
Generative Models

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2018
(Slides credit to Goodfellow, Larochelle, Hinton)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 1 / 123

Table of Contents

1 Supervised vs unsupervised learning

2 Generative models

3 GANs

4 Boltzmann machines and DBNs
Boltzmann machines

5 Autoencoders

6 Conclusions

S. Cheng (OU-Tulsa) Generative Models Feb 2017 2 / 123

Supervised vs unsupervised learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Supervised vs Unsupervised Learning

4

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 3 / 123

Supervised vs unsupervised learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Supervised vs Unsupervised Learning

5

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Cat

Classification

This image is CC0 public domain

S. Cheng (OU-Tulsa) Generative Models Feb 2017 4 / 123

Supervised vs unsupervised learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Supervised vs Unsupervised Learning

6

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

DOG, DOG, CAT

This image is CC0 public domain

Object Detection

S. Cheng (OU-Tulsa) Generative Models Feb 2017 5 / 123

Supervised vs unsupervised learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Supervised vs Unsupervised Learning

7

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Semantic Segmentation

GRASS, CAT,
TREE, SKY

S. Cheng (OU-Tulsa) Generative Models Feb 2017 6 / 123

Supervised vs unsupervised learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Supervised vs Unsupervised Learning

8

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Image captioning

A cat sitting on a suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 7 / 123

Supervised vs unsupervised learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 20179

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Supervised vs Unsupervised Learning

S. Cheng (OU-Tulsa) Generative Models Feb 2017 8 / 123

Supervised vs unsupervised learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201710

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Supervised vs Unsupervised Learning

K-means clustering

This image is CC0 public domain

S. Cheng (OU-Tulsa) Generative Models Feb 2017 9 / 123

Supervised vs unsupervised learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201711

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Supervised vs Unsupervised Learning

Principal Component Analysis
(Dimensionality reduction)

This image from Matthias Scholz
is CC0 public domain

3-d 2-d

S. Cheng (OU-Tulsa) Generative Models Feb 2017 10 / 123

Supervised vs unsupervised learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201712

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Supervised vs Unsupervised Learning

Autoencoders
(Feature learning)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 11 / 123

Supervised vs unsupervised learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201713

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Supervised vs Unsupervised Learning

2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation
Figure copyright Ian Goodfellow, 2016. Reproduced with permission.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 12 / 123

Supervised vs unsupervised learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

14

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 13 / 123

Supervised vs unsupervised learning

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Holy grail: Solve
unsupervised learning
=> understand structure
of visual world

15

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Training data is cheap

S. Cheng (OU-Tulsa) Generative Models Feb 2017 14 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Generative Models

16

Training data ~ p
data

(x) Generated samples ~ p
model

(x)

Want to learn p
model

(x) similar to p
data

(x)

Given training data, generate new samples from same distribution

S. Cheng (OU-Tulsa) Generative Models Feb 2017 15 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Generative Models

17

Training data ~ p
data

(x) Generated samples ~ p
model

(x)

Want to learn p
model

(x) similar to p
data

(x)

Given training data, generate new samples from same distribution

Addresses density estimation, a core problem in unsupervised learning
Several flavors:

- Explicit density estimation: explicitly define and solve for p
model

(x)
- Implicit density estimation: learn model that can sample from p

model
(x) w/o explicitly defining it

S. Cheng (OU-Tulsa) Generative Models Feb 2017 16 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Why Generative Models?

18

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and
planning (reinforcement learning applications!)

- Training generative models can also enable inference of latent
representations that can be useful as general features

FIgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 17 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201721

PixelRNN and PixelCNN

S. Cheng (OU-Tulsa) Generative Models Feb 2017 18 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201722

Fully visible belief network

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

Explicit density model

Likelihood of
image x

Probability of i’th pixel value
given all previous pixels

Then maximize likelihood of training data

S. Cheng (OU-Tulsa) Generative Models Feb 2017 19 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Then maximize likelihood of training data

23

Fully visible belief network

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

Explicit density model

Likelihood of
image x

Probability of i’th pixel value
given all previous pixels

Complex distribution over pixel
values => Express using a neural
network!

S. Cheng (OU-Tulsa) Generative Models Feb 2017 20 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201724

Fully visible belief network

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

Explicit density model

Likelihood of
image x

Probability of i’th pixel value
given all previous pixels

Will need to define
ordering of “previous
pixels”

Complex distribution over pixel
values => Express using a neural
network!Then maximize likelihood of training data

S. Cheng (OU-Tulsa) Generative Models Feb 2017 21 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

PixelRNN

25

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

[van der Oord et al. 2016]

S. Cheng (OU-Tulsa) Generative Models Feb 2017 22 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

PixelRNN

26

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

[van der Oord et al. 2016]

S. Cheng (OU-Tulsa) Generative Models Feb 2017 23 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

PixelRNN

27

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

[van der Oord et al. 2016]

S. Cheng (OU-Tulsa) Generative Models Feb 2017 24 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

PixelRNN

28

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

[van der Oord et al. 2016]

Drawback: sequential generation is slow!

S. Cheng (OU-Tulsa) Generative Models Feb 2017 25 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

PixelCNN

29

[van der Oord et al. 2016]

Still generate image pixels starting from
corner

Dependency on previous pixels now
modeled using a CNN over context region

Figure copyright van der Oord et al., 2016. Reproduced with permission.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 26 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

PixelCNN

30

[van der Oord et al. 2016]

Still generate image pixels starting from
corner

Dependency on previous pixels now
modeled using a CNN over context region

Training: maximize likelihood of training
images

 Figure copyright van der Oord et al., 2016. Reproduced with permission.

Softmax loss at each pixel

S. Cheng (OU-Tulsa) Generative Models Feb 2017 27 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

PixelCNN

31

[van der Oord et al. 2016]

Still generate image pixels starting from
corner

Dependency on previous pixels now
modeled using a CNN over context region

Training is faster than PixelRNN
(can parallelize convolutions since context region
values known from training images)

Generation must still proceed sequentially
=> still slow

Figure copyright van der Oord et al., 2016. Reproduced with permission.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 28 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Generation Samples

32

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.

32x32 CIFAR-10 32x32 ImageNet

S. Cheng (OU-Tulsa) Generative Models Feb 2017 29 / 123

Generative models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201733

PixelRNN and PixelCNN

Improving PixelCNN performance
- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017

(PixelCNN++)

Pros:
- Can explicitly compute likelihood

p(x)
- Explicit likelihood of training

data gives good evaluation
metric

- Good samples

Con:
- Sequential generation => slow

S. Cheng (OU-Tulsa) Generative Models Feb 2017 30 / 123

GANs

Generative adversarial networks (GANs)
Goodfellow et al. 2014

random
number

generator

generator
samplediscriminatordata sample

yes/no

generator

data sample?

S. Cheng (OU-Tulsa) Generative Models Feb 2017 31 / 123

GANs

Generative adversarial networks (GANs)
Goodfellow et al. 2014

𝑍 ∼ 𝑝(𝑧)

𝑥 ∼ 𝑝(𝑥|𝑧)𝐷(𝑥)𝑥 ∼ 𝑞(𝑥)

𝑃𝑟𝑜𝑏(𝑥 ∼ 𝑞(𝑥))

𝐺(𝑧)

𝑥 ∼ 𝑞(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 32 / 123

GANs

Minimax game of a GAN

Probability of model data: 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) = ∫
𝑧

𝑝(𝑧)𝑝(𝑥|𝑧)𝑑𝑧
Probability of true data: 𝑝𝑑𝑎𝑡𝑎(𝑥) = 𝑞(𝑥)
Discriminator wants to catch fake data

𝐽 (𝐷) = −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
log 𝐷(𝑥) − 𝐸𝑧 log(1 − 𝐷(𝐺(𝑧)))

= −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
log 𝐷(𝑥) − 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

log(1 − 𝐷(𝑥))

N.B. 𝐽 (𝐷) is just cross-entropy loss for correct classification
Generator wants to fool the discriminator: 𝐽 (𝐺) = −𝐽 (𝐷)

Since first term does not depend on 𝐺(⋅), we can simplify 𝐽 (𝐺) to

𝐽 (𝐺) = −𝐸𝑧 log(1 − 𝐷(𝐺(𝑧)))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 33 / 123

GANs

Minimax game of a GAN

Probability of model data: 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) = ∫
𝑧

𝑝(𝑧)𝑝(𝑥|𝑧)𝑑𝑧
Probability of true data: 𝑝𝑑𝑎𝑡𝑎(𝑥) = 𝑞(𝑥)
Discriminator wants to catch fake data

𝐽 (𝐷) = −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
log 𝐷(𝑥) − 𝐸𝑧 log(1 − 𝐷(𝐺(𝑧)))

= −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
log 𝐷(𝑥) − 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

log(1 − 𝐷(𝑥))

N.B. 𝐽 (𝐷) is just cross-entropy loss for correct classification
Generator wants to fool the discriminator: 𝐽 (𝐺) = −𝐽 (𝐷)

Since first term does not depend on 𝐺(⋅), we can simplify 𝐽 (𝐺) to

𝐽 (𝐺) = −𝐸𝑧 log(1 − 𝐷(𝐺(𝑧)))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 33 / 123

GANs

Minimax game of a GAN

Probability of model data: 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) = ∫
𝑧

𝑝(𝑧)𝑝(𝑥|𝑧)𝑑𝑧
Probability of true data: 𝑝𝑑𝑎𝑡𝑎(𝑥) = 𝑞(𝑥)
Discriminator wants to catch fake data

𝐽 (𝐷) = −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
log 𝐷(𝑥) − 𝐸𝑧 log(1 − 𝐷(𝐺(𝑧)))

= −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
log 𝐷(𝑥) − 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

log(1 − 𝐷(𝑥))

N.B. 𝐽 (𝐷) is just cross-entropy loss for correct classification
Generator wants to fool the discriminator: 𝐽 (𝐺) = −𝐽 (𝐷)

Since first term does not depend on 𝐺(⋅), we can simplify 𝐽 (𝐺) to

𝐽 (𝐺) = −𝐸𝑧 log(1 − 𝐷(𝐺(𝑧)))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 33 / 123

GANs

Minimax game of a GAN

Probability of model data: 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) = ∫
𝑧

𝑝(𝑧)𝑝(𝑥|𝑧)𝑑𝑧
Probability of true data: 𝑝𝑑𝑎𝑡𝑎(𝑥) = 𝑞(𝑥)
Discriminator wants to catch fake data

𝐽 (𝐷) = −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
log 𝐷(𝑥) − 𝐸𝑧 log(1 − 𝐷(𝐺(𝑧)))

= −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
log 𝐷(𝑥) − 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

log(1 − 𝐷(𝑥))

N.B. 𝐽 (𝐷) is just cross-entropy loss for correct classification
Generator wants to fool the discriminator: 𝐽 (𝐺) = −𝐽 (𝐷)

Since first term does not depend on 𝐺(⋅), we can simplify 𝐽 (𝐺) to

𝐽 (𝐺) = −𝐸𝑧 log(1 − 𝐷(𝐺(𝑧)))

S. Cheng (OU-Tulsa) Generative Models Feb 2017 33 / 123

GANs

Nash equilibrium

By game theory, Nash equilibriums exist
One equilibrium is 𝐺(⋅) generate indifferentiable sample as the true
data and 𝐷(⋅) will just make choices randomly (output 1 with
probability 0.5)

This is the equilibrium that we are interested in

S. Cheng (OU-Tulsa) Generative Models Feb 2017 34 / 123

GANs

Optimal discriminator 𝐷∗(𝑥)

By calculus of variations, for any Δ(𝑥),

𝜕𝐽 (𝐷)(𝐷∗(𝑋) + 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −
𝜕𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎

log(𝐷∗(𝑥) + 𝜆Δ(𝑥))
𝜕𝜆

−
𝜕𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
[Δ(𝑥)

𝐷∗(𝑥) + 𝜆Δ(𝑥)
] + 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

[Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

]∣
𝜆=0

= 0

⇒ ∫
𝑥

[𝑝𝑑𝑎𝑡𝑎(𝑥)
𝐷∗(𝑥)

− 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
1 − 𝐷∗(𝑥)

] Δ(𝑥)𝑑𝑥 = 0

⇒𝐷∗(𝑥) = 𝑝𝑑𝑎𝑡𝑎(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 35 / 123

GANs

Optimal discriminator 𝐷∗(𝑥)

By calculus of variations, for any Δ(𝑥),

𝜕𝐽 (𝐷)(𝐷∗(𝑋) + 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −
𝜕𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎

log(𝐷∗(𝑥) + 𝜆Δ(𝑥))
𝜕𝜆

−
𝜕𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
[Δ(𝑥)

𝐷∗(𝑥) + 𝜆Δ(𝑥)
] + 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

[Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

]∣
𝜆=0

= 0

⇒ ∫
𝑥

[𝑝𝑑𝑎𝑡𝑎(𝑥)
𝐷∗(𝑥)

− 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
1 − 𝐷∗(𝑥)

] Δ(𝑥)𝑑𝑥 = 0

⇒𝐷∗(𝑥) = 𝑝𝑑𝑎𝑡𝑎(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 35 / 123

GANs

Optimal discriminator 𝐷∗(𝑥)

By calculus of variations, for any Δ(𝑥),

𝜕𝐽 (𝐷)(𝐷∗(𝑋) + 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −
𝜕𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎

log(𝐷∗(𝑥) + 𝜆Δ(𝑥))
𝜕𝜆

−
𝜕𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
[Δ(𝑥)

𝐷∗(𝑥) + 𝜆Δ(𝑥)
] + 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

[Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

]∣
𝜆=0

= 0

⇒ ∫
𝑥

[𝑝𝑑𝑎𝑡𝑎(𝑥)
𝐷∗(𝑥)

− 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
1 − 𝐷∗(𝑥)

] Δ(𝑥)𝑑𝑥 = 0

⇒𝐷∗(𝑥) = 𝑝𝑑𝑎𝑡𝑎(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 35 / 123

GANs

Optimal discriminator 𝐷∗(𝑥)

By calculus of variations, for any Δ(𝑥),

𝜕𝐽 (𝐷)(𝐷∗(𝑋) + 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −
𝜕𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎

log(𝐷∗(𝑥) + 𝜆Δ(𝑥))
𝜕𝜆

−
𝜕𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
[Δ(𝑥)

𝐷∗(𝑥) + 𝜆Δ(𝑥)
] + 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

[Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

]∣
𝜆=0

= 0

⇒ ∫
𝑥

[𝑝𝑑𝑎𝑡𝑎(𝑥)
𝐷∗(𝑥)

− 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
1 − 𝐷∗(𝑥)

] Δ(𝑥)𝑑𝑥 = 0

⇒𝐷∗(𝑥) = 𝑝𝑑𝑎𝑡𝑎(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 35 / 123

GANs

Optimal discriminator 𝐷∗(𝑥)

By calculus of variations, for any Δ(𝑥),

𝜕𝐽 (𝐷)(𝐷∗(𝑋) + 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −
𝜕𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎

log(𝐷∗(𝑥) + 𝜆Δ(𝑥))
𝜕𝜆

−
𝜕𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎
[Δ(𝑥)

𝐷∗(𝑥) + 𝜆Δ(𝑥)
] + 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙

[Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

]∣
𝜆=0

= 0

⇒ ∫
𝑥

[𝑝𝑑𝑎𝑡𝑎(𝑥)
𝐷∗(𝑥)

− 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
1 − 𝐷∗(𝑥)

] Δ(𝑥)𝑑𝑥 = 0

⇒𝐷∗(𝑥) = 𝑝𝑑𝑎𝑡𝑎(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 35 / 123

GANs Design tricks

Non-saturating cost function

The discriminator cost function
𝐽 (𝐷) = −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎

log 𝐷(𝑥) − 𝐸𝑧 log(1 − 𝐷(𝐺(𝑧))) is a very
reasonable choice and usually will not be modified
On the other hand, we have more freedom on choosing the generator
cost

𝐸𝑧 log(1 − 𝐷(𝐺(𝑧))) is the intuitive choice for 𝐽 (𝐺) but it has a small
gradient when 𝐷(𝐺(𝑧)) is small for all 𝑧

That is, generator is not able to fool the discriminator
Reasonable when we just started to train the generator

Instead, it is better to have 𝐽 (𝐺) = −𝐸𝑧 log 𝐷(𝐺(𝑧))
− log 𝐷(𝐺(𝑧)) ≈ 0 when 𝐷(𝐺(𝑧)) ≈ 1: ignore samples that
successfully fool the discriminator
− log 𝐷(𝐺(𝑧)) ≫ 0 when 𝐷(𝐺(𝑧)) ≈ 0: emphasize samples that
cannot fool the discriminator
When 𝐷(𝐺(𝑧)) ≈ 1 for all 𝑧, we may need to switch back to the
original cost function. But better yet, we should better train the
discriminator

S. Cheng (OU-Tulsa) Generative Models Feb 2017 36 / 123

GANs Design tricks

Non-saturating cost function

The discriminator cost function
𝐽 (𝐷) = −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎

log 𝐷(𝑥) − 𝐸𝑧 log(1 − 𝐷(𝐺(𝑧))) is a very
reasonable choice and usually will not be modified
On the other hand, we have more freedom on choosing the generator
cost

𝐸𝑧 log(1 − 𝐷(𝐺(𝑧))) is the intuitive choice for 𝐽 (𝐺) but it has a small
gradient when 𝐷(𝐺(𝑧)) is small for all 𝑧

That is, generator is not able to fool the discriminator
Reasonable when we just started to train the generator

