((vocab_size, 1))
XEIR] = 1
ixes.append(ix)
return ixes

1
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e model

Sonnet 116 - Let me not ...
by William Shakespeare

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O no! it is an ever-fixed mark
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
I never writ, nor no man ever loved.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 35




e ,tfti, astal f ogoh eoase rrranbyne 'nhthnee e
h ne etie h,hregtrs nigtike,aoaenns lng

tyntd-iafhatawiaoihrdemot 1lytdws
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train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

\ train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.
\ train more
"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

-Fei Li & Andrej Karpathy & Justin Johnson Lectu




PANDARUS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'1l drink it.

Fei-Fei Li & Andrej Karpathy & Justin Johnson

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
shall be against your honour.

Lecture 10 - 37 8 Feb 20
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open source textbook on algebraic geometry

[I2 The Stacks Project
home about tagsexplained taglookup browse search bibliography recent comments blog add slogans
Browse chapters (i
1. Preliminaries
Part Chapter online TeX source view pdf 2. Schemes
Preliminaries 3. Topics in Scheme Theo:
1. Introduction online  tex()  pdf > 4. Algebraic Spaces
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Proof. Proof of (1). It also start we get

S = Spec(R) =
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
hypp ull S U SinU 77 and the fact that
Hence we obtain a scheme S and any
Spec(R’) = S is smooth or an

UxxU

an
open

~.nm W C U in SK(G) such tl
U=JUixs, U

which has a nonzero morphism we ma that f; is of finite pre

We claim that Ox., is a scheme w §" such that Ox o+

separated. By Algebra, Lemma ?? we can define a map of complexes (,L (1-'/5”;
and we win.

entation over

ce covering of A”, and 7T; is an object of Fy/s for
and let F; be a presheaf of Ox-modules on C as a F-module.
U/F we have to show that

@spectr) O5.0 = ix'F)

ote that

Sch/S)E0 . (Sch/S) gpms

To prove study &
i>0and Fye
In particular F

is a unique morphism of

Arrows =
and
V =I(S,0) — (U, Spec(4)
Thus U )

an open subset of X. mous map of X is the

rse, the groupoid sch

Proof. See di

iny

s}

The result for prov ing follows from the less of Example ?2. It may
replace § ) gives an open subspace of X and T equal to
so0 Descent, Lemma 77, \,...\.1\ by Lemma 77 we sco that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim )
Spec(B) over U compatible with the complex
Set(A) = T(X,0x.0,)
When in this case of to show that Q — Cz/x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition ??
(without clement is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem
(1) f is locally of finite type. Since S = Spec(R) and ¥ = Spec(R).

| (by the formal open covering X and a single map Proj, (A) =

Proof. This is form all sheaves of sheaves on X. But gx\ul a scheme U and a
Sujeatie orphism U = X. Let UNU = [[,o, _,Us be the scheme X over
S at the schemes X; — X and U lim;

The following lemma surjective restrocomposes of this implies that Fy, = Fy, =
X0

Lemma 0.2. Let X be a locally Noctherian scheme over S, E = Fy

Jy CT,. Since I" C I™ are nonzero over ig < p is a subset of Ty o 0 A:

Lemma 0.3. In Situation 7. Hence we may assume ' = 0.

Proof. We will

other hand, by L

SetT =

works.

 the property we sce that p is the mext functor (??). On the
i 27 we sce that
D(Ox:) = Ox(D)

an F-algebra where 6,41 is a scheme over S. o

where K

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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| Proof. Omitted. o
Lemma 0.1. Let C be a set of the construction.
Let C be a g covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

[ Ooy = Ox(£)
| Proof. This is an algebraic space with the composition of sheaves F on Xepare we
[ have
Ox(F) = {morphy xo, (G, F)}
where G defines an isomorphism F — F of O-modules. u]

|
| Lemma 0.2. This is an integer Z is injective.

| Proof. Sce Spaces, Lemma 22, o

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
| Let X be a scheme which is equal to the formal complez.

