
Regression and Classification

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2020

S. Cheng (OU-ECE) Regression and Classification Jan 2017 1 / 81

Table of Contents
1 Math review
2 ML basic

Empirical risk minimization
3 Regression

Loss function
Linear regression
Example: mass estimation
Example: curve fitting
Bias-variance trade-off

4 Lesson learned
Regularization

5 Classification
Binary classification
Multi-class classification

6 Optimization
7 Support vector machine
8 Kernel PCA

S. Cheng (OU-ECE) Regression and Classification Jan 2017 2 / 81

Math review

Some notations and simple linear algebra

A scalar s is lower-case and normal font
A vector v is lower-case and bold

By convention, we always stick with column vectors
A matrix M is upper-case
MT is the transpose of the matrix M

If B = AT, bij = aji

Quiz: for a n-dim vector v,
What is the dimension of vTv?

1 × 1 (inner product)
What is the dimension of vvT?

n × n (outer product)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 3 / 81

Math review

Some notations and simple linear algebra

A scalar s is lower-case and normal font
A vector v is lower-case and bold

By convention, we always stick with column vectors
A matrix M is upper-case
MT is the transpose of the matrix M

If B = AT, bij = aji

Quiz: for a n-dim vector v,
What is the dimension of vTv?

1 × 1 (inner product)
What is the dimension of vvT?

n × n (outer product)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 3 / 81

Math review

Some notations and simple linear algebra

A scalar s is lower-case and normal font
A vector v is lower-case and bold

By convention, we always stick with column vectors
A matrix M is upper-case
MT is the transpose of the matrix M

If B = AT, bij = aji

Quiz: for a n-dim vector v,
What is the dimension of vTv?

1 × 1 (inner product)
What is the dimension of vvT?

n × n (outer product)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 3 / 81

Math review

Some notations and simple linear algebra

A scalar s is lower-case and normal font
A vector v is lower-case and bold

By convention, we always stick with column vectors
A matrix M is upper-case
MT is the transpose of the matrix M

If B = AT, bij = aji

Quiz: for a n-dim vector v,
What is the dimension of vTv?

1 × 1 (inner product)
What is the dimension of vvT?

n × n (outer product)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 3 / 81

Math review

Some notations and simple linear algebra

A scalar s is lower-case and normal font
A vector v is lower-case and bold

By convention, we always stick with column vectors
A matrix M is upper-case
MT is the transpose of the matrix M

If B = AT, bij = aji

Quiz: for a n-dim vector v,
What is the dimension of vTv?

1 × 1 (inner product)
What is the dimension of vvT?

n × n (outer product)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 3 / 81

Math review

A quick review of gradient

For a vector x = (x1, x2, · · · , xn)
T, the gradient of a scalar multivariate

function f(x) is denoted by ∇f(x)

Note that ∇f(x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)
∇f(x) is a vector pointing to the steepest (ascending) direction
The magnitude ‖∇f(x)‖ is the slope along that steepest direction

E.g., f((x1, x2, x3)) = (x1 + 2)x2
2x3

∇f(x) =

 x2
2x3

2(x1 + 2)x2x3
(x1 + 2)x2

2

and ∇f(x)|(0,1,0)?

∇f(x)|(0,1,0) = (0, 0, 2)T

S. Cheng (OU-ECE) Regression and Classification Jan 2017 4 / 81

Math review

A quick review of gradient

For a vector x = (x1, x2, · · · , xn)
T, the gradient of a scalar multivariate

function f(x) is denoted by ∇f(x)

Note that ∇f(x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)

∇f(x) is a vector pointing to the steepest (ascending) direction
The magnitude ‖∇f(x)‖ is the slope along that steepest direction

E.g., f((x1, x2, x3)) = (x1 + 2)x2
2x3

∇f(x) =

 x2
2x3

2(x1 + 2)x2x3
(x1 + 2)x2

2

and ∇f(x)|(0,1,0)?

∇f(x)|(0,1,0) = (0, 0, 2)T

S. Cheng (OU-ECE) Regression and Classification Jan 2017 4 / 81

Math review

A quick review of gradient

For a vector x = (x1, x2, · · · , xn)
T, the gradient of a scalar multivariate

function f(x) is denoted by ∇f(x)

Note that ∇f(x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)
∇f(x) is a vector pointing to the steepest (ascending) direction
The magnitude ‖∇f(x)‖ is the slope along that steepest direction

E.g., f((x1, x2, x3)) = (x1 + 2)x2
2x3

∇f(x) =

 x2
2x3

2(x1 + 2)x2x3
(x1 + 2)x2

2

and ∇f(x)|(0,1,0)?