Instead, it is better to have 𝐽 (𝐺) = −𝐸𝑧 log 𝐷(𝐺(𝑧))
− log 𝐷(𝐺(𝑧)) ≈ 0 when 𝐷(𝐺(𝑧)) ≈ 1: ignore samples that
successfully fool the discriminator
− log 𝐷(𝐺(𝑧)) ≫ 0 when 𝐷(𝐺(𝑧)) ≈ 0: emphasize samples that
cannot fool the discriminator
When 𝐷(𝐺(𝑧)) ≈ 1 for all 𝑧, we may need to switch back to the
original cost function. But better yet, we should better train the
discriminator

S. Cheng (OU-Tulsa) Generative Models Feb 2017 36 / 123

GANs Design tricks

Non-saturating cost function

The discriminator cost function
𝐽 (𝐷) = −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎

log 𝐷(𝑥) − 𝐸𝑧 log(1 − 𝐷(𝐺(𝑧))) is a very
reasonable choice and usually will not be modified
On the other hand, we have more freedom on choosing the generator
cost

𝐸𝑧 log(1 − 𝐷(𝐺(𝑧))) is the intuitive choice for 𝐽 (𝐺) but it has a small
gradient when 𝐷(𝐺(𝑧)) is small for all 𝑧

That is, generator is not able to fool the discriminator
Reasonable when we just started to train the generator

Instead, it is better to have 𝐽 (𝐺) = −𝐸𝑧 log 𝐷(𝐺(𝑧))
− log 𝐷(𝐺(𝑧)) ≈ 0 when 𝐷(𝐺(𝑧)) ≈ 1: ignore samples that
successfully fool the discriminator
− log 𝐷(𝐺(𝑧)) ≫ 0 when 𝐷(𝐺(𝑧)) ≈ 0: emphasize samples that
cannot fool the discriminator
When 𝐷(𝐺(𝑧)) ≈ 1 for all 𝑧, we may need to switch back to the
original cost function. But better yet, we should better train the
discriminator

S. Cheng (OU-Tulsa) Generative Models Feb 2017 36 / 123

GANs Design tricks

Non-saturating cost function

The discriminator cost function
𝐽 (𝐷) = −𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎

log 𝐷(𝑥) − 𝐸𝑧 log(1 − 𝐷(𝐺(𝑧))) is a very
reasonable choice and usually will not be modified
On the other hand, we have more freedom on choosing the generator
cost

𝐸𝑧 log(1 − 𝐷(𝐺(𝑧))) is the intuitive choice for 𝐽 (𝐺) but it has a small
gradient when 𝐷(𝐺(𝑧)) is small for all 𝑧

That is, generator is not able to fool the discriminator
Reasonable when we just started to train the generator

Instead, it is better to have 𝐽 (𝐺) = −𝐸𝑧 log 𝐷(𝐺(𝑧))
− log 𝐷(𝐺(𝑧)) ≈ 0 when 𝐷(𝐺(𝑧)) ≈ 1: ignore samples that
successfully fool the discriminator
− log 𝐷(𝐺(𝑧)) ≫ 0 when 𝐷(𝐺(𝑧)) ≈ 0: emphasize samples that
cannot fool the discriminator
When 𝐷(𝐺(𝑧)) ≈ 1 for all 𝑧, we may need to switch back to the
original cost function. But better yet, we should better train the
discriminator

S. Cheng (OU-Tulsa) Generative Models Feb 2017 36 / 123

GANs Design tricks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Training GANs: Two-player game

11
1

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2. Instead: Gradient ascent on generator, different
objective

Instead of minimizing likelihood of discriminator being correct, now
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

High gradient signal

Low gradient signal

S. Cheng (OU-Tulsa) Generative Models Feb 2017 37 / 123

GANs Design tricks

Some refinements

Training GAN is equivalent of finding the Nash equilibrium of a two-player
non-cooperative game, which itself is a very hard problem. We will men-
tion here a couple refinements to help find a better solution. You probably
would like to check out Salimans’ 16 also

One-sided label smoothing
Fixing batch-norm
Mini-batch features
Unrolled GAN

S. Cheng (OU-Tulsa) Generative Models Feb 2017 38 / 123

https://arxiv.org/pdf/1606.03498.pdf

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

Default discriminator cost can also be written as

cross_entropy("1",discriminator(data))
+cross_entropy("0", discriminator(samples))

Experiment shows that one-sided label smoothed cost enhance
system stability

cross_entropy("0.9",discriminator(data))
+cross_entropy("0", discriminator(samples))

Essentially prevent extrapolating effect from extreme samples
Generally does not reduce classification accuracy, only confidence

S. Cheng (OU-Tulsa) Generative Models Feb 2017 39 / 123

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

Default discriminator cost can also be written as

cross_entropy("1",discriminator(data))
+cross_entropy("0", discriminator(samples))

Experiment shows that one-sided label smoothed cost enhance
system stability

cross_entropy("0.9",discriminator(data))
+cross_entropy("0", discriminator(samples))

Essentially prevent extrapolating effect from extreme samples
Generally does not reduce classification accuracy, only confidence

S. Cheng (OU-Tulsa) Generative Models Feb 2017 39 / 123

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

Default discriminator cost can also be written as

cross_entropy("1",discriminator(data))
+cross_entropy("0", discriminator(samples))

Experiment shows that one-sided label smoothed cost enhance
system stability

cross_entropy("0.9",discriminator(data))
+cross_entropy("0", discriminator(samples))

Essentially prevent extrapolating effect from extreme samples
Generally does not reduce classification accuracy, only confidence

S. Cheng (OU-Tulsa) Generative Models Feb 2017 39 / 123

GANs Design tricks

Optimal discriminator 𝐷∗(𝑥)

By calculus of variations, for any Δ(𝑥),

𝜕𝐽(𝐷)(𝐷∗(𝑋) + 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −
𝜕𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(1 − 𝛼) log(𝐷∗(𝑥) + 𝜆Δ(𝑥)) + 𝛼 log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥))

𝜕𝜆

−
𝜕𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙(1 − 𝛽) log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)) + 𝛽 log(𝐷∗(𝑥) + 𝜆Δ(𝑥))

𝜕𝜆
𝜕𝜆∣

𝜆=0

= 0

⇒ − 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 [(1 − 𝛼)Δ(𝑥)
𝐷∗(𝑥) + 𝜆Δ(𝑥)

− 𝛼Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

]

+ 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙 [(1 − 𝛽)Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

− 𝛽Δ(𝑥)
𝐷∗(𝑥) + 𝜆Δ(𝑥)

]∣
𝜆=0

= 0

⇒ − ∫
𝑥

[(1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝐷∗(𝑥)

− (1 − 𝛽)𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) + 𝛼𝑝𝑑𝑎𝑡𝑎(𝑥)
1 − 𝐷∗(𝑥)

] Δ(𝑥)𝑑𝑥 = 0

⇒𝐷∗(𝑥) = (1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 40 / 123

GANs Design tricks

Optimal discriminator 𝐷∗(𝑥)

By calculus of variations, for any Δ(𝑥),

𝜕𝐽(𝐷)(𝐷∗(𝑋) + 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −
𝜕𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(1 − 𝛼) log(𝐷∗(𝑥) + 𝜆Δ(𝑥)) + 𝛼 log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥))

𝜕𝜆

−
𝜕𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙(1 − 𝛽) log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)) + 𝛽 log(𝐷∗(𝑥) + 𝜆Δ(𝑥))

𝜕𝜆
𝜕𝜆∣

𝜆=0

= 0

⇒ − 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 [(1 − 𝛼)Δ(𝑥)
𝐷∗(𝑥) + 𝜆Δ(𝑥)

− 𝛼Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

]

+ 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙 [(1 − 𝛽)Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

− 𝛽Δ(𝑥)
𝐷∗(𝑥) + 𝜆Δ(𝑥)

]∣
𝜆=0

= 0

⇒ − ∫
𝑥

[(1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝐷∗(𝑥)

− (1 − 𝛽)𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) + 𝛼𝑝𝑑𝑎𝑡𝑎(𝑥)
1 − 𝐷∗(𝑥)

] Δ(𝑥)𝑑𝑥 = 0

⇒𝐷∗(𝑥) = (1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 40 / 123

GANs Design tricks

Optimal discriminator 𝐷∗(𝑥)

By calculus of variations, for any Δ(𝑥),

𝜕𝐽(𝐷)(𝐷∗(𝑋) + 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −
𝜕𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(1 − 𝛼) log(𝐷∗(𝑥) + 𝜆Δ(𝑥)) + 𝛼 log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥))

𝜕𝜆

−
𝜕𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙(1 − 𝛽) log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)) + 𝛽 log(𝐷∗(𝑥) + 𝜆Δ(𝑥))

𝜕𝜆
𝜕𝜆∣

𝜆=0

= 0

⇒ − 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 [(1 − 𝛼)Δ(𝑥)
𝐷∗(𝑥) + 𝜆Δ(𝑥)

− 𝛼Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

]

+ 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙 [(1 − 𝛽)Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

− 𝛽Δ(𝑥)
𝐷∗(𝑥) + 𝜆Δ(𝑥)

]∣
𝜆=0

= 0

⇒ − ∫
𝑥

[(1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝐷∗(𝑥)

− (1 − 𝛽)𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) + 𝛼𝑝𝑑𝑎𝑡𝑎(𝑥)
1 − 𝐷∗(𝑥)

] Δ(𝑥)𝑑𝑥 = 0

⇒𝐷∗(𝑥) = (1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 40 / 123

GANs Design tricks

Optimal discriminator 𝐷∗(𝑥)

By calculus of variations, for any Δ(𝑥),

𝜕𝐽(𝐷)(𝐷∗(𝑋) + 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −
𝜕𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(1 − 𝛼) log(𝐷∗(𝑥) + 𝜆Δ(𝑥)) + 𝛼 log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥))

𝜕𝜆

−
𝜕𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙(1 − 𝛽) log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)) + 𝛽 log(𝐷∗(𝑥) + 𝜆Δ(𝑥))

𝜕𝜆
𝜕𝜆∣

𝜆=0

= 0

⇒ − 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 [(1 − 𝛼)Δ(𝑥)
𝐷∗(𝑥) + 𝜆Δ(𝑥)

− 𝛼Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

]

+ 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙 [(1 − 𝛽)Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

− 𝛽Δ(𝑥)
𝐷∗(𝑥) + 𝜆Δ(𝑥)

]∣
𝜆=0

= 0

⇒ − ∫
𝑥

[(1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝐷∗(𝑥)

− (1 − 𝛽)𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) + 𝛼𝑝𝑑𝑎𝑡𝑎(𝑥)
1 − 𝐷∗(𝑥)

] Δ(𝑥)𝑑𝑥 = 0

⇒𝐷∗(𝑥) = (1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 40 / 123

GANs Design tricks

Optimal discriminator 𝐷∗(𝑥)

By calculus of variations, for any Δ(𝑥),

𝜕𝐽(𝐷)(𝐷∗(𝑋) + 𝜆Δ(𝑥))
𝜕𝜆

∣
𝜆=0

= 0

⇒ −
𝜕𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(1 − 𝛼) log(𝐷∗(𝑥) + 𝜆Δ(𝑥)) + 𝛼 log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥))

𝜕𝜆

−
𝜕𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙(1 − 𝛽) log(1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)) + 𝛽 log(𝐷∗(𝑥) + 𝜆Δ(𝑥))

𝜕𝜆
𝜕𝜆∣

𝜆=0

= 0

⇒ − 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 [(1 − 𝛼)Δ(𝑥)
𝐷∗(𝑥) + 𝜆Δ(𝑥)

− 𝛼Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

]

+ 𝐸𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙 [(1 − 𝛽)Δ(𝑥)
1 − 𝐷∗(𝑥) − 𝜆Δ(𝑥)

− 𝛽Δ(𝑥)
𝐷∗(𝑥) + 𝜆Δ(𝑥)

]∣
𝜆=0

= 0

⇒ − ∫
𝑥

[(1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝐷∗(𝑥)

− (1 − 𝛽)𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) + 𝛼𝑝𝑑𝑎𝑡𝑎(𝑥)
1 − 𝐷∗(𝑥)

] Δ(𝑥)𝑑𝑥 = 0

⇒𝐷∗(𝑥) = (1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 40 / 123

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

It is important not to smooth the negative labels though, i.e., say

cross_entropy(1 − 𝛼,discriminator(data))
+cross_entropy(𝛽, discriminator(samples))

with 𝛽 > 0
Just follow the same derivation as before, we can get the optimum
𝐷(𝑥) as

𝐷∗(𝑥) = (1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

𝛽 > 0 tends to give undesirable bias of the discriminator to data
generated by the model

S. Cheng (OU-Tulsa) Generative Models Feb 2017 41 / 123

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

It is important not to smooth the negative labels though, i.e., say

cross_entropy(1 − 𝛼,discriminator(data))
+cross_entropy(𝛽, discriminator(samples))

with 𝛽 > 0
Just follow the same derivation as before, we can get the optimum
𝐷(𝑥) as

𝐷∗(𝑥) = (1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

𝛽 > 0 tends to give undesirable bias of the discriminator to data
generated by the model

S. Cheng (OU-Tulsa) Generative Models Feb 2017 41 / 123

GANs Design tricks

One-sided label smoothing
Salimans et al. 2016

It is important not to smooth the negative labels though, i.e., say

cross_entropy(1 − 𝛼,discriminator(data))
+cross_entropy(𝛽, discriminator(samples))

with 𝛽 > 0
Just follow the same derivation as before, we can get the optimum
𝐷(𝑥) as

𝐷∗(𝑥) = (1 − 𝛼)𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)

𝛽 > 0 tends to give undesirable bias of the discriminator to data
generated by the model

S. Cheng (OU-Tulsa) Generative Models Feb 2017 41 / 123

GANs Design tricks

Issue on batch normalization
Goodfellow 2016

Batch normalization is preferred and highly recommended. But it can
cause strong intra-batch correlation

S. Cheng (OU-Tulsa) Generative Models Feb 2017 42 / 123

GANs Design tricks

Fixing batch norm

Reference batch norm: one possible approach is keep one reference
batch and always normalized based on that batch. That is, always
subtract mean from that of the reference batch and adjust variance
to that of the reference batch

Can easily overfit to the particular reference batch
Virtual batch norm: combining reference batch norm and
conventional batch norm. Normalize to the net mean and variance of
the reference batch plus the current batch

S. Cheng (OU-Tulsa) Generative Models Feb 2017 43 / 123

GANs Design tricks

Fixing batch norm

Reference batch norm: one possible approach is keep one reference
batch and always normalized based on that batch. That is, always
subtract mean from that of the reference batch and adjust variance
to that of the reference batch

Can easily overfit to the particular reference batch
Virtual batch norm: combining reference batch norm and
conventional batch norm. Normalize to the net mean and variance of
the reference batch plus the current batch

S. Cheng (OU-Tulsa) Generative Models Feb 2017 43 / 123

GANs Design tricks

Balancing G and D

Usually it is more preferable to have a bigger and deeper 𝐷
Some researchers also run more 𝐷 steps than 𝐺 steps. The results
are mixed though
Do not try to limit 𝐷 from being “too smart”

The original theoretical justification is that 𝐷 is supposed to be
perfect

min𝐷 max𝐺 𝐽 (𝐷)(𝐺, 𝐷) ≠ max𝐺 min𝐷 𝐽 (𝐷)(𝐺, 𝐷).
Consider the simple example with 𝐽 (𝐷)(𝐺, 𝐷) as shown below

𝐺

𝐷 1 4
3 2

If 𝐷 is in the “inner loop”, the result is 2
If 𝐺 is in the “inner loop”, the result is 3

S. Cheng (OU-Tulsa) Generative Models Feb 2017 44 / 123

GANs Design tricks

Balancing G and D

Usually it is more preferable to have a bigger and deeper 𝐷
Some researchers also run more 𝐷 steps than 𝐺 steps. The results
are mixed though
Do not try to limit 𝐷 from being “too smart”

The original theoretical justification is that 𝐷 is supposed to be
perfect

min𝐷 max𝐺 𝐽 (𝐷)(𝐺, 𝐷) ≠ max𝐺 min𝐷 𝐽 (𝐷)(𝐺, 𝐷).
Consider the simple example with 𝐽 (𝐷)(𝐺, 𝐷) as shown below

𝐺

𝐷 1 4
3 2

If 𝐷 is in the “inner loop”, the result is 2
If 𝐺 is in the “inner loop”, the result is 3

S. Cheng (OU-Tulsa) Generative Models Feb 2017 44 / 123

GANs Design tricks

Balancing G and D

Usually it is more preferable to have a bigger and deeper 𝐷
Some researchers also run more 𝐷 steps than 𝐺 steps. The results
are mixed though
Do not try to limit 𝐷 from being “too smart”

The original theoretical justification is that 𝐷 is supposed to be
perfect

min𝐷 max𝐺 𝐽 (𝐷)(𝐺, 𝐷) ≠ max𝐺 min𝐷 𝐽 (𝐷)(𝐺, 𝐷).
Consider the simple example with 𝐽 (𝐷)(𝐺, 𝐷) as shown below

𝐺

𝐷 1 4
3 2

If 𝐷 is in the “inner loop”, the result is 2
If 𝐺 is in the “inner loop”, the result is 3

S. Cheng (OU-Tulsa) Generative Models Feb 2017 44 / 123

GANs Design tricks

Mode collapse
Metz et al. 2016

Below demonstrates why 𝐷 should be smart.
Basically the minmax and the minmax problem is not the same and
can lead to drastically different solutions

min
𝐷

max
𝐺

𝐽 (𝐷)(𝐺, 𝐷) ≠ max
𝐺

min
𝐷

𝐽 (𝐷)(𝐺, 𝐷)

𝐷 in the inner loop: converge to the correct distribution
𝐺 in the inner loop: place all mass on most likely point