\‘ The following to the construction of the lemma follows
Let X be a scheme. Let X be a scheme covering. Let
[ b: XY Y 5Y 5Y xxY > X,

| be a morphism of algebraic spaces over $ and Y.

| Proof. Let X be a nonzero scheme of
[ quasi-coherent sheaf of Ox-modules. The followin;

(1) F is an algebraic space over S.
(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of

| finite type.

This since F € F and € G the diag

Spec(Ky) Morsas  d(Oxy,,.6)

is a limit. Then G is & type and assume S is a
s is of finite type diagrams, and

aposition of G is a regular sequence
s a sheaf of rings.

Proof. We have see that X = Spec(R) and F is a
lgebraic space. The property F is a
nology of X is
Proof. This is clear that
A reduced above we conclude
“field

atation,

a finite pre
hat U is an open cover

Oxe = Fr 1Oy =

is an isomorphism of covering of O, . 1f  is the un

of Proposition 7
Ox-algebra with F are opes

If F is a finite direct sum Oy, i
sequence of F is a similar morphis

Jorphism of a

flat and F and G is a finite

o
fini

e type represe
Igebraic stacks.

able by

? and we can filtered st of
s of finite type over .

his is a
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torvalds / linux @ Watch - 3711

Linux kemel source trae

520,007 commits 1 branch 420 relenses

5,039 contributors
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S 2305 | YFork 9,141

<«
Code

P branch: master - linux / +
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Pull req

latest commit 4017069274 [2

Fei-Fei
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(2 Clone in Desktop

%> Download ZIP
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static void do_command(struct seq file *m, void *v)

{

int column = 32 << (cmd[2] & 0x80); Generated

if (state)

cmd = (int)(int_state ~ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1); C d
oloe code

seq = 1;
for (i = 0; i < 16; i++) {

if (k & (1 << 1))

pipe = (in_use & UMXTHREAD_UNCCA) +

((count & 0x00000000fE££E£E8) & 0x000000f) << 8;

if (count == ()

sub(pid, ppc_md.kexec_handle, 0x20000000);
pipe_set_bytes(i, 0);

usez inte
y L info = &of [PAGE_SIZE);
rek_controls(offset, idx, &soffset);

control_check_polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)
seq puts(s, “policy ");

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 42 8 Feb 2016




Example: simple character-level language model Result

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 43 8 Feb 201
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static void stat_PC_SEC _ read_mostly offsetof(struct seq_argsqueue, \
L)

static void
os_prefix(unsigned long sys)

PUT_PARAM RAID(2, sel) = get state state();
set_pid sum((unsigned long)state, current state str(),
(unsigned lomg)-1->1r_full; low;

-Fei Li & Andrej Karpathy & Justin Johnson Lectu




Example: simple character-level language model Multiplicative models

1500
hidden
units

character: predicted distribution
1-o0f-86 for next character.

It’s a lot easier to predict 86 characters than 100,000 words.

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 70 /109



Examp mple r-level model Multip

A slight tweak: Ideal tree model

An ideal model considers all previous input characters and the current
character

There are
exponentially many
nodes in the tree of
all character strings
of length N.

In an RNN, each
node is a hidden
state vector. The
next character
must transform this
to a new node.
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e model Multiplicative models

An ideal model considers all previous input characters and the current
character

There are
exponentially many
nodes in the tree of
all character strings
of length N.

In an RNN, each
node is a hidden
state vector. The
next character
must transform this
to a new node.

@ The next hidden representation needs to depend on the
conjunction of the current character and the current hidden
representation
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e model Multiplicative models

An ideal model considers all previous input characters and the current
character

There are
exponentially many
nodes in the tree of
all character strings
of length N.

In an RNN, each
node is a hidden
state vector. The
next character
must transform this
to a new node.