∇f(x)|(0,1,0) = (0, 0, 2)T

S. Cheng (OU-ECE) Regression and Classification Jan 2017 4 / 81

Math review

A quick review of gradient

For a vector x = (x1, x2, · · · , xn)
T, the gradient of a scalar multivariate

function f(x) is denoted by ∇f(x)

Note that ∇f(x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)
∇f(x) is a vector pointing to the steepest (ascending) direction
The magnitude ‖∇f(x)‖ is the slope along that steepest direction

E.g., f((x1, x2, x3)) = (x1 + 2)x2
2x3

∇f(x) =

 x2
2x3

2(x1 + 2)x2x3
(x1 + 2)x2

2

and ∇f(x)|(0,1,0)?

∇f(x)|(0,1,0) = (0, 0, 2)T

S. Cheng (OU-ECE) Regression and Classification Jan 2017 4 / 81

Math review

A quick review of gradient

For a vector x = (x1, x2, · · · , xn)
T, the gradient of a scalar multivariate

function f(x) is denoted by ∇f(x)

Note that ∇f(x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)
∇f(x) is a vector pointing to the steepest (ascending) direction
The magnitude ‖∇f(x)‖ is the slope along that steepest direction

E.g., f((x1, x2, x3)) = (x1 + 2)x2
2x3

∇f(x) =

 x2
2x3

2(x1 + 2)x2x3
(x1 + 2)x2

2

and ∇f(x)|(0,1,0)?

∇f(x)|(0,1,0) = (0, 0, 2)T

S. Cheng (OU-ECE) Regression and Classification Jan 2017 4 / 81

Math review

A quick review of gradient

For a vector x = (x1, x2, · · · , xn)
T, the gradient of a scalar multivariate

function f(x) is denoted by ∇f(x)

Note that ∇f(x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)
∇f(x) is a vector pointing to the steepest (ascending) direction
The magnitude ‖∇f(x)‖ is the slope along that steepest direction

E.g., f((x1, x2, x3)) = (x1 + 2)x2
2x3

∇f(x) =

 x2
2x3

2(x1 + 2)x2x3
(x1 + 2)x2

2

and ∇f(x)|(0,1,0)?

∇f(x)|(0,1,0) = (0, 0, 2)T

S. Cheng (OU-ECE) Regression and Classification Jan 2017 4 / 81

ML basic Empirical risk minimization

Empirical risk minimization

The goal of supervised learning is to minimize generalization error
If we know the data distribution pdata, we can train and select the
optimal model parameter θ̂ by simply minimizing a risk (cost)

E(x,y)∼pdata [L(f(x; θ), y)]

Note that however we don’t know pdata in general, instead we
typically are only given some training data
(x(1), y(1)), (x(2), y(2)), · · · , (x(N), y(N)). So instead, we may
minimize the empirical risk

1
N

N∑
i=1

L(f(x(i); θ), y(i))

S. Cheng (OU-ECE) Regression and Classification Jan 2017 5 / 81

Regression Loss function

Loss function for regression

Let us start with the regression problem. Recall from previously that
We are trying to learn a function f(x;W) such that for training
input xi and desired output yi, f(xi;W) ∼ yi

We can define a loss (aka cost, objective, risk) function L(·, ·) to
measure the discrepancy between the desired output and the actual
output

During training, a reasonable goal will simply be to

min
W

∑
i

L(f(xi;W), yi),

where in the objective function, we are summing the
corresponding loss over all pair of training data
For regression, it is common to use mean square error for loss
function, i.e., l(f(xi;W), yi) = (f(xi;W)− yi)

2

S. Cheng (OU-ECE) Regression and Classification Jan 2017 6 / 81

Regression Loss function

Loss function for regression

Let us start with the regression problem. Recall from previously that
We are trying to learn a function f(x;W) such that for training
input xi and desired output yi, f(xi;W) ∼ yi

We can define a loss (aka cost, objective, risk) function L(·, ·) to
measure the discrepancy between the desired output and the actual
output

During training, a reasonable goal will simply be to

min
W

∑
i

L(f(xi;W), yi),

where in the objective function, we are summing the
corresponding loss over all pair of training data

For regression, it is common to use mean square error for loss
function, i.e., l(f(xi;W), yi) = (f(xi;W)− yi)

2

S. Cheng (OU-ECE) Regression and Classification Jan 2017 6 / 81

Regression Loss function

Loss function for regression

Let us start with the regression problem. Recall from previously that
We are trying to learn a function f(x;W) such that for training
input xi and desired output yi, f(xi;W) ∼ yi

We can define a loss (aka cost, objective, risk) function L(·, ·) to
measure the discrepancy between the desired output and the actual
output

During training, a reasonable goal will simply be to

min
W

∑
i

L(f(xi;W), yi),

where in the objective function, we are summing the
corresponding loss over all pair of training data
For regression, it is common to use mean square error for loss
function, i.e., l(f(xi;W), yi) = (f(xi;W)− yi)

2

S. Cheng (OU-ECE) Regression and Classification Jan 2017 6 / 81

Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his
height, bmi, and his age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?