S. Cheng (OU-Tulsa) Generative Models Feb 2017 45 / 123

GANs Design tricks

Mode collapse
Metz et al. 2016

Below demonstrates why 𝐷 should be smart.
Basically the minmax and the minmax problem is not the same and
can lead to drastically different solutions

min
𝐷

max
𝐺

𝐽 (𝐷)(𝐺, 𝐷) ≠ max
𝐺

min
𝐷

𝐽 (𝐷)(𝐺, 𝐷)

𝐷 in the inner loop: converge to the correct distribution
𝐺 in the inner loop: place all mass on most likely point

S. Cheng (OU-Tulsa) Generative Models Feb 2017 45 / 123

GANs Design tricks

Minibatch features
Salimans et al. 2016

Mode collapse can lead to low diversity of generated data
One attempt to mitigate this problem is to introduce the so-called
minibatch features

Basically classify each example by comparing the features to other
members in the minibatch
Reject a sample if the feature to close to existing ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 46 / 123

GANs Design tricks

Minibatch features
Salimans et al. 2016

Mode collapse can lead to low diversity of generated data
One attempt to mitigate this problem is to introduce the so-called
minibatch features

Basically classify each example by comparing the features to other
members in the minibatch
Reject a sample if the feature to close to existing ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 46 / 123

GANs Design tricks

Unrolled Gans
Metz et al. 2016

A more direct approach was proposed by Google brain
Trying to ensure that the generated sample is a solution of the
minmax rather than the maxmin problem
Have the generator to “unroll” 𝑘 future steps and predict what
discriminator will “think” of the current sample

Since generator is the one who unrolls, generator is in the outer loop
and discriminator is in the inner loop
We ensure that we have solution approximating a minmax rather than
maxmin problem

S. Cheng (OU-Tulsa) Generative Models Feb 2017 47 / 123

GANs Design tricks

Unrolled Gans
Metz et al. 2016

A more direct approach was proposed by Google brain
Trying to ensure that the generated sample is a solution of the
minmax rather than the maxmin problem
Have the generator to “unroll” 𝑘 future steps and predict what
discriminator will “think” of the current sample

Since generator is the one who unrolls, generator is in the outer loop
and discriminator is in the inner loop
We ensure that we have solution approximating a minmax rather than
maxmin problem

S. Cheng (OU-Tulsa) Generative Models Feb 2017 47 / 123

GANs Design tricks

Unrolled Gans
Metz et al. 2016

A more direct approach was proposed by Google brain
Trying to ensure that the generated sample is a solution of the
minmax rather than the maxmin problem
Have the generator to “unroll” 𝑘 future steps and predict what
discriminator will “think” of the current sample

Since generator is the one who unrolls, generator is in the outer loop
and discriminator is in the inner loop
We ensure that we have solution approximating a minmax rather than
maxmin problem

S. Cheng (OU-Tulsa) Generative Models Feb 2017 47 / 123

GANs Design tricks

Least squares GAN

We’ll now look at Least Squares GAN, a newer, more stable alternative to
the original GAN loss function. The losses are modified to

The generator loss:

ℓ𝐺 = 1
2

𝔼𝑧∼𝑝(𝑧) [(𝐷(𝐺(𝑧)) − 1)2]

The discriminator loss:

ℓ𝐷 = 1
2

𝔼𝑥∼𝑝data
[(𝐷(𝑥) − 1)2] + 1

2
𝔼𝑧∼𝑝(𝑧) [(𝐷(𝐺(𝑧)))2]

S. Cheng (OU-Tulsa) Generative Models Feb 2017 48 / 123

https://arxiv.org/abs/1611.04076

GANs DCGAN

Deep convolutional GAN (DCGAN)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

Generative Adversarial Nets: Convolutional Architectures

11
8

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

S. Cheng (OU-Tulsa) Generative Models Feb 2017 49 / 123

GANs DCGAN

Deep convolutional GAN (DCGAN)
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 50 / 123

GANs More applications

Generated bedroom after 5 epochs (LSUN dataset)
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 51 / 123

GANs More applications

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017
12

1

Radford et al,
 ICLR 2016

Interpolating
between
random
points in latent
space

Generative Adversarial Nets: Convolutional Architectures

S. Cheng (OU-Tulsa) Generative Models Feb 2017 52 / 123

GANs More applications

Vector arithmetics
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 53 / 123

GANs More applications

Vector arithmetics
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 53 / 123

GANs More applications

Vector arithmetics
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 53 / 123

GANs More applications

Vector arithmetics
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 54 / 123

GANs More applications

Vector arithmetics
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 54 / 123

GANs More applications

Vector arithmetics
Radford et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 54 / 123

GANs More applications

Some failure cases

S. Cheng (OU-Tulsa) Generative Models Feb 2017 55 / 123

GANs More applications

StackGAN
Zhang et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 56 / 123

https://github.com/hanzhanggit/StackGAN

GANs More applications

StackGAN

S. Cheng (OU-Tulsa) Generative Models Feb 2017 57 / 123

GANs More applications

StackGAN

S. Cheng (OU-Tulsa) Generative Models Feb 2017 58 / 123

GANs More applications

iGAN
Zhu et al. 2016

S. Cheng (OU-Tulsa) Generative Models Feb 2017 59 / 123

GANs More applications

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017
12

7

CycleGAN. Zhu et al. 2017.

2017: Year of the GAN
Better training and generation

LSGAN. Mao et al. 2017.

BEGAN. Bertholet et al. 2017.

Source->Target domain transfer

Many GAN applications

Pix2pix. Isola 2017. Many examples at
https://phillipi.github.io/pix2pix/

Reed et al. 2017.

Text -> Image Synthesis

S. Cheng (OU-Tulsa) Generative Models Feb 2017 60 / 123

GANs More applications

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

“The GAN Zoo”

12
9

https://github.com/hindupuravinash/the-gan-zoo

See also: https://github.com/soumith/ganhacks for tips
and tricks for trainings GANs

S. Cheng (OU-Tulsa) Generative Models Feb 2017 61 / 123

GANs More applications

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

GANs

13
0

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player
game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications

S. Cheng (OU-Tulsa) Generative Models Feb 2017 62 / 123

Boltzmann machines and DBNs

Boltzmann machines

Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985
It is a binary generative model
Probability of a “configuration” is
government by the Boltzmann distribution
exp(−𝐸(x))

𝑍 , where 𝑍 is a normalization
factor and called the partition function (a
name originated from statistical physics)
The energy function 𝐸(x) has a very
simple form 𝐸(x) = −x𝑇𝑊x − c𝑇x
Typically some variables are hidden whereas
others are visible

S. Cheng (OU-Tulsa) Generative Models Feb 2017 63 / 123

Boltzmann machines and DBNs

Boltzmann machines

Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985
It is a binary generative model
Probability of a “configuration” is
government by the Boltzmann distribution
exp(−𝐸(x))

𝑍 , where 𝑍 is a normalization
factor and called the partition function (a
name originated from statistical physics)
The energy function 𝐸(x) has a very
simple form 𝐸(x) = −x𝑇𝑊x − c𝑇x
Typically some variables are hidden whereas
others are visible

S. Cheng (OU-Tulsa) Generative Models Feb 2017 63 / 123

Boltzmann machines and DBNs

Boltzmann machines

Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985
It is a binary generative model
Probability of a “configuration” is
government by the Boltzmann distribution
exp(−𝐸(x))

𝑍 , where 𝑍 is a normalization
factor and called the partition function (a
name originated from statistical physics)
The energy function 𝐸(x) has a very
simple form 𝐸(x) = −x𝑇𝑊x − c𝑇x
Typically some variables are hidden whereas
others are visible

S. Cheng (OU-Tulsa) Generative Models Feb 2017 63 / 123

Boltzmann machines and DBNs

Boltzmann machines

Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985
It is a binary generative model
Probability of a “configuration” is
government by the Boltzmann distribution
exp(−𝐸(x))

𝑍 , where 𝑍 is a normalization
factor and called the partition function (a
name originated from statistical physics)
The energy function 𝐸(x) has a very
simple form 𝐸(x) = −x𝑇𝑊x − c𝑇x
Typically some variables are hidden whereas
others are visible

S. Cheng (OU-Tulsa) Generative Models Feb 2017 63 / 123

Boltzmann machines and DBNs

Boltzmann machines

Boltzmann machines were invented by
Geoffrey Hinton and Terry Sejnowski in
1985
It is a binary generative model
Probability of a “configuration” is
government by the Boltzmann distribution
exp(−𝐸(x))

𝑍 , where 𝑍 is a normalization
factor and called the partition function (a
name originated from statistical physics)
The energy function 𝐸(x) has a very
simple form 𝐸(x) = −x𝑇𝑊x − c𝑇x
Typically some variables are hidden whereas
others are visible

S. Cheng (OU-Tulsa) Generative Models Feb 2017 63 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Restricted Boltzmann machines

Boltzmann machine is a very powerful model. But with
unconstrained connectivity, there are not known efficient methods to
learn data and conduct inference for practical problems
Consequently, restricted Boltzmann machine (RBM) (originally called
Harmonium) was introduced by Paul Smolensky in 1986. It restricted
the hidden units and the visible units from connecting to themselves
The model rose to prominence after fast learning algorithm was
invented by Hinton and his collaborators in mid-2000s

S. Cheng (OU-Tulsa) Generative Models Feb 2017 64 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Restricted Boltzmann machines

Boltzmann machine is a very powerful model. But with
unconstrained connectivity, there are not known efficient methods to
learn data and conduct inference for practical problems
Consequently, restricted Boltzmann machine (RBM) (originally called
Harmonium) was introduced by Paul Smolensky in 1986. It restricted
the hidden units and the visible units from connecting to themselves
The model rose to prominence after fast learning algorithm was
invented by Hinton and his collaborators in mid-2000s

S. Cheng (OU-Tulsa) Generative Models Feb 2017 64 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Restricted Boltzmann machines

Boltzmann machine is a very powerful model. But with
unconstrained connectivity, there are not known efficient methods to
learn data and conduct inference for practical problems
Consequently, restricted Boltzmann machine (RBM) (originally called
Harmonium) was introduced by Paul Smolensky in 1986. It restricted
the hidden units and the visible units from connecting to themselves
The model rose to prominence after fast learning algorithm was
invented by Hinton and his collaborators in mid-2000s

S. Cheng (OU-Tulsa) Generative Models Feb 2017 64 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Restricted Boltzmann machines

Energy function: 𝐸(x, h) = −h𝑇𝑊x − c𝑇x − b𝑇h
Distribution:

𝑝(x, h) = exp(−𝐸(x, h))
𝑍

= exp(h𝑇𝑊x) exp(c𝑇x) exp(b𝑇h)
𝑍

S. Cheng (OU-Tulsa) Generative Models Feb 2017 65 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Conditional probabilities

S. Cheng (OU-Tulsa) Generative Models Feb 2017 66 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

𝑝(h|x) = 𝑝(x, h)
∑h′ 𝑝(x, h′)

= exp(h𝑇𝑊x + c𝑇x + b𝑇h)/𝑍
∑h′∈{0,1}𝑀 exp(h′𝑇𝑊x + c𝑇x + b𝑇h′)/𝑍

=
exp (∑𝑖 ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

∑ℎ′
1∈{0,1} ⋯ ∑ℎ′

𝑀∈{0,1} exp(∑𝑖 ℎ′
𝑖𝑊𝑖x + 𝑏𝑖ℎ′

𝑖)
⎛⎜
⎝

𝑊 = ⎛⎜
⎝

𝑊1
⋯

𝑊𝑀

⎞⎟
⎠

⎞⎟
⎠

=
∏𝑖 exp (ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

∑ℎ′
1∈{0,1} ⋯ ∑ℎ′

𝑀∈{0,1} ∏𝑖 exp(ℎ′
𝑖𝑊𝑖x + 𝑏𝑖ℎ′

𝑖)

=
∏𝑖 exp (ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

(∑ℎ′
1∈{0,1} exp(ℎ′

1𝑊1x + 𝑏1ℎ′
1)) ⋯ (∑ℎ′

𝑀∈{0,1} exp(ℎ′
𝑀𝑊𝑀x + 𝑏𝑀ℎ′

𝑀))

= ∏
𝑖

exp (ℎ𝑖𝑊𝑖x + c𝑇x + 𝑏𝑖ℎ𝑖) /𝑍

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + c𝑇x + 𝑏𝑖ℎ′
𝑖)) /𝑍

= ∏
𝑖

exp (ℎ𝑊𝑖x + 𝑏𝑖ℎ𝑖)

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + 𝑏𝑖ℎ′
𝑖))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝(ℎ𝑖|x)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

𝑝(h|x) = 𝑝(x, h)
∑h′ 𝑝(x, h′)

= exp(h𝑇𝑊x + c𝑇x + b𝑇h)/𝑍
∑h′∈{0,1}𝑀 exp(h′𝑇𝑊x + c𝑇x + b𝑇h′)/𝑍

=
exp (∑𝑖 ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

∑ℎ′
1∈{0,1} ⋯ ∑ℎ′

𝑀∈{0,1} exp(∑𝑖 ℎ′
𝑖𝑊𝑖x + 𝑏𝑖ℎ′

𝑖)
⎛⎜
⎝

𝑊 = ⎛⎜
⎝

𝑊1
⋯

𝑊𝑀

⎞⎟
⎠

⎞⎟
⎠

=
∏𝑖 exp (ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

∑ℎ′
1∈{0,1} ⋯ ∑ℎ′

𝑀∈{0,1} ∏𝑖 exp(ℎ′
𝑖𝑊𝑖x + 𝑏𝑖ℎ′

𝑖)

=
∏𝑖 exp (ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

(∑ℎ′
1∈{0,1} exp(ℎ′

1𝑊1x + 𝑏1ℎ′
1)) ⋯ (∑ℎ′

𝑀∈{0,1} exp(ℎ′
𝑀𝑊𝑀x + 𝑏𝑀ℎ′

𝑀))

= ∏
𝑖

exp (ℎ𝑖𝑊𝑖x + c𝑇x + 𝑏𝑖ℎ𝑖) /𝑍

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + c𝑇x + 𝑏𝑖ℎ′
𝑖)) /𝑍

= ∏
𝑖

exp (ℎ𝑊𝑖x + 𝑏𝑖ℎ𝑖)

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + 𝑏𝑖ℎ′
𝑖))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝(ℎ𝑖|x)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

𝑝(h|x) = 𝑝(x, h)
∑h′ 𝑝(x, h′)

= exp(h𝑇𝑊x + c𝑇x + b𝑇h)/𝑍
∑h′∈{0,1}𝑀 exp(h′𝑇𝑊x + c𝑇x + b𝑇h′)/𝑍

=
exp (∑𝑖 ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

∑ℎ′
1∈{0,1} ⋯ ∑ℎ′

𝑀∈{0,1} exp(∑𝑖 ℎ′
𝑖𝑊𝑖x + 𝑏𝑖ℎ′

𝑖)
⎛⎜
⎝

𝑊 = ⎛⎜
⎝

𝑊1
⋯

𝑊𝑀

⎞⎟
⎠

⎞⎟
⎠

=
∏𝑖 exp (ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

∑ℎ′
1∈{0,1} ⋯ ∑ℎ′

𝑀∈{0,1} ∏𝑖 exp(ℎ′
𝑖𝑊𝑖x + 𝑏𝑖ℎ′

𝑖)

=
∏𝑖 exp (ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

(∑ℎ′
1∈{0,1} exp(ℎ′

1𝑊1x + 𝑏1ℎ′
1)) ⋯ (∑ℎ′

𝑀∈{0,1} exp(ℎ′
𝑀𝑊𝑀x + 𝑏𝑀ℎ′

𝑀))

= ∏
𝑖

exp (ℎ𝑖𝑊𝑖x + c𝑇x + 𝑏𝑖ℎ𝑖) /𝑍

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + c𝑇x + 𝑏𝑖ℎ′
𝑖)) /𝑍

= ∏
𝑖

exp (ℎ𝑊𝑖x + 𝑏𝑖ℎ𝑖)

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + 𝑏𝑖ℎ′
𝑖))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝(ℎ𝑖|x)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

𝑝(h|x) = 𝑝(x, h)
∑h′ 𝑝(x, h′)

= exp(h𝑇𝑊x + c𝑇x + b𝑇h)/𝑍
∑h′∈{0,1}𝑀 exp(h′𝑇𝑊x + c𝑇x + b𝑇h′)/𝑍

=
exp (∑𝑖 ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

∑ℎ′
1∈{0,1} ⋯ ∑ℎ′

𝑀∈{0,1} exp(∑𝑖 ℎ′
𝑖𝑊𝑖x + 𝑏𝑖ℎ′

𝑖)
⎛⎜
⎝

𝑊 = ⎛⎜
⎝

𝑊1
⋯

𝑊𝑀

⎞⎟
⎠

⎞⎟
⎠

=
∏𝑖 exp (ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

∑ℎ′
1∈{0,1} ⋯ ∑ℎ′

𝑀∈{0,1} ∏𝑖 exp(ℎ′
𝑖𝑊𝑖x + 𝑏𝑖ℎ′

𝑖)

=
∏𝑖 exp (ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

(∑ℎ′
1∈{0,1} exp(ℎ′

1𝑊1x + 𝑏1ℎ′
1)) ⋯ (∑ℎ′

𝑀∈{0,1} exp(ℎ′
𝑀𝑊𝑀x + 𝑏𝑀ℎ′

𝑀))

= ∏
𝑖

exp (ℎ𝑖𝑊𝑖x + c𝑇x + 𝑏𝑖ℎ𝑖) /𝑍

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + c𝑇x + 𝑏𝑖ℎ′
𝑖)) /𝑍

= ∏
𝑖

exp (ℎ𝑊𝑖x + 𝑏𝑖ℎ𝑖)