@ The next hidden representation needs to depend on the
conjunction of the current character and the current hidden
representation

e We expect under each hidden state vector and each current
character, we should have a different transition matrix. The earlier
simple model tried to capture this but is kind of indirect

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 71 /109



model Multip /e models

Multlphcatlve C01111ect1ons

e We may prepare a different transition matrix for each input
o But this requires 86x1500x1500 parameters (let say we have 1500
hidden variables)
e And this could make the net overfit
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Example: simple character-level language model Multiplicative models

Multiplicative connections

e We may prepare a different transition matrix for each input
o But this requires 86x1500x1500 parameters (let say we have 1500
hidden variables)
e And this could make the net overfit

e Can we achieve the same kind of multiplicative interaction using
fewer parameters?
e We want a different transition matrix for each of the 86 characters,

but we want these 86 character-specific weight matrices to share
parameters (the characters 9 and 8 should have similar matrices)

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 72 /109



Example: simple character-level language model Multiplicative models

Using 3-way factors to allow a character to create a whole
transition matrix

1500 1500
hidden hidden
units

Each factor, f, defines a r O ‘.b O

rank one matrix , ufv_f character: 1-of-86

predicted distribution
for next character

Each character, k, determines a gain ka for each of these matrices.

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018

73 /109



Example: simple ¢ g re e model

Group b

Vector input to group c:
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Example: simple ¢ g re e model

Group b

Vector input to group c:

= (bTwy) (aTup) vy
S~—— S~——
Scalar Scalar

input from input from
group b group a

S. Cheng (OU-ECE) Recurrent Neural Networks

March 2018
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Example: simple ¢ -leve e model Multiplicat

Group b
Vector input to group c:
= (bTwy) (aTup) vy
S~—— S~——
Scalar Scalar

input from input from
group b group a
o We can get groups a and b to interact multiplicatively by using
“factors”
e Each factor first computes a weighted sum for each of its input

groups
S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 74 /109




Example: simple ¢ g re e model Multiplicative mod

Using factors to implement a set of basis matrices

Group a
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Example: simple ¢ g re e model Multiplicative mod

Using factors to implement a set of basis matrices

Group a

Group b

o We can think about factors
another way:
e Each factor defines a rank 1
transition matrix from a to ¢
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Example: simple ¢ g re e model Multiplicative mod

Using factors to implement a set of basis matrices

© Ct
Q.
8 :(bTWf)(aTuf)Vf
—
O =(b"wi)ve(uf a)
= (b'w) (viuy) a
/ | \ N—— S——
Group b scalar coefficient outer prod-
uct transi-

tion matrix

o We can think about factors with rank 1

another way:
e Each factor defines a rank 1
transition matrix from a to ¢
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Example: simple ¢ g re e model Multiplicative mod

Using factors to implement a set of basis matrices

© Ct
o
8 :(bTWf)(aTuf)Vf
| .
O =(b"wp)vi(uf a)
= (b wy) (vinf) a
/ | \ R,—/ \—v—/
Group b scalar coefficient outer prod-
uct transi-
tion matrix
e We can think about factors with rank 1
another way:
e Each factor defines a rank 1
transition matrix from a to ¢ c= Z(bTWf)(VfoT) a

f

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 75 /109



e model Multiplicative models

Some note on optnmzatlon

e To optimize efficiently, they use Hessian-free (HF) method to
minimize the cost
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minimize the cost

e HF is a second order method similar to Newton methods and
LBFGS that take advantage of the curvature (Hessian) matrix
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Example: simple ¢ cter-level e model Multiplicative models

Some note on optimization

e To optimize efficiently, they use Hessian-free (HF) method to
minimize the cost

e HF is a second order method similar to Newton methods and
LBFGS that take advantage of the curvature (Hessian) matrix

o In the HF method, they make an approximation to the curvature
matrix and then minimize the error using conjugate gradient
method. Then they make another approximation to the curvature
matrix and minimize again

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 76 /109



Example: simple character-level language model Multiplicative models

Conjugate gradient

@ There is an alternative to going to the minimum in one step by
multiplying by the inverse of the curvature matrix
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ample: simple r-level uage model Multiplicative models

Conjugate gradient

@ There is an alternative to going to the minimum in one step by
multiplying by the inverse of the curvature matrix

e Use a sequence of steps each of which finds the minimum along
one direction
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ample: simple r-level uage model Multiplicative models

Conjugate gradient

@ There is an alternative to going to the minimum in one step by
multiplying by the inverse of the curvature matrix

e Use a sequence of steps each of which finds the minimum along
one direction
o Make sure that each new direction is “conjugate” to the previous
directions so you do not mess up the minimization you already
did.
e “conjugate” means that as you go in the new direction, you do not
change the gradients in the previous directions