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + 𝑏𝑖ℎ′
𝑖))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝(ℎ𝑖|x)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

𝑝(h|x) = 𝑝(x, h)
∑h′ 𝑝(x, h′)

= exp(h𝑇𝑊x + c𝑇x + b𝑇h)/𝑍
∑h′∈{0,1}𝑀 exp(h′𝑇𝑊x + c𝑇x + b𝑇h′)/𝑍

=
exp (∑𝑖 ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

∑ℎ′
1∈{0,1} ⋯ ∑ℎ′

𝑀∈{0,1} exp(∑𝑖 ℎ′
𝑖𝑊𝑖x + 𝑏𝑖ℎ′

𝑖)
⎛⎜
⎝

𝑊 = ⎛⎜
⎝

𝑊1
⋯

𝑊𝑀

⎞⎟
⎠

⎞⎟
⎠

=
∏𝑖 exp (ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

∑ℎ′
1∈{0,1} ⋯ ∑ℎ′

𝑀∈{0,1} ∏𝑖 exp(ℎ′
𝑖𝑊𝑖x + 𝑏𝑖ℎ′

𝑖)

=
∏𝑖 exp (ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

(∑ℎ′
1∈{0,1} exp(ℎ′

1𝑊1x + 𝑏1ℎ′
1)) ⋯ (∑ℎ′

𝑀∈{0,1} exp(ℎ′
𝑀𝑊𝑀x + 𝑏𝑀ℎ′

𝑀))

= ∏
𝑖

exp (ℎ𝑖𝑊𝑖x + c𝑇x + 𝑏𝑖ℎ𝑖) /𝑍

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + c𝑇x + 𝑏𝑖ℎ′
𝑖)) /𝑍

= ∏
𝑖

exp (ℎ𝑊𝑖x + 𝑏𝑖ℎ𝑖)

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + 𝑏𝑖ℎ′
𝑖))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝(ℎ𝑖|x)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

𝑝(h|x) = 𝑝(x, h)
∑h′ 𝑝(x, h′)

= exp(h𝑇𝑊x + c𝑇x + b𝑇h)/𝑍
∑h′∈{0,1}𝑀 exp(h′𝑇𝑊x + c𝑇x + b𝑇h′)/𝑍

=
exp (∑𝑖 ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

∑ℎ′
1∈{0,1} ⋯ ∑ℎ′

𝑀∈{0,1} exp(∑𝑖 ℎ′
𝑖𝑊𝑖x + 𝑏𝑖ℎ′

𝑖)
⎛⎜
⎝

𝑊 = ⎛⎜
⎝

𝑊1
⋯

𝑊𝑀

⎞⎟
⎠

⎞⎟
⎠

=
∏𝑖 exp (ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

∑ℎ′
1∈{0,1} ⋯ ∑ℎ′

𝑀∈{0,1} ∏𝑖 exp(ℎ′
𝑖𝑊𝑖x + 𝑏𝑖ℎ′

𝑖)

=
∏𝑖 exp (ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

(∑ℎ′
1∈{0,1} exp(ℎ′

1𝑊1x + 𝑏1ℎ′
1)) ⋯ (∑ℎ′

𝑀∈{0,1} exp(ℎ′
𝑀𝑊𝑀x + 𝑏𝑀ℎ′

𝑀))

= ∏
𝑖

exp (ℎ𝑖𝑊𝑖x + c𝑇x + 𝑏𝑖ℎ𝑖) /𝑍

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + c𝑇x + 𝑏𝑖ℎ′
𝑖)) /𝑍

= ∏
𝑖

exp (ℎ𝑊𝑖x + 𝑏𝑖ℎ𝑖)

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + 𝑏𝑖ℎ′
𝑖))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝(ℎ𝑖|x)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 67 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

𝑝(ℎ𝑖 = 1|x) = exp (𝑊𝑖x + 𝑏𝑖)

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + 𝑏𝑖ℎ′
𝑖))

= exp (𝑊𝑖x + 𝑏𝑖)
(1 + exp(𝑊𝑖x + 𝑏𝑖))

= sigm(𝑏𝑖 + 𝑊𝑖x)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 68 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

𝑝(ℎ𝑖 = 1|x) = exp (𝑊𝑖x + 𝑏𝑖)

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + 𝑏𝑖ℎ′
𝑖))

= exp (𝑊𝑖x + 𝑏𝑖)
(1 + exp(𝑊𝑖x + 𝑏𝑖))

= sigm(𝑏𝑖 + 𝑊𝑖x)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 68 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Derivation of conditional probabilities

𝑝(ℎ𝑖 = 1|x) = exp (𝑊𝑖x + 𝑏𝑖)

(∑ℎ′
𝑖∈{0,1} exp(ℎ′

𝑖𝑊𝑖x + 𝑏𝑖ℎ′
𝑖))

= exp (𝑊𝑖x + 𝑏𝑖)
(1 + exp(𝑊𝑖x + 𝑏𝑖))

= sigm(𝑏𝑖 + 𝑊𝑖x)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 68 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Data generation

Equipped with the conditional probabilities 𝑝(x|h) and 𝑝(h|x), we can
generate simulated data given some hidden variables h′ using Gibbs sam-
pling

Sample x′ from 𝑝(x|h′)
Sample h″ from 𝑝(h|x′)
Sample x″ from 𝑝(x|h″)
⋯

S. Cheng (OU-Tulsa) Generative Models Feb 2017 69 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Marginal probability 𝑝(x)

𝑝(x) = ∑
h∈{0,1}𝑀

exp(h𝑇𝑊x + c𝑇x + b𝑇h)/𝑍

= exp(c𝑇x)
𝑍

∑
ℎ1∈{0,1}

⋯ ∑
ℎ𝑀∈{0,1}

exp (∑
𝑖

ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

= exp(c𝑇x)
𝑍

(∑
ℎ1∈{0,1}

𝑒(ℎ1𝑊1x+𝑏1ℎ1)) ⋯ (∑
ℎ𝑀∈{0,1}

𝑒(ℎ𝑀𝑊𝑀x+𝑏𝑀ℎ𝑀))

= exp(c𝑇x)
𝑍

(1 + 𝑒(𝑊1x+𝑏1)) ⋯ (1 + 𝑒(𝑊𝑀x+𝑏𝑀))

= exp(c𝑇x)
𝑍

exp (log(1 + 𝑒(𝑊1x+𝑏1)) + ⋯ + log(1 + 𝑒(𝑊𝑀x+𝑏𝑀)))

= exp (c𝑇x + ∑
𝑖

log(1 + 𝑒(𝑊𝑖x+𝑏𝑖))) /𝑍

S. Cheng (OU-Tulsa) Generative Models Feb 2017 70 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Marginal probability 𝑝(x)

𝑝(x) = ∑
h∈{0,1}𝑀

exp(h𝑇𝑊x + c𝑇x + b𝑇h)/𝑍

= exp(c𝑇x)
𝑍

∑
ℎ1∈{0,1}

⋯ ∑
ℎ𝑀∈{0,1}

exp (∑
𝑖

ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

= exp(c𝑇x)
𝑍

(∑
ℎ1∈{0,1}

𝑒(ℎ1𝑊1x+𝑏1ℎ1)) ⋯ (∑
ℎ𝑀∈{0,1}

𝑒(ℎ𝑀𝑊𝑀x+𝑏𝑀ℎ𝑀))

= exp(c𝑇x)
𝑍

(1 + 𝑒(𝑊1x+𝑏1)) ⋯ (1 + 𝑒(𝑊𝑀x+𝑏𝑀))

= exp(c𝑇x)
𝑍

exp (log(1 + 𝑒(𝑊1x+𝑏1)) + ⋯ + log(1 + 𝑒(𝑊𝑀x+𝑏𝑀)))

= exp (c𝑇x + ∑
𝑖

log(1 + 𝑒(𝑊𝑖x+𝑏𝑖))) /𝑍

S. Cheng (OU-Tulsa) Generative Models Feb 2017 70 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Marginal probability 𝑝(x)

𝑝(x) = ∑
h∈{0,1}𝑀

exp(h𝑇𝑊x + c𝑇x + b𝑇h)/𝑍

= exp(c𝑇x)
𝑍

∑
ℎ1∈{0,1}

⋯ ∑
ℎ𝑀∈{0,1}

exp (∑
𝑖

ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

= exp(c𝑇x)
𝑍

(∑
ℎ1∈{0,1}

𝑒(ℎ1𝑊1x+𝑏1ℎ1)) ⋯ (∑
ℎ𝑀∈{0,1}

𝑒(ℎ𝑀𝑊𝑀x+𝑏𝑀ℎ𝑀))

= exp(c𝑇x)
𝑍

(1 + 𝑒(𝑊1x+𝑏1)) ⋯ (1 + 𝑒(𝑊𝑀x+𝑏𝑀))

= exp(c𝑇x)
𝑍

exp (log(1 + 𝑒(𝑊1x+𝑏1)) + ⋯ + log(1 + 𝑒(𝑊𝑀x+𝑏𝑀)))

= exp (c𝑇x + ∑
𝑖

log(1 + 𝑒(𝑊𝑖x+𝑏𝑖))) /𝑍

S. Cheng (OU-Tulsa) Generative Models Feb 2017 70 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Marginal probability 𝑝(x)

𝑝(x) = ∑
h∈{0,1}𝑀

exp(h𝑇𝑊x + c𝑇x + b𝑇h)/𝑍

= exp(c𝑇x)
𝑍

∑
ℎ1∈{0,1}

⋯ ∑
ℎ𝑀∈{0,1}

exp (∑
𝑖

ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

= exp(c𝑇x)
𝑍

(∑
ℎ1∈{0,1}

𝑒(ℎ1𝑊1x+𝑏1ℎ1)) ⋯ (∑
ℎ𝑀∈{0,1}

𝑒(ℎ𝑀𝑊𝑀x+𝑏𝑀ℎ𝑀))

= exp(c𝑇x)
𝑍

(1 + 𝑒(𝑊1x+𝑏1)) ⋯ (1 + 𝑒(𝑊𝑀x+𝑏𝑀))

= exp(c𝑇x)
𝑍

exp (log(1 + 𝑒(𝑊1x+𝑏1)) + ⋯ + log(1 + 𝑒(𝑊𝑀x+𝑏𝑀)))

= exp (c𝑇x + ∑
𝑖

log(1 + 𝑒(𝑊𝑖x+𝑏𝑖))) /𝑍

S. Cheng (OU-Tulsa) Generative Models Feb 2017 70 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Marginal probability 𝑝(x)

𝑝(x) = ∑
h∈{0,1}𝑀

exp(h𝑇𝑊x + c𝑇x + b𝑇h)/𝑍

= exp(c𝑇x)
𝑍

∑
ℎ1∈{0,1}

⋯ ∑
ℎ𝑀∈{0,1}

exp (∑
𝑖

ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

= exp(c𝑇x)
𝑍

(∑
ℎ1∈{0,1}

𝑒(ℎ1𝑊1x+𝑏1ℎ1)) ⋯ (∑
ℎ𝑀∈{0,1}

𝑒(ℎ𝑀𝑊𝑀x+𝑏𝑀ℎ𝑀))

= exp(c𝑇x)
𝑍

(1 + 𝑒(𝑊1x+𝑏1)) ⋯ (1 + 𝑒(𝑊𝑀x+𝑏𝑀))

= exp(c𝑇x)
𝑍

exp (log(1 + 𝑒(𝑊1x+𝑏1)) + ⋯ + log(1 + 𝑒(𝑊𝑀x+𝑏𝑀)))

= exp (c𝑇x + ∑
𝑖

log(1 + 𝑒(𝑊𝑖x+𝑏𝑖))) /𝑍

S. Cheng (OU-Tulsa) Generative Models Feb 2017 70 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Marginal probability 𝑝(x)

𝑝(x) = ∑
h∈{0,1}𝑀

exp(h𝑇𝑊x + c𝑇x + b𝑇h)/𝑍

= exp(c𝑇x)
𝑍

∑
ℎ1∈{0,1}

⋯ ∑
ℎ𝑀∈{0,1}

exp (∑
𝑖

ℎ𝑖𝑊𝑖x + 𝑏𝑖ℎ𝑖)

= exp(c𝑇x)
𝑍

(∑
ℎ1∈{0,1}

𝑒(ℎ1𝑊1x+𝑏1ℎ1)) ⋯ (∑
ℎ𝑀∈{0,1}

𝑒(ℎ𝑀𝑊𝑀x+𝑏𝑀ℎ𝑀))

= exp(c𝑇x)
𝑍

(1 + 𝑒(𝑊1x+𝑏1)) ⋯ (1 + 𝑒(𝑊𝑀x+𝑏𝑀))

= exp(c𝑇x)
𝑍

exp (log(1 + 𝑒(𝑊1x+𝑏1)) + ⋯ + log(1 + 𝑒(𝑊𝑀x+𝑏𝑀)))

= exp (c𝑇x + ∑
𝑖

log(1 + 𝑒(𝑊𝑖x+𝑏𝑖))) /𝑍

S. Cheng (OU-Tulsa) Generative Models Feb 2017 70 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

𝑝(x) = exp (c𝑇x + ∑
𝑖

log(1 + 𝑒(𝑊𝑖x+𝑏𝑖))) /𝑍

= exp (c𝑇x + ∑
𝑖

softplus(𝑊𝑖x + 𝑏𝑖)) /𝑍 ≜ exp(−𝐹(x))/𝑍,

where 𝐹(x) is known to be free energy, a term borrowed from statistical
physics. Note that 𝜕softplus(t)

𝜕𝑡 = sigmod(𝑡)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 71 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

𝑝(x) = exp (c𝑇x + ∑
𝑖

log(1 + 𝑒(𝑊𝑖x+𝑏𝑖))) /𝑍

= exp (c𝑇x + ∑
𝑖

softplus(𝑊𝑖x + 𝑏𝑖)) /𝑍 ≜ exp(−𝐹(x))/𝑍,

where 𝐹(x) is known to be free energy, a term borrowed from statistical
physics. Note that 𝜕softplus(t)

𝜕𝑡 = sigmod(𝑡)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 71 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Training RBM
Use the cross entropy loss,

𝑙(𝜃) = 1
𝑇

𝑇
∑
𝑡=1

− log 𝑝(x(𝑡)) = 1
𝑇

𝑇
∑
𝑡=1

𝐹(x(𝑡))+ log 𝑍,

where 𝑍 = ∑x exp(−𝐹(x)). And

𝜕 − log 𝑝(x(𝑡))
𝜕𝜃

= 𝜕𝐹(x(𝑡))
𝜕𝜃

− ∑
x

exp(−𝐹(x))
𝑍

𝜕𝐹(x)
𝜕𝜃

= 𝜕𝐹(x(𝑡))
𝜕𝜃⏟

positive phase

− 𝐸 [𝜕𝐹(x)
𝜕𝜃

]
⏟⏟⏟⏟⏟

negative phase

N.B. The naming of the terms is not related to the sign in the equation.
It refers to the fact that adjusting the +ve phase terms to increase the
probability of the training data and the -ve terms to decrease the probabil-
ity of the rest of x

S. Cheng (OU-Tulsa) Generative Models Feb 2017 72 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Training RBM
Use the cross entropy loss,

𝑙(𝜃) = 1
𝑇

𝑇
∑
𝑡=1

− log 𝑝(x(𝑡)) = 1
𝑇

𝑇
∑
𝑡=1

𝐹(x(𝑡))+ log 𝑍,

where 𝑍 = ∑x exp(−𝐹(x)). And

𝜕 − log 𝑝(x(𝑡))
𝜕𝜃

= 𝜕𝐹(x(𝑡))
𝜕𝜃

− ∑
x

exp(−𝐹(x))
𝑍

𝜕𝐹(x)
𝜕𝜃

= 𝜕𝐹(x(𝑡))
𝜕𝜃⏟

positive phase

− 𝐸 [𝜕𝐹(x)
𝜕𝜃

]
⏟⏟⏟⏟⏟

negative phase

N.B. The naming of the terms is not related to the sign in the equation.
It refers to the fact that adjusting the +ve phase terms to increase the
probability of the training data and the -ve terms to decrease the probabil-
ity of the rest of x

S. Cheng (OU-Tulsa) Generative Models Feb 2017 72 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Training RBM
Use the cross entropy loss,

𝑙(𝜃) = 1
𝑇

𝑇
∑
𝑡=1

− log 𝑝(x(𝑡)) = 1
𝑇

𝑇
∑
𝑡=1

𝐹(x(𝑡))+ log 𝑍,

where 𝑍 = ∑x exp(−𝐹(x)). And

𝜕 − log 𝑝(x(𝑡))
𝜕𝜃

= 𝜕𝐹(x(𝑡))
𝜕𝜃

− ∑
x

exp(−𝐹(x))
𝑍

𝜕𝐹(x)
𝜕𝜃

= 𝜕𝐹(x(𝑡))
𝜕𝜃⏟

positive phase

− 𝐸 [𝜕𝐹(x)
𝜕𝜃

]
⏟⏟⏟⏟⏟

negative phase

N.B. The naming of the terms is not related to the sign in the equation.
It refers to the fact that adjusting the +ve phase terms to increase the
probability of the training data and the -ve terms to decrease the probabil-
ity of the rest of x

S. Cheng (OU-Tulsa) Generative Models Feb 2017 72 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Training RBM
Use the cross entropy loss,

𝑙(𝜃) = 1
𝑇

𝑇
∑
𝑡=1

− log 𝑝(x(𝑡)) = 1
𝑇

𝑇
∑
𝑡=1

𝐹(x(𝑡))+ log 𝑍,

where 𝑍 = ∑x exp(−𝐹(x)). And

𝜕 − log 𝑝(x(𝑡))
𝜕𝜃

= 𝜕𝐹(x(𝑡))
𝜕𝜃

− ∑
x

exp(−𝐹(x))
𝑍

𝜕𝐹(x)
𝜕𝜃

= 𝜕𝐹(x(𝑡))
𝜕𝜃⏟

positive phase

− 𝐸 [𝜕𝐹(x)
𝜕𝜃

]
⏟⏟⏟⏟⏟

negative phase

N.B. The naming of the terms is not related to the sign in the equation.
It refers to the fact that adjusting the +ve phase terms to increase the
probability of the training data and the -ve terms to decrease the probabil-
ity of the rest of x

S. Cheng (OU-Tulsa) Generative Models Feb 2017 72 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Contrastive divergence (CD-𝑘)

The negative phase term is very hard to compute exactly as we need to
sum over all x. The natural way out is to approximate using sampling ⇒
contrastive divergence (CD-𝑘) training

Key idea: 1 Start sampling chain at x(𝑡)

2 Obtain the point ̃x with 𝑘 Gibbs sampling steps
3 Replace the expectation by a point estimate at ̃x

N.B. CD-1 works surprisingly well in practice
S. Cheng (OU-Tulsa) Generative Models Feb 2017 73 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Parameters update
So we have 𝜕𝑙(𝜃)

𝜕𝜃 = 𝜕𝐹(x(𝑡))
𝜕𝜃 − 𝜕𝐹(x̃)

𝜕𝜃 . Recall that

𝐹(x) = −c𝑇x − ∑
𝑖

softplus(𝑊𝑖x + 𝑏𝑖)

𝜕𝐹(x)
𝜕𝑐𝑖

= −𝑥𝑖

𝜕𝐹(x)
𝜕𝑏𝑖

= −sigmoid(𝑊𝑖x + 𝑏𝑖)

𝜕𝐹(x)
𝜕𝑊𝑖𝑗

= −sigmoid(𝑊𝑖x + 𝑏𝑖)𝑥𝑗

This gives us

c ⇐ c + 𝛼(x(𝑡) − x̃)
b ⇐ b + 𝛼(sigmoid(𝑊x(𝑡) + b) − sigmoid(𝑊 ̃x + b))

𝑊 ⇐ 𝑊 + 𝛼(sigmoid(𝑊x(𝑡) + b)x(𝑡)𝑇 − sigmoid(𝑊 ̃x + b)x̃𝑇)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 74 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Parameters update
So we have 𝜕𝑙(𝜃)

𝜕𝜃 = 𝜕𝐹(x(𝑡))
𝜕𝜃 − 𝜕𝐹(x̃)

𝜕𝜃 . Recall that

𝐹(x) = −c𝑇x − ∑
𝑖

softplus(𝑊𝑖x + 𝑏𝑖)

𝜕𝐹(x)
𝜕𝑐𝑖

= −𝑥𝑖

𝜕𝐹(x)
𝜕𝑏𝑖

= −sigmoid(𝑊𝑖x + 𝑏𝑖)

𝜕𝐹(x)
𝜕𝑊𝑖𝑗

= −sigmoid(𝑊𝑖x + 𝑏𝑖)𝑥𝑗

This gives us

c ⇐ c + 𝛼(x(𝑡) − x̃)
b ⇐ b + 𝛼(sigmoid(𝑊x(𝑡) + b) − sigmoid(𝑊 ̃x + b))

𝑊 ⇐ 𝑊 + 𝛼(sigmoid(𝑊x(𝑡) + b)x(𝑡)𝑇 − sigmoid(𝑊 ̃x + b)x̃𝑇)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 74 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Persistent CD
Tieleman, ICML 2008

Idea: Instead of initializing the chain to x(𝑡), initialize the chain to
the negative sample of the last iteration
This has a similar effect of CD-𝑘 with a large 𝑘 and yet can have
much lower complexity

S. Cheng (OU-Tulsa) Generative Models Feb 2017 75 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Gaussian-Bernoulli RBM
Extension to continuous variables

RBM is a binary model and thus is not suitable for continuous data
One simple extension to allow the visible variables x to be continuous
while keeping the hidden variables h to be binary
In particular, we can simply add a quadratic term 1

2x𝑇x to the energy
function, i.e.,

𝐸(𝑥, ℎ) = −ℎ𝑇𝑊𝑥 − 𝑐𝑇𝑥 − 𝑏𝑇ℎ + 1
2

𝑥𝑇𝑥

to get Gaussian distributed 𝑝(𝑥|ℎ)
For efficient training, the input data are typically preprocessed with
zero-mean and unit variance
A smaller learning rate is needed compared to a regular RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 76 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Gaussian-Bernoulli RBM
Extension to continuous variables

RBM is a binary model and thus is not suitable for continuous data
One simple extension to allow the visible variables x to be continuous
while keeping the hidden variables h to be binary
In particular, we can simply add a quadratic term 1

2x𝑇x to the energy
function, i.e.,

𝐸(𝑥, ℎ) = −ℎ𝑇𝑊𝑥 − 𝑐𝑇𝑥 − 𝑏𝑇ℎ + 1
2

𝑥𝑇𝑥

to get Gaussian distributed 𝑝(𝑥|ℎ)
For efficient training, the input data are typically preprocessed with
zero-mean and unit variance
A smaller learning rate is needed compared to a regular RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 76 / 123

Boltzmann machines and DBNs Restricted Boltzmann machines

Gaussian-Bernoulli RBM
Extension to continuous variables

RBM is a binary model and thus is not suitable for continuous data
One simple extension to allow the visible variables x to be continuous
while keeping the hidden variables h to be binary
In particular, we can simply add a quadratic term 1

2x𝑇x to the energy
function, i.e.,

𝐸(𝑥, ℎ) = −ℎ𝑇𝑊𝑥 − 𝑐𝑇𝑥 − 𝑏𝑇ℎ + 1
2

𝑥𝑇𝑥

to get Gaussian distributed 𝑝(𝑥|ℎ)
For efficient training, the input data are typically preprocessed with
zero-mean and unit variance
A smaller learning rate is needed compared to a regular RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 76 / 123

Boltzmann machines and DBNs Deep belief networks

Deep belief networks (DBN)

DBN is a generative model that mixes
undirected and directed connections
Top 2 layers’ distribution 𝑝(h(2), h(3)) is an
RBN
Other layers form a Bayesian network:

The conditional distributions of layers
given the one above it are

𝑝(ℎ(1)
𝑖 |h(2)) = sigm(𝑏(1)

𝑖 ℎ(1)
𝑖 + 𝑊 (2)

𝑖h(2))

𝑝(𝑥𝑖|h(1)) = sigm(𝑏(0)
𝑖 𝑥𝑖 + 𝑊 (1)

𝑖h(1))

This is referred to as a sigmoid belief
network (SBN)

Note that DBN is not a feed-forward
network

S. Cheng (OU-Tulsa) Generative Models Feb 2017 77 / 123

Boltzmann machines and DBNs Deep belief networks

Deep belief networks (DBN)

DBN is a generative model that mixes
undirected and directed connections
Top 2 layers’ distribution 𝑝(h(2), h(3)) is an
RBN
Other layers form a Bayesian network:

The conditional distributions of layers
given the one above it are

𝑝(ℎ(1)
𝑖 |h(2)) = sigm(𝑏(1)

𝑖 ℎ(1)
𝑖 + 𝑊 (2)

𝑖h(2))

𝑝(𝑥𝑖|h(1)) = sigm(𝑏(0)
𝑖 𝑥𝑖 + 𝑊 (1)

𝑖h(1))

This is referred to as a sigmoid belief
network (SBN)

Note that DBN is not a feed-forward
network

S. Cheng (OU-Tulsa) Generative Models Feb 2017 77 / 123

Boltzmann machines and DBNs Deep belief networks

Deep belief networks (DBN)

DBN is a generative model that mixes
undirected and directed connections
Top 2 layers’ distribution 𝑝(h(2), h(3)) is an
RBN
Other layers form a Bayesian network:

The conditional distributions of layers
given the one above it are

𝑝(ℎ(1)
𝑖 |h(2)) = sigm(𝑏(1)

𝑖 ℎ(1)
𝑖 + 𝑊 (2)

𝑖h(2))

𝑝(𝑥𝑖|h(1)) = sigm(𝑏(0)
𝑖 𝑥𝑖 + 𝑊 (1)

𝑖h(1))

This is referred to as a sigmoid belief
network (SBN)

Note that DBN is not a feed-forward
network

S. Cheng (OU-Tulsa) Generative Models Feb 2017 77 / 123

Boltzmann machines and DBNs Deep belief networks

History of DBNs
According to HInton’s coursera’s course

Professor Hinton was working on algorithms to train Sigmoid belief
network but gave up after many different ideas
He moved on to work with RBMs and invented the CD-𝑘 algorithm
for training RBMs
Since CD-𝑘 is very effective, it is very tempting to think if one can
train a Sigmoid belief network one layer at a time by treating each
layer as a RBM

The procedure is working great. But it actually trains a different
model, the DBN instead of SBN (with some complicated math
behind), pointed out by Yee-Whye Teh

DBN is actually the first successful deep neural network model and
revived the entire neural network field
Try not to get confused of DBN with deep Boltzmann machines
(DBMs), where each layer is composed of an RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78 / 123

Boltzmann machines and DBNs Deep belief networks

History of DBNs
According to HInton’s coursera’s course

Professor Hinton was working on algorithms to train Sigmoid belief
network but gave up after many different ideas
He moved on to work with RBMs and invented the CD-𝑘 algorithm
for training RBMs
Since CD-𝑘 is very effective, it is very tempting to think if one can
train a Sigmoid belief network one layer at a time by treating each
layer as a RBM

The procedure is working great. But it actually trains a different
model, the DBN instead of SBN (with some complicated math
behind), pointed out by Yee-Whye Teh

DBN is actually the first successful deep neural network model and
revived the entire neural network field
Try not to get confused of DBN with deep Boltzmann machines
(DBMs), where each layer is composed of an RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78 / 123

Boltzmann machines and DBNs Deep belief networks

History of DBNs
According to HInton’s coursera’s course

Professor Hinton was working on algorithms to train Sigmoid belief
network but gave up after many different ideas
He moved on to work with RBMs and invented the CD-𝑘 algorithm
for training RBMs
Since CD-𝑘 is very effective, it is very tempting to think if one can
train a Sigmoid belief network one layer at a time by treating each
layer as a RBM

The procedure is working great. But it actually trains a different
model, the DBN instead of SBN (with some complicated math
behind), pointed out by Yee-Whye Teh

DBN is actually the first successful deep neural network model and
revived the entire neural network field
Try not to get confused of DBN with deep Boltzmann machines
(DBMs), where each layer is composed of an RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78 / 123

Boltzmann machines and DBNs Deep belief networks

History of DBNs
According to HInton’s coursera’s course

Professor Hinton was working on algorithms to train Sigmoid belief
network but gave up after many different ideas
He moved on to work with RBMs and invented the CD-𝑘 algorithm
for training RBMs
Since CD-𝑘 is very effective, it is very tempting to think if one can
train a Sigmoid belief network one layer at a time by treating each
layer as a RBM

The procedure is working great. But it actually trains a different
model, the DBN instead of SBN (with some complicated math
behind), pointed out by Yee-Whye Teh

DBN is actually the first successful deep neural network model and
revived the entire neural network field
Try not to get confused of DBN with deep Boltzmann machines
(DBMs), where each layer is composed of an RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78 / 123

Boltzmann machines and DBNs Deep belief networks

History of DBNs
According to HInton’s coursera’s course

Professor Hinton was working on algorithms to train Sigmoid belief
network but gave up after many different ideas
He moved on to work with RBMs and invented the CD-𝑘 algorithm
for training RBMs
Since CD-𝑘 is very effective, it is very tempting to think if one can
train a Sigmoid belief network one layer at a time by treating each
layer as a RBM

The procedure is working great. But it actually trains a different
model, the DBN instead of SBN (with some complicated math
behind), pointed out by Yee-Whye Teh

DBN is actually the first successful deep neural network model and
revived the entire neural network field
Try not to get confused of DBN with deep Boltzmann machines
(DBMs), where each layer is composed of an RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 78 / 123

Boltzmann machines and DBNs Deep belief networks

Pretraining of DBNs

As mentioned in the previous slide
Treat the bottom two layers as an RBM
and train it with the input data x
Treat the next two layers as an RBM and
train it with the h(1) obtained in the last
step
Keep continuing while keeping the trained
weights

S. Cheng (OU-Tulsa) Generative Models Feb 2017 79 / 123

Boltzmann machines and DBNs Deep belief networks

Pretraining of DBNs

As mentioned in the previous slide
Treat the bottom two layers as an RBM
and train it with the input data x
Treat the next two layers as an RBM and
train it with the h(1) obtained in the last
step
Keep continuing while keeping the trained
weights

S. Cheng (OU-Tulsa) Generative Models Feb 2017 79 / 123

Boltzmann machines and DBNs Deep belief networks

Pretraining of DBNs

As mentioned in the previous slide
Treat the bottom two layers as an RBM
and train it with the input data x
Treat the next two layers as an RBM and
train it with the h(1) obtained in the last
step
Keep continuing while keeping the trained
weights

S. Cheng (OU-Tulsa) Generative Models Feb 2017 79 / 123

Boltzmann machines and DBNs Deep belief networks

Fine-tuning of DBN
Up-down algorithm (aka contrastive wake-sleep algorithm)

After learning many layers of features, we can fine-tune the features to
improve generation

1 Do a stochastic bottom-up pass
Construct hidden variables with reconstruction weight 𝑅 (initialized as
the transpose of 𝑊)
Use the approximated hidden variables to fine tune 𝑊

2 Do a few iterations of sampling in the top level RBM
Adjust top-level RBM weights using CD-𝑘

3 Do a stochastic top-down pass
Generate simulation data and use that to fine-tune the reconstruction
weights 𝑅

S. Cheng (OU-Tulsa) Generative Models Feb 2017 80 / 123

Boltzmann machines and DBNs Deep belief networks

Fine-tuning of DBN
Up-down algorithm (aka contrastive wake-sleep algorithm)

After learning many layers of features, we can fine-tune the features to
improve generation

1 Do a stochastic bottom-up pass
Construct hidden variables with reconstruction weight 𝑅 (initialized as
the transpose of 𝑊)
Use the approximated hidden variables to fine tune 𝑊

2 Do a few iterations of sampling in the top level RBM
Adjust top-level RBM weights using CD-𝑘

3 Do a stochastic top-down pass
Generate simulation data and use that to fine-tune the reconstruction
weights 𝑅

S. Cheng (OU-Tulsa) Generative Models Feb 2017 80 / 123

Boltzmann machines and DBNs Deep belief networks

Fine-tuning of DBN
Up-down algorithm (aka contrastive wake-sleep algorithm)

After learning many layers of features, we can fine-tune the features to
improve generation

1 Do a stochastic bottom-up pass
Construct hidden variables with reconstruction weight 𝑅 (initialized as
the transpose of 𝑊)
Use the approximated hidden variables to fine tune 𝑊

2 Do a few iterations of sampling in the top level RBM
Adjust top-level RBM weights using CD-𝑘

3 Do a stochastic top-down pass
Generate simulation data and use that to fine-tune the reconstruction
weights 𝑅

S. Cheng (OU-Tulsa) Generative Models Feb 2017 80 / 123

Boltzmann machines and DBNs Deep belief networks

MNIST example

28 × 28
pixel
image

500 units

500 units

2000 units

10 labels

Test on MNIST dataset
Train 500 hidden units with the
image block as input
Train another 500 hidden units
with the trained 500 hidden
units as input
Prepare another 2000 hidden
units
Train the 2000 hidden units
with the previously trained 500
hidden units and target labels as
input
Error rate is about 1%

S. Cheng (OU-Tulsa) Generative Models Feb 2017 81 / 123

Boltzmann machines and DBNs Deep belief networks

MNIST example

28 × 28
pixel
image

500 units

500 units

2000 units

10 labels

Test on MNIST dataset
Train 500 hidden units with the
image block as input
Train another 500 hidden units
with the trained 500 hidden
units as input
Prepare another 2000 hidden
units
Train the 2000 hidden units
with the previously trained 500
hidden units and target labels as
input
Error rate is about 1%

S. Cheng (OU-Tulsa) Generative Models Feb 2017 81 / 123

Boltzmann machines and DBNs Deep belief networks

MNIST example

28 × 28
pixel
image

500 units

500 units

2000 units

10 labels

Test on MNIST dataset
Train 500 hidden units with the
image block as input
Train another 500 hidden units
with the trained 500 hidden
units as input
Prepare another 2000 hidden
units
Train the 2000 hidden units
with the previously trained 500
hidden units and target labels as
input
Error rate is about 1%

S. Cheng (OU-Tulsa) Generative Models Feb 2017 81 / 123

Boltzmann machines and DBNs Deep belief networks

MNIST example

28 × 28
pixel
image

500 units

500 units

2000 units

10 labels

Test on MNIST dataset
Train 500 hidden units with the
image block as input
Train another 500 hidden units
with the trained 500 hidden
units as input
Prepare another 2000 hidden
units
Train the 2000 hidden units
with the previously trained 500
hidden units and target labels as
input
Error rate is about 1%

S. Cheng (OU-Tulsa) Generative Models Feb 2017 81 / 123

Boltzmann machines and DBNs Deep belief networks

MNIST example

28 × 28
pixel
image

500 units

500 units

2000 units

10 labels

Test on MNIST dataset
Train 500 hidden units with the
image block as input
Train another 500 hidden units
with the trained 500 hidden
units as input
Prepare another 2000 hidden
units
Train the 2000 hidden units
with the previously trained 500
hidden units and target labels as
input
Error rate is about 1%