(OU-ECE) Recurrent Neural Networks March 2018 77 /109



my ple ch er-level language model Multiplicative models

Training the mode

o Ilya Sutskever used 5 million strings of 100 characters taken from
wikipedia. For each string he starts predicting at the 11th
character

o Using the HF optimizer, it took a month on a GPU board to get a
really good model (back in 2011) text

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 78 /109



Example: simple character-level language model Multiplicative models

Result

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters’ sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 79 /109



Example: simple er-level la model Multip

Result: some completions produced by the model

@ Sheila thrunges (most frequent)
e People thrunge (most frequent next character is space)

Recurrent Neural Networks March 2018 80 /109



Example: simple ¢ cter-level e model Multiplicative models

Result: some completions produced by the model

@ Sheila thrunges (most frequent)

e People thrunge (most frequent next character is space)
e Shiela, Thrungelini del Rey (first try)

°
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Example: simple ¢ cter-level e model Multiplicative models

Result: some completions produced by the model

@ Sheila thrunges (most frequent)
e People thrunge (most frequent next character is space)
e Shiela, Thrungelini del Rey (first try)

@ The meaning of life is literary recognition. (6 th try)
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Example: simple character-level la ge model Multiplicative models

Result: some completions produced by the model

@ Sheila thrunges (most frequent)

e People thrunge (most frequent next character is space)
e Shiela, Thrungelini del Rey (first try)

@ The meaning of life is literary recognition. (6 th try)

e The meaning of life is the tradition of the ancient human
reproduction: it is less favorable to the good boy for when to
remove her bigger. (one of the first 10 tries for a model trained for
longer)

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 80 /109



Example: simple character-level language model Multiplicative models

Result: what does it know?

o It knows a huge number of words and a lot about proper names,
dates, and numbers
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e model Multiplicative models

Result What does 1t know?

o It knows a huge number of words and a lot about proper names,
dates, and numbers
e It is good at balancing quotes and brackets
e It can count brackets: none, one, many
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e model Multiplicative models

Result What does 1t know?

o It knows a huge number of words and a lot about proper names,
dates, and numbers
e It is good at balancing quotes and brackets
e It can count brackets: none, one, many
o It knows a lot about syntax but its very hard to pin down exactly
what grammar it actually “knows”
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Example: simple ch er-level la model Multiplicative models

Result: what does it know?

o It knows a huge number of words and a lot about proper names,
dates, and numbers

It is good at balancing quotes and brackets
e It can count brackets: none, one, many
o It knows a lot about syntax but its very hard to pin down exactly
what grammar it actually “knows”
It knows a lot of weak semantic associations

e E.g. it knows Plato is associated with Wittgenstein and cabbage is
associated with vegetable

Recurrent Neural Networks March 2018 81 /109



nple: image captioning

Image Captioning

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 51 8 Feb 201
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Example: image captioning

Recurrent Neural Network

ﬂstraw" "-hat" END

START “straw” “hat”

Convolutional Neural Network

Fei-Fei Li & Andrej Karpathy & Justin Johnson

S. Cheng (OU-ECE)

Recurrent Neural Networks

Lecture 10 - 52
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test image

maxpool

conv-128

conv-128
maxpool
conv-256
conv-256
maxpool

conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
_softmax
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| maee | <
conv-64

conv-64
maxpool

conv-128
conv-128
maxpool
conv-256
conv-256
maxpool

conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

x0
<STA
RT>

<START>




| maee | <

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

Vv

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

<START>

(OU-ECE)
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conv-64
conv-64
maxpool

conv-128
conv-128
maxpool
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maxpool
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maxpool
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<STA
RT>

<START>

sample!

test image




| maee | <

conv-64
conv-64
maxpool
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maxpool
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maxpool
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maxpool
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maxpool
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<START>

test image
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conv-64
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maxpool
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maxpool
conv-256
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maxpool
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maxpool
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maxpool
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sample!