S. Cheng (OU-Tulsa) Generative Models Feb 2017 81 / 123

Boltzmann machines and DBNs Deep belief networks

MNIST example

28 × 28
pixel
image

500 units

500 units

2000 units

10 labels

Test on MNIST dataset
Train 500 hidden units with the
image block as input
Train another 500 hidden units
with the trained 500 hidden
units as input
Prepare another 2000 hidden
units
Train the 2000 hidden units
with the previously trained 500
hidden units and target labels as
input
Error rate is about 1%

S. Cheng (OU-Tulsa) Generative Models Feb 2017 81 / 123

Boltzmann machines and DBNs Deep belief networks

MNIST example

28 × 28
pixel
image

500 units

500 units

2000 units

10 labels

Test on MNIST dataset
Train 500 hidden units with the
image block as input
Train another 500 hidden units
with the trained 500 hidden
units as input
Prepare another 2000 hidden
units
Train the 2000 hidden units
with the previously trained 500
hidden units and target labels as
input
Error rate is about 1%

S. Cheng (OU-Tulsa) Generative Models Feb 2017 81 / 123

Boltzmann machines and DBNs Deep belief networks

MNIST example

28 × 28
pixel
image

500 units

500 units

2000 units

10 labels

Test on MNIST dataset
Train 500 hidden units with the
image block as input
Train another 500 hidden units
with the trained 500 hidden
units as input
Prepare another 2000 hidden
units
Train the 2000 hidden units
with the previously trained 500
hidden units and target labels as
input
Error rate is about 1%

S. Cheng (OU-Tulsa) Generative Models Feb 2017 81 / 123

Boltzmann machines and DBNs Deep belief networks

Demo

http://www.cs.toronto.edu/~hinton/adi/index.htm

S. Cheng (OU-Tulsa) Generative Models Feb 2017 82 / 123

http://www.cs.toronto.edu/~hinton/adi/index.htm

Boltzmann machines and DBNs Deep belief networks

Summary of Boltzmann machines and DBN

Restricted Boltzmann machines (RBMs) and deep belief networks
(DBNs) are both generative models
RBMs can be trained efficiently with contrastive divergence (CD-𝑘)
algorithm
DBNs can be trained by first pre-trained each pair of layers as an
RBM and then fine-tune with up-down algorithm
DBNs are the earliest deep neural network model and essential the
starting point of “deep learning” research

S. Cheng (OU-Tulsa) Generative Models Feb 2017 83 / 123

Autoencoders

Why autoencoders? Dimension reduction

As name suggests, the objective of dimension of reduction is to
decrease the dimension of input signals to ease later processing

It is often a preprocessing step
Was commonly used to compress features

It is a very old problem. The most representative algorithm is the
principal component analysis (PCA)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 84 / 123

Autoencoders

Why autoencoders? Dimension reduction

As name suggests, the objective of dimension of reduction is to
decrease the dimension of input signals to ease later processing

It is often a preprocessing step
Was commonly used to compress features

It is a very old problem. The most representative algorithm is the
principal component analysis (PCA)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 84 / 123

Autoencoders

Why autoencoders? Dimension reduction

As name suggests, the objective of dimension of reduction is to
decrease the dimension of input signals to ease later processing

It is often a preprocessing step
Was commonly used to compress features

It is a very old problem. The most representative algorithm is the
principal component analysis (PCA)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 84 / 123

Autoencoders PCA

Principal component analysis (PCA)

Take 𝑁-dimensional data and find the 𝑀
orthogonal directions in which the data
have the most variance

We can represent an 𝑁-dimensional
datapoint by its projections onto the 𝑀
principal directions (i.e., with highest
variances)
This loses all information about where the
datapoint is located in the remaining
orthogonal directions

S. Cheng (OU-Tulsa) Generative Models Feb 2017 85 / 123

Autoencoders PCA

Principal component analysis (PCA)

Take 𝑁-dimensional data and find the 𝑀
orthogonal directions in which the data
have the most variance

We can represent an 𝑁-dimensional
datapoint by its projections onto the 𝑀
principal directions (i.e., with highest
variances)
This loses all information about where the
datapoint is located in the remaining
orthogonal directions

S. Cheng (OU-Tulsa) Generative Models Feb 2017 85 / 123

Autoencoders PCA

Principal component analysis (PCA)

Take 𝑁-dimensional data and find the 𝑀
orthogonal directions in which the data
have the most variance

We can represent an 𝑁-dimensional
datapoint by its projections onto the 𝑀
principal directions (i.e., with highest
variances)
This loses all information about where the
datapoint is located in the remaining
orthogonal directions

S. Cheng (OU-Tulsa) Generative Models Feb 2017 85 / 123

Autoencoders PCA

PCA reconstruction

We reconstruct by using the mean value
(over all the data) on the 𝑁 − 𝑀
directions that are not represented.

The reconstruction error is the sum over
the variances over all these unrepresented
directions

The variances are just eigenvalues of
covariance matrix of the data

PCA is “optimum”
Since we keep the largest variance
components, on average the distortion is
minimum among all linear dimension
reduction methods

S. Cheng (OU-Tulsa) Generative Models Feb 2017 86 / 123

Autoencoders PCA

PCA reconstruction

We reconstruct by using the mean value
(over all the data) on the 𝑁 − 𝑀
directions that are not represented.

The reconstruction error is the sum over
the variances over all these unrepresented
directions

The variances are just eigenvalues of
covariance matrix of the data

PCA is “optimum”
Since we keep the largest variance
components, on average the distortion is
minimum among all linear dimension
reduction methods

S. Cheng (OU-Tulsa) Generative Models Feb 2017 86 / 123

Autoencoders PCA

PCA reconstruction

We reconstruct by using the mean value
(over all the data) on the 𝑁 − 𝑀
directions that are not represented.

The reconstruction error is the sum over
the variances over all these unrepresented
directions

The variances are just eigenvalues of
covariance matrix of the data

PCA is “optimum”
Since we keep the largest variance
components, on average the distortion is
minimum among all linear dimension
reduction methods

S. Cheng (OU-Tulsa) Generative Models Feb 2017 86 / 123

Autoencoders PCA

PCA reconstruction

We reconstruct by using the mean value
(over all the data) on the 𝑁 − 𝑀
directions that are not represented.

The reconstruction error is the sum over
the variances over all these unrepresented
directions

The variances are just eigenvalues of
covariance matrix of the data

PCA is “optimum”
Since we keep the largest variance
components, on average the distortion is
minimum among all linear dimension
reduction methods

S. Cheng (OU-Tulsa) Generative Models Feb 2017 86 / 123

Autoencoders PCA

Math review: Singular value decomposition (SVD)

For any 𝑁 × 𝐾 matrix 𝐴 (assume 𝐾 ≤ 𝑁), we can decompose it into
product of three matrices

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐴
⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑈
⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐷
⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜
⎝

𝑉 ⎞⎟
⎠

𝑇

,

where 𝑈 is 𝑁 × 𝑁, 𝐷 is 𝑁 × 𝐾, and 𝑉 is 𝐾 × 𝐾. Moreover,
𝑈 is orthonormal, i.e., 𝑈𝑇𝑈 = 𝐼
D is rectangular diagonal
𝑉 is orthonormal, i.e., 𝑉 𝑇𝑉 = 𝐼

Has nice geometric interpretation. Roughly speaking, any linear transform
can be decompose into rotation, scaling, and rotation again

S. Cheng (OU-Tulsa) Generative Models Feb 2017 87 / 123

Autoencoders PCA

Math review: Singular value decomposition (SVD)

For any 𝑁 × 𝐾 matrix 𝐴 (assume 𝐾 ≤ 𝑁), we can decompose it into
product of three matrices

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐴
⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑈
⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐷
⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜
⎝

𝑉 ⎞⎟
⎠

𝑇

,

where 𝑈 is 𝑁 × 𝑁, 𝐷 is 𝑁 × 𝐾, and 𝑉 is 𝐾 × 𝐾. Moreover,
𝑈 is orthonormal, i.e., 𝑈𝑇𝑈 = 𝐼
D is rectangular diagonal
𝑉 is orthonormal, i.e., 𝑉 𝑇𝑉 = 𝐼

Has nice geometric interpretation. Roughly speaking, any linear transform
can be decompose into rotation, scaling, and rotation again

S. Cheng (OU-Tulsa) Generative Models Feb 2017 87 / 123

Autoencoders PCA

Math review: Singular value decomposition (SVD)

For any 𝑁 × 𝐾 matrix 𝐴 (assume 𝐾 ≤ 𝑁), we can decompose it into
product of three matrices

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐴
⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑈
⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐷
⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜
⎝

𝑉 ⎞⎟
⎠

𝑇

,

where 𝑈 is 𝑁 × 𝑁, 𝐷 is 𝑁 × 𝐾, and 𝑉 is 𝐾 × 𝐾. Moreover,
𝑈 is orthonormal, i.e., 𝑈𝑇𝑈 = 𝐼
D is rectangular diagonal
𝑉 is orthonormal, i.e., 𝑉 𝑇𝑉 = 𝐼

Has nice geometric interpretation. Roughly speaking, any linear transform
can be decompose into rotation, scaling, and rotation again

S. Cheng (OU-Tulsa) Generative Models Feb 2017 87 / 123

Autoencoders PCA

SVD and PCA

Let X = [x1, x2, ⋯ , x𝐾] be the matrix with columns as data vectors.
We can decompose X = UΣV𝑇 using SVD
Assume X is zero-mean, the covariance matrix C is just 𝐶 ≈ XX𝑇

𝑘
Note that 𝐶 ∼ UΣV𝑇(UΣV𝑇)𝑇 = UΣ2U𝑇, thus singular values are
just square root of eigenvalues

Since PCA is in effect keeping the 𝑀 largest eigenvalues of the
covariance matrix, it is the same as keeping the 𝑀 largest singular
values of X

One can easily verify that. Let ̂X = UΣ̂V𝑇, where Σ̂ only keeps the
𝑀 largest singular values, then

𝐸𝑟𝑟𝑜𝑟 = ∑
𝑖

(x𝑖 − x̂𝑖)𝑇(x𝑖 − x̂𝑖) = 𝑡𝑟((X − X̂)𝑇(X − ̂X))

=𝑡𝑟(V(Σ − Σ̂)U𝑇U(Σ − Σ̂)V𝑇) = 𝑡𝑟(V(Σ − Σ̂)(Σ − Σ̂)V𝑇)

=𝑡𝑟(((Σ − Σ̂)V𝑇)V(Σ − Σ̂)) = 𝑡𝑟((Σ − Σ̂)2)
=Sum of eigenvalues excluding the 𝑀 largest ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88 / 123

Autoencoders PCA

SVD and PCA

Let X = [x1, x2, ⋯ , x𝐾] be the matrix with columns as data vectors.
We can decompose X = UΣV𝑇 using SVD
Assume X is zero-mean, the covariance matrix C is just 𝐶 ≈ XX𝑇

𝑘
Note that 𝐶 ∼ UΣV𝑇(UΣV𝑇)𝑇 = UΣ2U𝑇, thus singular values are
just square root of eigenvalues

Since PCA is in effect keeping the 𝑀 largest eigenvalues of the
covariance matrix, it is the same as keeping the 𝑀 largest singular
values of X

One can easily verify that. Let ̂X = UΣ̂V𝑇, where Σ̂ only keeps the
𝑀 largest singular values, then

𝐸𝑟𝑟𝑜𝑟 = ∑
𝑖

(x𝑖 − x̂𝑖)𝑇(x𝑖 − x̂𝑖) = 𝑡𝑟((X − X̂)𝑇(X − ̂X))

=𝑡𝑟(V(Σ − Σ̂)U𝑇U(Σ − Σ̂)V𝑇) = 𝑡𝑟(V(Σ − Σ̂)(Σ − Σ̂)V𝑇)

=𝑡𝑟(((Σ − Σ̂)V𝑇)V(Σ − Σ̂)) = 𝑡𝑟((Σ − Σ̂)2)
=Sum of eigenvalues excluding the 𝑀 largest ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88 / 123

Autoencoders PCA

SVD and PCA

Let X = [x1, x2, ⋯ , x𝐾] be the matrix with columns as data vectors.
We can decompose X = UΣV𝑇 using SVD
Assume X is zero-mean, the covariance matrix C is just 𝐶 ≈ XX𝑇

𝑘
Note that 𝐶 ∼ UΣV𝑇(UΣV𝑇)𝑇 = UΣ2U𝑇, thus singular values are
just square root of eigenvalues

Since PCA is in effect keeping the 𝑀 largest eigenvalues of the
covariance matrix, it is the same as keeping the 𝑀 largest singular
values of X

One can easily verify that. Let ̂X = UΣ̂V𝑇, where Σ̂ only keeps the
𝑀 largest singular values, then

𝐸𝑟𝑟𝑜𝑟 = ∑
𝑖

(x𝑖 − x̂𝑖)𝑇(x𝑖 − x̂𝑖) = 𝑡𝑟((X − X̂)𝑇(X − ̂X))

=𝑡𝑟(V(Σ − Σ̂)U𝑇U(Σ − Σ̂)V𝑇) = 𝑡𝑟(V(Σ − Σ̂)(Σ − Σ̂)V𝑇)

=𝑡𝑟(((Σ − Σ̂)V𝑇)V(Σ − Σ̂)) = 𝑡𝑟((Σ − Σ̂)2)
=Sum of eigenvalues excluding the 𝑀 largest ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88 / 123

Autoencoders PCA

SVD and PCA

Let X = [x1, x2, ⋯ , x𝐾] be the matrix with columns as data vectors.
We can decompose X = UΣV𝑇 using SVD
Assume X is zero-mean, the covariance matrix C is just 𝐶 ≈ XX𝑇

𝑘
Note that 𝐶 ∼ UΣV𝑇(UΣV𝑇)𝑇 = UΣ2U𝑇, thus singular values are
just square root of eigenvalues

Since PCA is in effect keeping the 𝑀 largest eigenvalues of the
covariance matrix, it is the same as keeping the 𝑀 largest singular
values of X

One can easily verify that. Let ̂X = UΣ̂V𝑇, where Σ̂ only keeps the
𝑀 largest singular values, then

𝐸𝑟𝑟𝑜𝑟 = ∑
𝑖

(x𝑖 − x̂𝑖)𝑇(x𝑖 − x̂𝑖) = 𝑡𝑟((X − X̂)𝑇(X − ̂X))

=𝑡𝑟(V(Σ − Σ̂)U𝑇U(Σ − Σ̂)V𝑇) = 𝑡𝑟(V(Σ − Σ̂)(Σ − Σ̂)V𝑇)

=𝑡𝑟(((Σ − Σ̂)V𝑇)V(Σ − Σ̂)) = 𝑡𝑟((Σ − Σ̂)2)
=Sum of eigenvalues excluding the 𝑀 largest ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88 / 123

Autoencoders PCA

SVD and PCA

Let X = [x1, x2, ⋯ , x𝐾] be the matrix with columns as data vectors.
We can decompose X = UΣV𝑇 using SVD
Assume X is zero-mean, the covariance matrix C is just 𝐶 ≈ XX𝑇

𝑘
Note that 𝐶 ∼ UΣV𝑇(UΣV𝑇)𝑇 = UΣ2U𝑇, thus singular values are
just square root of eigenvalues

Since PCA is in effect keeping the 𝑀 largest eigenvalues of the
covariance matrix, it is the same as keeping the 𝑀 largest singular
values of X

One can easily verify that. Let ̂X = UΣ̂V𝑇, where Σ̂ only keeps the
𝑀 largest singular values, then

𝐸𝑟𝑟𝑜𝑟 = ∑
𝑖

(x𝑖 − x̂𝑖)𝑇(x𝑖 − x̂𝑖) = 𝑡𝑟((X − X̂)𝑇(X − ̂X))

=𝑡𝑟(V(Σ − Σ̂)U𝑇U(Σ − Σ̂)V𝑇) = 𝑡𝑟(V(Σ − Σ̂)(Σ − Σ̂)V𝑇)

=𝑡𝑟(((Σ − Σ̂)V𝑇)V(Σ − Σ̂)) = 𝑡𝑟((Σ − Σ̂)2)
=Sum of eigenvalues excluding the 𝑀 largest ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88 / 123

Autoencoders PCA

SVD and PCA

Let X = [x1, x2, ⋯ , x𝐾] be the matrix with columns as data vectors.
We can decompose X = UΣV𝑇 using SVD
Assume X is zero-mean, the covariance matrix C is just 𝐶 ≈ XX𝑇

𝑘
Note that 𝐶 ∼ UΣV𝑇(UΣV𝑇)𝑇 = UΣ2U𝑇, thus singular values are
just square root of eigenvalues

Since PCA is in effect keeping the 𝑀 largest eigenvalues of the
covariance matrix, it is the same as keeping the 𝑀 largest singular
values of X

One can easily verify that. Let ̂X = UΣ̂V𝑇, where Σ̂ only keeps the
𝑀 largest singular values, then

𝐸𝑟𝑟𝑜𝑟 = ∑
𝑖

(x𝑖 − x̂𝑖)𝑇(x𝑖 − x̂𝑖) = 𝑡𝑟((X − X̂)𝑇(X − ̂X))

=𝑡𝑟(V(Σ − Σ̂)U𝑇U(Σ − Σ̂)V𝑇) = 𝑡𝑟(V(Σ − Σ̂)(Σ − Σ̂)V𝑇)