<START>
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conv-64
conv-64
maxpool

conv-128
conv-128
maxpool
conv-256
conv-256
maxpool

conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

<START>

test image




iméé <
conv-64
conv-64

test image

maxpool

conv-128
conv-128
maxpool

conv-256
conv-256

sample
<END> token

=> finish.

maxpool

conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

<START>




Image Sentence Datasets

a man riding a bike on a dirt path through a forest.
bicyclist raises his fist as he rides on desert dirt frail.

Z"ii:l"rﬁi;ﬁ}:&'ﬁcf;“ Jr;?dpgl ﬁ;?ié_sfsiii&'::?"“ Microsoft COCO

a mountain sr ui I in celebration. . )

R ! [Tsung-Yi Lin et al. 2014]
mMSCc0c0.0rg

currently:
~120K images
~5 sentences each
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'man in black shirt is playing ‘construction worker in orange "two young girls are playing with boy is doing backflip on
guitar.” safety vest is working on road.” lego toy." wakeboard




'man in black shirt is playing ‘construction worker in orange "two young girls are playing with boy is doing backflip on
guitar.” safety vest is working on road.” lego toy." wakeboard

“a young boy is holding a "a cat is sitting on a couchwitha ~ "a woman holding a teddy bearin  "a horse is standing in the middle
baseball bat." remote control front of a mirror.” of a road




Overview of echo state networks

The key idea of echo state networks (perceptrons again?)

* The equivalent idea for RNNs is

A very simple way to learn a to fix the input->hidden

feedforward network is to make
the early layers random and fixed.

connections and the
hidden—>hidden connections at

Then we just learn the last layer random values and only learn the
which is a linear model that hidden->output connections.

uses the transformed
inputs to predict the
target outputs.
— Abig random
expansion of
the input vector
can help.

S. Cheng (OU-ECE)

— The learning is then very
simple (assuming linear
output units).

Q — lts important to set the

random connections very

elele carefully so the RNN does not

explode or die.

Recurrent Neural Networks March 2018 97 /109



Overview of echo state networks

How to set random connections in echo state networks

@ Set the hidden—hidden
weights so that the intensity
of activity stays about the
same after each iteration

e Set the largest eigenvalue to
1

e This allows the input to
echo around the network for
a long time

98 /109
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Overview of echo state networks

How to set random connections in echo state networks

@ Set the hidden—hidden
weights so that the intensity
of activity stays about the
same after each iteration

e Set the largest eigenvalue to
1

e This allows the input to
echo around the network for
a long time

e Use sparse connectivity (i.e.
set most of the weights to
7€ero)

e This creates lots of loosely
coupled oscillators
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Overview of echo state networks

How to set random connections in echo state networks

@ Set the hidden—hidden
weights so that the intensity
of activity stays about the
same after each iteration

e Set the largest eigenvalue to
1

e This allows the input to
echo around the network for
a long time

e Use sparse connectivity (i.e.
set most of the weights to
7€ero)

e This creates lots of loosely
coupled oscillators

o Choose the scale of the
input—hidden connections
very carefully

e They need to drive the
loosely coupled oscillators
without wiping out the
information from the past
that they already contain

March 2018 98 /109
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Overview of echo state networks

How to set random connections in echo state networks

@ Set the hidden—hidden
weights so that the intensity
of activity stays about the
same after each iteration

e Set the largest eigenvalue to
1

e This allows the input to
echo around the network for
a long time

e Use sparse connectivity (i.e.
set most of the weights to
7€ero)

e This creates lots of loosely
coupled oscillators

@ Choose the scale of the
input—hidden connections
very carefully

e They need to drive the
loosely coupled oscillators
without wiping out the
information from the past
that they already contain

@ The learning is so fast that we
can try many different scales
for the input—hidden weights
and sparsenesses

o This is often necessary

March 2018 98 /109

S. Cheng (OU-ECE)
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A simple example of an eCho state network

INPUT SEQUENCE A real-valued time-varying value that specifies
the frequency of a sine wave

TARGET OUTPUT SEQUENCE A sine wave with the currently
specified frequency

LEARNING METHOD Fit a linear model that takes the states of the
hidden units as input and produces a single scalar output

S. Cheng (OU-ECE) Recurrent Neural Networks March 2018 99 /109



Overview of echo state networks

Example from
Scholarpedia

114

1/16 4"'
0 100 200

input signal

heng (OU-ECE)

dynamical
reservoir

Recurrent Neural Networks

100 200

output (or
teacher)
signal

March 2018 100 /109



The target and predicted outputs after learning

1/4
1/16
0 100 200

input signal




Overview of echo state networks

Beyond echo state networks

e Good aspects of ESNs: Echo
state networks can be trained
very fast because they just fit
a linear model

e They demonstrate that it is
very important to initialize
weights sensibly
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Overview of echo state networks

Beyond echo state networks

e Good aspects of ESNs: Echo
state networks can be trained
very fast because they just fit
a linear model

e They demonstrate that it is
very important to initialize
weights sensibly

@ They can do impressive
modeling of one-dimensional
time-series

e but they cannot compete
seriously for
high-dimensional data like
pre-processed speech
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Overview of echo state networks

Beyond echo state networks

e Good aspects of ESNs: Echo

state networks can be trained e Bad aspects of ESNs: They

very fast because they just fit
a linear model

They demonstrate that it is
very important to initialize
weights sensibly
@ They can do impressive
modeling of one-dimensional
time-series
e but they cannot compete
seriously for
high-dimensional data like
pre-processed speech

S. Cheng (OU-ECE)

Recurrent Neural Networks

need many more hidden units
for a given task than an RNN
that learns the
hidden—hidden weights

March 2018

102 /109



Overview of echo state netwc

Beyond echo state networks

e Good aspects of ESNs: Echo
state networks can be trained e Bad aspects of ESNs: They

very fast because they just fit need many more hidden units
a linear model for a given task than an RNN
e They demonstrate that it is that learns the
very important to initialize hidden—hidden weights
weights sensibly o Ilya Sutskever (2012) has
e They can do impressive illustrated that if the weights
modeling of one-dimensional are initialized using the ESN
time-series methods, RNNs could be
e but they cannot compete trained very effectively
seriously for o He uses rmsprop with
high-dimensional data like momentum

pre-processed speech
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Conclusions

e RNNs allow a lot of flexibility in architecture design and have
many applications
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Conclusions

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many

BT
) 080 00 DooGd BaC
Jot  Uod i

\ Vanilla Neural Networks

—
==

||
—
—

a
|-

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 6 8 Feb 2016
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Conclusions

Recurrent Networks offer a lot of flexibility:

one t—o one Te to many many to oze many t—o many many to many
o BN NN R
100 M D0 OO

U0y Uon oo

\ e.g. Image Captioning
image -> sequence of words

—
==

||
—
—

—

|—~

||
—
—
e

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 7 8 Feb 2016
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Conclusions

Recurrent Networks offer a lot of flexibility:

one t—o one Te to many many to oze many t—o many many to many
o BN NN R
100 M D0 OO

U0y Uon oo

\ e.g. Sentiment Classification
sequence of words -> sentiment

—
==

||
—
—

—

|—

||
—
—
e

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 8 8 Feb 2016
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Conclusions

Recurrent Networks offer a lot of flexibility:

one to one one to many

U U0

a
—

a
|-

Fei-Fei Li & Andrej Karpathy & Justin Johnson

many to one

] [0 O

i

many to many many to many
tt1
ﬁ ﬁ t ttt

\ e.g. Machine Translation
seq of words -> seq of words

||
—
—

Lecture 10- 9 8 Feb 2016

S. Cheng (OU-ECE)
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Conclusions

Recurrent Networks offer a lot of flexibility:

IR TR
] 00 000 00000 OOC
1 B Jot  Uod i

e.g. Video classification on frame level

—
==

||
—
—

—
|—
|—
||
—
—
e

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10- 10 8 Feb 2016
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usions

Conclusions

o RNNs allow a lot of flexibility in architecture design and have
many applications

e Vanilla RNNs are simple but don’t work very well
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Conclusions

o RNNs allow a lot of flexibility in architecture design and have
many applications

e Vanilla RNNs are simple but don’t work very well

e Common to use LSTM or GRU: their additive interactions
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