=𝑡𝑟(((Σ − Σ̂)V𝑇)V(Σ − Σ̂)) = 𝑡𝑟((Σ − Σ̂)2)
=Sum of eigenvalues excluding the 𝑀 largest ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88 / 123

Autoencoders PCA

SVD and PCA

Let X = [x1, x2, ⋯ , x𝐾] be the matrix with columns as data vectors.
We can decompose X = UΣV𝑇 using SVD
Assume X is zero-mean, the covariance matrix C is just 𝐶 ≈ XX𝑇

𝑘
Note that 𝐶 ∼ UΣV𝑇(UΣV𝑇)𝑇 = UΣ2U𝑇, thus singular values are
just square root of eigenvalues

Since PCA is in effect keeping the 𝑀 largest eigenvalues of the
covariance matrix, it is the same as keeping the 𝑀 largest singular
values of X

One can easily verify that. Let ̂X = UΣ̂V𝑇, where Σ̂ only keeps the
𝑀 largest singular values, then

𝐸𝑟𝑟𝑜𝑟 = ∑
𝑖

(x𝑖 − x̂𝑖)𝑇(x𝑖 − x̂𝑖) = 𝑡𝑟((X − X̂)𝑇(X − ̂X))

=𝑡𝑟(V(Σ − Σ̂)U𝑇U(Σ − Σ̂)V𝑇) = 𝑡𝑟(V(Σ − Σ̂)(Σ − Σ̂)V𝑇)

=𝑡𝑟(((Σ − Σ̂)V𝑇)V(Σ − Σ̂)) = 𝑡𝑟((Σ − Σ̂)2)
=Sum of eigenvalues excluding the 𝑀 largest ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88 / 123

Autoencoders PCA

SVD and PCA

Let X = [x1, x2, ⋯ , x𝐾] be the matrix with columns as data vectors.
We can decompose X = UΣV𝑇 using SVD
Assume X is zero-mean, the covariance matrix C is just 𝐶 ≈ XX𝑇

𝑘
Note that 𝐶 ∼ UΣV𝑇(UΣV𝑇)𝑇 = UΣ2U𝑇, thus singular values are
just square root of eigenvalues

Since PCA is in effect keeping the 𝑀 largest eigenvalues of the
covariance matrix, it is the same as keeping the 𝑀 largest singular
values of X

One can easily verify that. Let ̂X = UΣ̂V𝑇, where Σ̂ only keeps the
𝑀 largest singular values, then

𝐸𝑟𝑟𝑜𝑟 = ∑
𝑖

(x𝑖 − x̂𝑖)𝑇(x𝑖 − x̂𝑖) = 𝑡𝑟((X − X̂)𝑇(X − ̂X))

=𝑡𝑟(V(Σ − Σ̂)U𝑇U(Σ − Σ̂)V𝑇) = 𝑡𝑟(V(Σ − Σ̂)(Σ − Σ̂)V𝑇)

=𝑡𝑟(((Σ − Σ̂)V𝑇)V(Σ − Σ̂)) = 𝑡𝑟((Σ − Σ̂)2)
=Sum of eigenvalues excluding the 𝑀 largest ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88 / 123

Autoencoders PCA

SVD and PCA

Let X = [x1, x2, ⋯ , x𝐾] be the matrix with columns as data vectors.
We can decompose X = UΣV𝑇 using SVD
Assume X is zero-mean, the covariance matrix C is just 𝐶 ≈ XX𝑇

𝑘
Note that 𝐶 ∼ UΣV𝑇(UΣV𝑇)𝑇 = UΣ2U𝑇, thus singular values are
just square root of eigenvalues

Since PCA is in effect keeping the 𝑀 largest eigenvalues of the
covariance matrix, it is the same as keeping the 𝑀 largest singular
values of X

One can easily verify that. Let ̂X = UΣ̂V𝑇, where Σ̂ only keeps the
𝑀 largest singular values, then

𝐸𝑟𝑟𝑜𝑟 = ∑
𝑖

(x𝑖 − x̂𝑖)𝑇(x𝑖 − x̂𝑖) = 𝑡𝑟((X − X̂)𝑇(X − ̂X))

=𝑡𝑟(V(Σ − Σ̂)U𝑇U(Σ − Σ̂)V𝑇) = 𝑡𝑟(V(Σ − Σ̂)(Σ − Σ̂)V𝑇)

=𝑡𝑟(((Σ − Σ̂)V𝑇)V(Σ − Σ̂)) = 𝑡𝑟((Σ − Σ̂)2)
=Sum of eigenvalues excluding the 𝑀 largest ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88 / 123

Autoencoders PCA

SVD and PCA

Let X = [x1, x2, ⋯ , x𝐾] be the matrix with columns as data vectors.
We can decompose X = UΣV𝑇 using SVD
Assume X is zero-mean, the covariance matrix C is just 𝐶 ≈ XX𝑇

𝑘
Note that 𝐶 ∼ UΣV𝑇(UΣV𝑇)𝑇 = UΣ2U𝑇, thus singular values are
just square root of eigenvalues

Since PCA is in effect keeping the 𝑀 largest eigenvalues of the
covariance matrix, it is the same as keeping the 𝑀 largest singular
values of X

One can easily verify that. Let ̂X = UΣ̂V𝑇, where Σ̂ only keeps the
𝑀 largest singular values, then

𝐸𝑟𝑟𝑜𝑟 = ∑
𝑖

(x𝑖 − x̂𝑖)𝑇(x𝑖 − x̂𝑖) = 𝑡𝑟((X − X̂)𝑇(X − ̂X))

=𝑡𝑟(V(Σ − Σ̂)U𝑇U(Σ − Σ̂)V𝑇) = 𝑡𝑟(V(Σ − Σ̂)(Σ − Σ̂)V𝑇)

=𝑡𝑟(((Σ − Σ̂)V𝑇)V(Σ − Σ̂)) = 𝑡𝑟((Σ − Σ̂)2)
=Sum of eigenvalues excluding the 𝑀 largest ones

S. Cheng (OU-Tulsa) Generative Models Feb 2017 88 / 123

Autoencoders PCA

Optimal linear decoder ⇒ optimal linear encoder

PCA is optimum when things are “linear”
Interesting to know that as far as decoding is linear, the optimal
encoding is linear (PCA) as well

That is, if X̂ = Wℎ(X) for some optimal W
⇒ ℎ(X) = TX for some optimal T

S. Cheng (OU-Tulsa) Generative Models Feb 2017 89 / 123

Autoencoders PCA

Optimal linear decoder ⇒ optimal linear encoder

PCA is optimum when things are “linear”
Interesting to know that as far as decoding is linear, the optimal
encoding is linear (PCA) as well

That is, if X̂ = Wℎ(X) for some optimal W
⇒ ℎ(X) = TX for some optimal T

S. Cheng (OU-Tulsa) Generative Models Feb 2017 89 / 123

Autoencoders PCA

Optimal linear decoder ⇒ optimal linear encoder

PCA is optimum when things are “linear”
Interesting to know that as far as decoding is linear, the optimal
encoding is linear (PCA) as well

That is, if X̂ = Wℎ(X) for some optimal W
⇒ ℎ(X) = TX for some optimal T

S. Cheng (OU-Tulsa) Generative Models Feb 2017 89 / 123

Autoencoders PCA

Optimal linear decoder ⇒ optimal linear encoder

PCA is optimum when things are “linear”
Interesting to know that as far as decoding is linear, the optimal
encoding is linear (PCA) as well

That is, if X̂ = Wℎ(X) for some optimal W
⇒ ℎ(X) = TX for some optimal T

S. Cheng (OU-Tulsa) Generative Models Feb 2017 89 / 123

Autoencoders PCA

Autoencoders

Autoencoder is a way to
perform dimension reduction
with neural networks

h(x) = sigm(b + Wx)
x̂ = c + W∗h(x)

loss = ‖x − x̂‖
N.B., as the decoder is linear,
the optimum autoencoder is
just equivalent to PCA

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90 / 123

Autoencoders PCA

Autoencoders

Autoencoder is a way to
perform dimension reduction
with neural networks

h(x) = sigm(b + Wx)
x̂ = c + W∗h(x)

loss = ‖x − x̂‖
N.B., as the decoder is linear,
the optimum autoencoder is
just equivalent to PCA

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90 / 123

Autoencoders PCA

Autoencoders

Autoencoder is a way to
perform dimension reduction
with neural networks

h(x) = sigm(b + Wx)
x̂ = c + W∗h(x)

loss = ‖x − x̂‖
N.B., as the decoder is linear,
the optimum autoencoder is
just equivalent to PCA

S. Cheng (OU-Tulsa) Generative Models Feb 2017 90 / 123

Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

When using multiple layers,
PCA is no longer optimal for
continuous input
The introduced nonlinearity can
efficiently represent data that
lies on a non-linear manifold
It was an old idea (dated back
to 80’s) but it was considered
to be very hard to train

S. Cheng (OU-Tulsa) Generative Models Feb 2017 91 / 123

Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

When using multiple layers,
PCA is no longer optimal for
continuous input
The introduced nonlinearity can
efficiently represent data that
lies on a non-linear manifold
It was an old idea (dated back
to 80’s) but it was considered
to be very hard to train

S. Cheng (OU-Tulsa) Generative Models Feb 2017 91 / 123

Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

When using multiple layers,
PCA is no longer optimal for
continuous input
The introduced nonlinearity can
efficiently represent data that
lies on a non-linear manifold
It was an old idea (dated back
to 80’s) but it was considered
to be very hard to train

S. Cheng (OU-Tulsa) Generative Models Feb 2017 91 / 123

Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

First really successful deep
autoencoder was trained in
2006 by Hinton’s group
It uses layer-by-layer RBM
pre-training as described earlier
Just use regular backprob for
fine-tuning

S. Cheng (OU-Tulsa) Generative Models Feb 2017 92 / 123

Autoencoders Deep autoencoders

Deep autoencoders
Hinton & Salakhutdinov, Science 2006

First really successful deep
autoencoder was trained in
2006 by Hinton’s group
It uses layer-by-layer RBM
pre-training as described earlier
Just use regular backprob for
fine-tuning

S. Cheng (OU-Tulsa) Generative Models Feb 2017 92 / 123

Autoencoders Deep autoencoders

Deep autoencoder vs PCA

S. Cheng (OU-Tulsa) Generative Models Feb 2017 93 / 123

Autoencoders Deep autoencoders

Deep autoencoder for 400,000 business documents
Hinton 2006

S. Cheng (OU-Tulsa) Generative Models Feb 2017 94 / 123

Autoencoders Deep autoencoders

Deep autoencoder for 400,000 image retrieval
Hinton 2006

S. Cheng (OU-Tulsa) Generative Models Feb 2017 95 / 123

Autoencoders Stacked autoencoders

Stacked autoencoders
Alternative pretraining approach

Besides pre-training
using RBMs, we may
also “expand” a deep
autoencoders as a
stack of shallow
autoecoders
Shallow
autoencoders are
easier to train than
RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 96 / 123

Autoencoders Stacked autoencoders

Stacked autoencoders
Alternative pretraining approach

Besides pre-training
using RBMs, we may
also “expand” a deep
autoencoders as a
stack of shallow
autoecoders
Shallow
autoencoders are
easier to train than
RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 96 / 123

Autoencoders Stacked autoencoders

Stacked autoencoders
Alternative pretraining approach

Besides pre-training
using RBMs, we may
also “expand” a deep
autoencoders as a
stack of shallow
autoecoders
Shallow
autoencoders are
easier to train than
RBM

S. Cheng (OU-Tulsa) Generative Models Feb 2017 96 / 123

Autoencoders Stacked autoencoders

Denoising autoencoders
Vincent et al. 2008

Idea: representation should be robust to
introduction of noise

Randomly assign bits to zero for binary
case

Similar to dropout but for inputs
only

Gaussian additive noise for continuous
case

Loss function compares ̂x with noiseless
input x

S. Cheng (OU-Tulsa) Generative Models Feb 2017 97 / 123

Autoencoders Stacked autoencoders

Denoising autoencoders
Vincent et al. 2008

Idea: representation should be robust to
introduction of noise

Randomly assign bits to zero for binary
case

Similar to dropout but for inputs
only

Gaussian additive noise for continuous
case

Loss function compares ̂x with noiseless
input x

S. Cheng (OU-Tulsa) Generative Models Feb 2017 97 / 123

Autoencoders Stacked autoencoders

Denoising autoencoders
Vincent et al. 2008

Idea: representation should be robust to
introduction of noise

Randomly assign bits to zero for binary
case

Similar to dropout but for inputs
only

Gaussian additive noise for continuous
case

Loss function compares ̂x with noiseless
input x

S. Cheng (OU-Tulsa) Generative Models Feb 2017 97 / 123

Autoencoders Stacked autoencoders

Denoising autoencoders

S. Cheng (OU-Tulsa) Generative Models Feb 2017 98 / 123

Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

Idea: encourage robustness of the model by forcing the hidden units
to be insensitive to slight change of inputs
Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

𝐿(x) → 𝐿(x) + 𝜆‖∇xℎ(x)‖2
𝐹

Pros and cons
+ deterministic gradient ⇒ can use second order optimizers
+ could be more stable than denoising autoencoder, which needs to
use a sampled gradient
- Need to compute Jacobian of hidden layer
- More complex than denoising autoencoder, which just needs to add
one two lines of code

S. Cheng (OU-Tulsa) Generative Models Feb 2017 99 / 123

Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

Idea: encourage robustness of the model by forcing the hidden units
to be insensitive to slight change of inputs
Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

𝐿(x) → 𝐿(x) + 𝜆‖∇xℎ(x)‖2
𝐹

Pros and cons
+ deterministic gradient ⇒ can use second order optimizers
+ could be more stable than denoising autoencoder, which needs to
use a sampled gradient
- Need to compute Jacobian of hidden layer
- More complex than denoising autoencoder, which just needs to add
one two lines of code

S. Cheng (OU-Tulsa) Generative Models Feb 2017 99 / 123

Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

Idea: encourage robustness of the model by forcing the hidden units
to be insensitive to slight change of inputs
Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

𝐿(x) → 𝐿(x) + 𝜆‖∇xℎ(x)‖2
𝐹

Pros and cons
+ deterministic gradient ⇒ can use second order optimizers
+ could be more stable than denoising autoencoder, which needs to
use a sampled gradient
- Need to compute Jacobian of hidden layer
- More complex than denoising autoencoder, which just needs to add
one two lines of code

S. Cheng (OU-Tulsa) Generative Models Feb 2017 99 / 123

Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

Idea: encourage robustness of the model by forcing the hidden units
to be insensitive to slight change of inputs
Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

𝐿(x) → 𝐿(x) + 𝜆‖∇xℎ(x)‖2
𝐹

Pros and cons
+ deterministic gradient ⇒ can use second order optimizers
+ could be more stable than denoising autoencoder, which needs to
use a sampled gradient
- Need to compute Jacobian of hidden layer
- More complex than denoising autoencoder, which just needs to add
one two lines of code

S. Cheng (OU-Tulsa) Generative Models Feb 2017 99 / 123

Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

Idea: encourage robustness of the model by forcing the hidden units
to be insensitive to slight change of inputs
Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

𝐿(x) → 𝐿(x) + 𝜆‖∇xℎ(x)‖2
𝐹

Pros and cons
+ deterministic gradient ⇒ can use second order optimizers
+ could be more stable than denoising autoencoder, which needs to
use a sampled gradient
- Need to compute Jacobian of hidden layer
- More complex than denoising autoencoder, which just needs to add
one two lines of code

S. Cheng (OU-Tulsa) Generative Models Feb 2017 99 / 123

Autoencoders Stacked autoencoders

Contractive autoencoders
Rifai et al. 2011

Idea: encourage robustness of the model by forcing the hidden units
to be insensitive to slight change of inputs
Achieve this by penalizing the squared gradient of each hidden
activity w.r.t. the inputs

𝐿(x) → 𝐿(x) + 𝜆‖∇xℎ(x)‖2
𝐹

Pros and cons
+ deterministic gradient ⇒ can use second order optimizers
+ could be more stable than denoising autoencoder, which needs to
use a sampled gradient
- Need to compute Jacobian of hidden layer
- More complex than denoising autoencoder, which just needs to add
one two lines of code

S. Cheng (OU-Tulsa) Generative Models Feb 2017 99 / 123

Autoencoders Stacked autoencoders

Remark on pretraining

S. Cheng (OU-Tulsa) Generative Models Feb 2017 100 / 123

Autoencoders Stacked autoencoders

Remark on pretraining

S. Cheng (OU-Tulsa) Generative Models Feb 2017 101 / 123

Autoencoders Variational autoencoders

Variational autoencoders

“Generative autoencoders” ⇒ variational autoencoders
Instead of spitting out an approximate for the input
The network spits out parameters of a distribution

S. Cheng (OU-Tulsa) Generative Models Feb 2017 102 / 123

Autoencoders Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

𝑥

𝑧

𝜇

�̂� ∼ 𝒩(𝜇, 𝜎2)

𝑝(𝑧|𝑥)?

NN with 𝜃

Let’s start by modeling 𝑝𝜃(𝑥|𝑧) with an
NN
To train the model, we want to
maximize 𝑝(𝑥(𝑡)) for training samples
𝑥(𝑡). But 𝑝(𝑥) = ∫ 𝑝(𝑧)𝑝𝜃(𝑥|𝑧)𝑑𝑧 is
generally intractable because we need
to integrate over all possible 𝑧
𝑝(𝑥) is also needed to model
𝑝(𝑧|𝑥) = 𝑝(𝑧)𝑝𝜃(𝑥|𝑧)

𝑝(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 103 / 123

Autoencoders Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

𝑥

𝑧

𝜇

�̂� ∼ 𝒩(𝜇, 𝜎2)

𝑝(𝑧|𝑥)?

NN with 𝜃

Let’s start by modeling 𝑝𝜃(𝑥|𝑧) with an
NN
To train the model, we want to
maximize 𝑝(𝑥(𝑡)) for training samples
𝑥(𝑡). But 𝑝(𝑥) = ∫ 𝑝(𝑧)𝑝𝜃(𝑥|𝑧)𝑑𝑧 is
generally intractable because we need
to integrate over all possible 𝑧
𝑝(𝑥) is also needed to model
𝑝(𝑧|𝑥) = 𝑝(𝑧)𝑝𝜃(𝑥|𝑧)

𝑝(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 103 / 123

Autoencoders Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

𝑥

𝑧

𝜇

�̂� ∼ 𝒩(𝜇, 𝜎2)

𝑝(𝑧|𝑥)?

NN with 𝜃

Let’s start by modeling 𝑝𝜃(𝑥|𝑧) with an
NN
To train the model, we want to
maximize 𝑝(𝑥(𝑡)) for training samples
𝑥(𝑡). But 𝑝(𝑥) = ∫ 𝑝(𝑧)𝑝𝜃(𝑥|𝑧)𝑑𝑧 is
generally intractable because we need
to integrate over all possible 𝑧
𝑝(𝑥) is also needed to model
𝑝(𝑧|𝑥) = 𝑝(𝑧)𝑝𝜃(𝑥|𝑧)

𝑝(𝑥)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 103 / 123

Autoencoders Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

𝑥

𝜇

𝑍

𝜇

�̂� ∼ 𝒩(𝜇, 𝜎2)

NN with 𝜙

∼ 𝑁(𝜇, 𝜎2)

NN with 𝜃

Instead of trying to find the exact
posterior 𝑝(𝑧|𝑥), approximate it as a
Gaussian distribution with parameters
obtained through an NN
Unfortunately, the loss − log 𝑝(𝑥) is still
intractable, but we can approximate
log 𝑝(𝑥) with a lower bound
Instead of minimizing the loss, or
maximizing log 𝑝(𝑥) directly, we will
maximize its lower bound instead

S. Cheng (OU-Tulsa) Generative Models Feb 2017 104 / 123

Autoencoders Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

𝑥

𝜇

𝑍

𝜇

�̂� ∼ 𝒩(𝜇, 𝜎2)

NN with 𝜙

∼ 𝑁(𝜇, 𝜎2)

NN with 𝜃

Instead of trying to find the exact
posterior 𝑝(𝑧|𝑥), approximate it as a
Gaussian distribution with parameters
obtained through an NN
Unfortunately, the loss − log 𝑝(𝑥) is still
intractable, but we can approximate
log 𝑝(𝑥) with a lower bound
Instead of minimizing the loss, or
maximizing log 𝑝(𝑥) directly, we will
maximize its lower bound instead

S. Cheng (OU-Tulsa) Generative Models Feb 2017 104 / 123

Autoencoders Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

𝑥

𝜇

𝑍

𝜇

�̂� ∼ 𝒩(𝜇, 𝜎2)

NN with 𝜙

∼ 𝑁(𝜇, 𝜎2)

NN with 𝜃

Instead of trying to find the exact
posterior 𝑝(𝑧|𝑥), approximate it as a
Gaussian distribution with parameters
obtained through an NN
Unfortunately, the loss − log 𝑝(𝑥) is still
intractable, but we can approximate
log 𝑝(𝑥) with a lower bound
Instead of minimizing the loss, or
maximizing log 𝑝(𝑥) directly, we will
maximize its lower bound instead

S. Cheng (OU-Tulsa) Generative Models Feb 2017 104 / 123

Autoencoders Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

𝑥

𝜇

𝑍

𝜇

�̂� ∼ 𝒩(𝜇, 𝜎2)

NN with 𝜙

∼ 𝑁(𝜇, 𝜎2)

NN with 𝜃

Instead of trying to find the exact
posterior 𝑝(𝑧|𝑥), approximate it as a
Gaussian distribution with parameters
obtained through an NN
Unfortunately, the loss − log 𝑝(𝑥) is still
intractable, but we can approximate
log 𝑝(𝑥) with a lower bound
Instead of minimizing the loss, or
maximizing log 𝑝(𝑥) directly, we will
maximize its lower bound instead

S. Cheng (OU-Tulsa) Generative Models Feb 2017 104 / 123

Autoencoders Variational autoencoders

Variational lower bound (EBLO)

log 𝑝(𝑥) = log 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
𝑝(𝑧|𝑥)

= log 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
𝑝(𝑧|𝑥)

𝑞𝜙(𝑧|𝑥)
𝑞𝜙(𝑧|𝑥)

= log 𝑝𝜃(𝑥|𝑧) − log
𝑞𝜙(𝑧|𝑥)

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)
𝑝(𝑧|𝑥)

Since the above is true for all 𝑧,

log 𝑝(𝑥) = 𝐸𝑍∼𝑞𝜙(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧) − log
𝑞𝜙(𝑧|𝑥)

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)
𝑝(𝑧|𝑥)

]

= 𝐸𝑍∼𝑞𝜙(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧)] − 𝐾𝐿(𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
EBLO(𝑥, 𝜃, 𝜙) “Evidence Lower BOund”

+ 𝐾𝐿(𝑞𝜙(𝑧|𝑥) ‖𝑝(𝑧|𝑥))⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

Training: 𝜃∗, 𝜙∗ = arg max𝜃,𝜙 ∑𝑖 EBLO(𝑥(𝑖), 𝜃, 𝜙)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 105 / 123

Autoencoders Variational autoencoders

Variational lower bound (EBLO)

log 𝑝(𝑥) = log 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
𝑝(𝑧|𝑥)

= log 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
𝑝(𝑧|𝑥)

𝑞𝜙(𝑧|𝑥)
𝑞𝜙(𝑧|𝑥)

= log 𝑝𝜃(𝑥|𝑧) − log
𝑞𝜙(𝑧|𝑥)

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)
𝑝(𝑧|𝑥)

Since the above is true for all 𝑧,

log 𝑝(𝑥) = 𝐸𝑍∼𝑞𝜙(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧) − log
𝑞𝜙(𝑧|𝑥)

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)
𝑝(𝑧|𝑥)

]

= 𝐸𝑍∼𝑞𝜙(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧)] − 𝐾𝐿(𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
EBLO(𝑥, 𝜃, 𝜙) “Evidence Lower BOund”

+ 𝐾𝐿(𝑞𝜙(𝑧|𝑥) ‖𝑝(𝑧|𝑥))⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

Training: 𝜃∗, 𝜙∗ = arg max𝜃,𝜙 ∑𝑖 EBLO(𝑥(𝑖), 𝜃, 𝜙)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 105 / 123

Autoencoders Variational autoencoders

Variational lower bound (EBLO)

log 𝑝(𝑥) = log 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
𝑝(𝑧|𝑥)

= log 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
𝑝(𝑧|𝑥)

𝑞𝜙(𝑧|𝑥)
𝑞𝜙(𝑧|𝑥)

= log 𝑝𝜃(𝑥|𝑧) − log
𝑞𝜙(𝑧|𝑥)

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)
𝑝(𝑧|𝑥)

Since the above is true for all 𝑧,

log 𝑝(𝑥) = 𝐸𝑍∼𝑞𝜙(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧) − log
𝑞𝜙(𝑧|𝑥)

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)
𝑝(𝑧|𝑥)

]

= 𝐸𝑍∼𝑞𝜙(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧)] − 𝐾𝐿(𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
EBLO(𝑥, 𝜃, 𝜙) “Evidence Lower BOund”

+ 𝐾𝐿(𝑞𝜙(𝑧|𝑥) ‖𝑝(𝑧|𝑥))⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

Training: 𝜃∗, 𝜙∗ = arg max𝜃,𝜙 ∑𝑖 EBLO(𝑥(𝑖), 𝜃, 𝜙)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 105 / 123

Autoencoders Variational autoencoders

Variational lower bound (EBLO)

log 𝑝(𝑥) = log 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
𝑝(𝑧|𝑥)

= log 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
𝑝(𝑧|𝑥)

𝑞𝜙(𝑧|𝑥)
𝑞𝜙(𝑧|𝑥)

= log 𝑝𝜃(𝑥|𝑧) − log
𝑞𝜙(𝑧|𝑥)

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)
𝑝(𝑧|𝑥)

Since the above is true for all 𝑧,

log 𝑝(𝑥) = 𝐸𝑍∼𝑞𝜙(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧) − log
𝑞𝜙(𝑧|𝑥)

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)
𝑝(𝑧|𝑥)

]

= 𝐸𝑍∼𝑞𝜙(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧)] − 𝐾𝐿(𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
EBLO(𝑥, 𝜃, 𝜙) “Evidence Lower BOund”

+ 𝐾𝐿(𝑞𝜙(𝑧|𝑥) ‖𝑝(𝑧|𝑥))⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

Training: 𝜃∗, 𝜙∗ = arg max𝜃,𝜙 ∑𝑖 EBLO(𝑥(𝑖), 𝜃, 𝜙)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 105 / 123

Autoencoders Variational autoencoders

Variational lower bound (EBLO)

log 𝑝(𝑥) = log 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
𝑝(𝑧|𝑥)

= log 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
𝑝(𝑧|𝑥)

𝑞𝜙(𝑧|𝑥)
𝑞𝜙(𝑧|𝑥)

= log 𝑝𝜃(𝑥|𝑧) − log
𝑞𝜙(𝑧|𝑥)

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)
𝑝(𝑧|𝑥)

Since the above is true for all 𝑧,

log 𝑝(𝑥) = 𝐸𝑍∼𝑞𝜙(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧) − log
𝑞𝜙(𝑧|𝑥)

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)
𝑝(𝑧|𝑥)

]

= 𝐸𝑍∼𝑞𝜙(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧)] − 𝐾𝐿(𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
EBLO(𝑥, 𝜃, 𝜙) “Evidence Lower BOund”

+ 𝐾𝐿(𝑞𝜙(𝑧|𝑥) ‖𝑝(𝑧|𝑥))⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

Training: 𝜃∗, 𝜙∗ = arg max𝜃,𝜙 ∑𝑖 EBLO(𝑥(𝑖), 𝜃, 𝜙)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 105 / 123

Autoencoders Variational autoencoders

Variational lower bound (EBLO)

log 𝑝(𝑥) = log 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
𝑝(𝑧|𝑥)

= log 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)
𝑝(𝑧|𝑥)

𝑞𝜙(𝑧|𝑥)
𝑞𝜙(𝑧|𝑥)

= log 𝑝𝜃(𝑥|𝑧) − log
𝑞𝜙(𝑧|𝑥)

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)
𝑝(𝑧|𝑥)

Since the above is true for all 𝑧,

log 𝑝(𝑥) = 𝐸𝑍∼𝑞𝜙(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧) − log
𝑞𝜙(𝑧|𝑥)

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)
𝑝(𝑧|𝑥)

]

= 𝐸𝑍∼𝑞𝜙(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧)] − 𝐾𝐿(𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
EBLO(𝑥, 𝜃, 𝜙) “Evidence Lower BOund”

+ 𝐾𝐿(𝑞𝜙(𝑧|𝑥) ‖𝑝(𝑧|𝑥))⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

Training: 𝜃∗, 𝜙∗ = arg max𝜃,𝜙 ∑𝑖 EBLO(𝑥(𝑖), 𝜃, 𝜙)

S. Cheng (OU-Tulsa) Generative Models Feb 2017 105 / 123

Autoencoders Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

Maximizing EBLO means that:
Want small 𝐾𝐿(𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧)) (the difference between the approx
distribution from 𝑝(𝑧))
Want large 𝐸𝑍∼𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] (expected log prob of the evidence
with approx distribution)

need to backprop through a random node 𝑧
can be solved by the ”reparametrization trick”

S. Cheng (OU-Tulsa) Generative Models Feb 2017 106 / 123

Autoencoders Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

Maximizing EBLO means that:
Want small 𝐾𝐿(𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧)) (the difference between the approx
distribution from 𝑝(𝑧))
Want large 𝐸𝑍∼𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] (expected log prob of the evidence
with approx distribution)

need to backprop through a random node 𝑧
can be solved by the ”reparametrization trick”

S. Cheng (OU-Tulsa) Generative Models Feb 2017 106 / 123

Autoencoders Variational autoencoders

Variational autoencoder
Kingma and Willing 2014

Maximizing EBLO means that:
Want small 𝐾𝐿(𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧)) (the difference between the approx
distribution from 𝑝(𝑧))
Want large 𝐸𝑍∼𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] (expected log prob of the evidence
with approx distribution)

need to backprop through a random node 𝑧
can be solved by the ”reparametrization trick”

S. Cheng (OU-Tulsa) Generative Models Feb 2017 106 / 123

Autoencoders Variational autoencoders

Reparametrization trick

S. Cheng (OU-Tulsa) Generative Models Feb 2017 107 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201783

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

S. Cheng (OU-Tulsa) Generative Models Feb 2017 108 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201784

Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

Let’s look at computing the bound
(forward pass) for a given minibatch of
input data

S. Cheng (OU-Tulsa) Generative Models Feb 2017 109 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201785

Encoder network

Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

S. Cheng (OU-Tulsa) Generative Models Feb 2017 110 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201786

Encoder network

Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

S. Cheng (OU-Tulsa) Generative Models Feb 2017 111 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201787

Encoder network

Sample z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

S. Cheng (OU-Tulsa) Generative Models Feb 2017 112 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201788

Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

S. Cheng (OU-Tulsa) Generative Models Feb 2017 113 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201789

Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

Maximize
likelihood of
original input
being
reconstructed

S. Cheng (OU-Tulsa) Generative Models Feb 2017 114 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201790

Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

Maximize
likelihood of
original input
being
reconstructed

For every minibatch of input
data: compute this forward
pass, and then backprop!

S. Cheng (OU-Tulsa) Generative Models Feb 2017 115 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201791

Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!

Use decoder network. Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

S. Cheng (OU-Tulsa) Generative Models Feb 2017 116 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201792

Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!

Use decoder network. Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

S. Cheng (OU-Tulsa) Generative Models Feb 2017 117 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201793

Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!

Use decoder network. Now sample z from prior! Data manifold for 2-d z

Vary z
1

Vary z
2Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

S. Cheng (OU-Tulsa) Generative Models Feb 2017 118 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201794

Variational Autoencoders: Generating Data!

Vary z
1

Vary z
2

Degree of smile

Head pose

Diagonal prior on z
=> independent
latent variables

Different
dimensions of z
encode
interpretable factors
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

S. Cheng (OU-Tulsa) Generative Models Feb 2017 119 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201795

Variational Autoencoders: Generating Data!

Vary z
1

Vary z
2

Degree of smile

Head pose

Diagonal prior on z
=> independent
latent variables

Different
dimensions of z
encode
interpretable factors
of variation

Also good feature representation that
can be computed using q

ɸ
(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

S. Cheng (OU-Tulsa) Generative Models Feb 2017 120 / 123

Autoencoders Variational autoencoders

Variational autoencoders

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201796

Variational Autoencoders: Generating Data!

32x32 CIFAR-10
Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

S. Cheng (OU-Tulsa) Generative Models Feb 2017 121 / 123

Autoencoders Variational autoencoders

Summary of variational autoencoders

Probabilistic spin to traditional autoencoders to allow data
generation. Use variational lower bound to workaround intractable
density estimation

Pros Systematic approach to generative models (train
end-to-end)
Allows inference of 𝑞𝜙(𝑧|𝑥) that can be used for feature
representation

Cons Maximizes lower bound rather than exact cost function.
Less direct than say PixelRNN/PixelCNN
Samples generated are lower quality compared to the
state-of-the-art (GANs)

Follow-up research:
More flexible approximations, e.g., richer model in approximating the
posterior (typically just use diagonal Gaussian in the basic model)
Incorporating structure in latent variables
Disentangled variational autoencoder

S. Cheng (OU-Tulsa) Generative Models Feb 2017 122 / 123

https://arxiv.org/abs/1709.05047

Conclusions

Conclusions

Conventional autoencoders are important tools for dimension
reduction and data representation in general
Generative models are some very exciting hot topics in deep learning

Especially useful for datasets with few or no labels
Many other possible applications yet to be discovered

We discuss several generative models, in particular
Variational autoencoders: autoencoders + variational inference
Generative adversarial networks (GANs): more recent and gaining lots
of interests

S. Cheng (OU-Tulsa) Generative Models Feb 2017 123 / 123

Conclusions

Conclusions

Conventional autoencoders are important tools for dimension
reduction and data representation in general
Generative models are some very exciting hot topics in deep learning

Especially useful for datasets with few or no labels
Many other possible applications yet to be discovered

We discuss several generative models, in particular
Variational autoencoders: autoencoders + variational inference
Generative adversarial networks (GANs): more recent and gaining lots
of interests

S. Cheng (OU-Tulsa) Generative Models Feb 2017 123 / 123

Conclusions

Conclusions

Conventional autoencoders are important tools for dimension
reduction and data representation in general
Generative models are some very exciting hot topics in deep learning

Especially useful for datasets with few or no labels
Many other possible applications yet to be discovered

We discuss several generative models, in particular
Variational autoencoders: autoencoders + variational inference
Generative adversarial networks (GANs): more recent and gaining lots
of interests

S. Cheng (OU-Tulsa) Generative Models Feb 2017 123 / 123

	Supervised vs unsupervised learning
	Generative models
	GANs
	Design tricks
	DCGAN
	More applications

	Boltzmann machines and DBNs
	Restricted Boltzmann machines
	Deep belief networks

	Autoencoders
	PCA
	Deep autoencoders
	Stacked autoencoders
	Variational autoencoders

	Conclusions