For linear regression, we assume y ∼ xTw
x = (1.8, 23, 29, 1)T

w = (w1,w2,w3,b)T is an unknown weight vector
N.B. we append the feature vector by 1 to make the expression
more compact. b is a bias weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T, y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T, y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T, yN = 112.33

Write Xtrain =
(
x1, x2, · · · , xN

)
and ytrain = (y1, y2, · · · , yN)

T, we
want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 7 / 81

Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his
height, bmi, and his age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?
For linear regression, we assume y ∼ xTw

x = (1.8, 23, 29, 1)T

w = (w1,w2,w3,b)T is an unknown weight vector
N.B. we append the feature vector by 1 to make the expression
more compact. b is a bias weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T, y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T, y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T, yN = 112.33

Write Xtrain =
(
x1, x2, · · · , xN

)
and ytrain = (y1, y2, · · · , yN)

T, we
want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 7 / 81

Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his
height, bmi, and his age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?
For linear regression, we assume y ∼ xTw

x = (1.8, 23, 29, 1)T

w = (w1,w2,w3,b)T is an unknown weight vector
N.B. we append the feature vector by 1 to make the expression
more compact. b is a bias weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T, y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T, y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T, yN = 112.33

Write Xtrain =
(
x1, x2, · · · , xN

)
and ytrain = (y1, y2, · · · , yN)

T, we
want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 7 / 81

Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his
height, bmi, and his age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?
For linear regression, we assume y ∼ xTw

x = (1.8, 23, 29, 1)T

w = (w1,w2,w3,b)T is an unknown weight vector
N.B. we append the feature vector by 1 to make the expression
more compact. b is a bias weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T, y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T, y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T, yN = 112.33

Write Xtrain =
(
x1, x2, · · · , xN

)
and ytrain = (y1, y2, · · · , yN)

T, we
want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 7 / 81

Regression Linear regression

Linear regression – analytical solution

Assume that the mean square loss is used. We want to minimize

L(w)

=
1
2
(ytrain − XT

trainw)T(ytrain − XT
trainw)

=
1
2
(
yT

trainytrain − wTXtrainytrain − yT
trainXT

trainw + wTXtrainXT
trainw

)

Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainXT
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainXT
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 8 / 81

Regression Linear regression

Linear regression – analytical solution

Assume that the mean square loss is used. We want to minimize

L(w)

=
1
2
(ytrain − XT

trainw)T(ytrain − XT
trainw)

=
1
2
(
yT

trainytrain − wTXtrainytrain − yT
trainXT

trainw + wTXtrainXT
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainXT
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainXT
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 8 / 81

Regression Linear regression

Linear regression – analytical solution

Assume that the mean square loss is used. We want to minimize

L(w)

=
1
2
(ytrain − XT

trainw)T(ytrain − XT
trainw)

=
1
2
(
yT

trainytrain − wTXtrainytrain − yT
trainXT

trainw + wTXtrainXT
trainw

)

Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainXT
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainXT
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 8 / 81

Regression Linear regression

Linear regression – analytical solution

Assume that the mean square loss is used. We want to minimize

L(w)

=
1
2
(ytrain − XT

trainw)T(ytrain − XT
trainw)

=
1
2
(
yT

trainytrain − wTXtrainytrain − yT
trainXT

trainw + wTXtrainXT
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainXT
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainXT
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 8 / 81

Regression Linear regression

Linear regression – analytical solution

Assume that the mean square loss is used. We want to minimize

L(w)

=
1
2
(ytrain − XT

trainw)T(ytrain − XT
trainw)

=
1
2
(
yT

trainytrain − wTXtrainytrain − yT
trainXT

trainw + wTXtrainXT
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainXT
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainXT
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 8 / 81

Regression Linear regression

Linear regression – analytical solution

Assume that the mean square loss is used. We want to minimize

L(w)

=
1
2
(ytrain − XT

trainw)T(ytrain − XT
trainw)

=
1
2
(
yT

trainytrain − wTXtrainytrain − yT
trainXT

trainw + wTXtrainXT
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainXT
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainXT
train)

−1Xtrain︸ ︷︷ ︸
(XT

train)
†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 8 / 81

Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his
height, bmi, and his age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?

For linear regression, we assume y ∼ xTw
x = (1.8, 23, 29, 1)T

w = (w1,w2,w3,b)T is an unknown weight vector
N.B. we append the feature vector by 1 to make the expression
more compact. b is a bias weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T, y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T, y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T, yN = 112.33

Write Xtrain =
(
x1, x2, · · · , xN

)
and ytrain = (y1, y2, · · · , yN)

T, we
want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 9 / 81

Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his
height, bmi, and his age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?
For linear regression, we assume y ∼ xTw

x = (1.8, 23, 29, 1)T

w = (w1,w2,w3,b)T is an unknown weight vector
N.B. we append the feature vector by 1 to make the expression
more compact. b is a bias weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T, y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T, y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T, yN = 112.33

Write Xtrain =
(
x1, x2, · · · , xN

)
and ytrain = (y1, y2, · · · , yN)

T, we
want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 9 / 81

Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his
height, bmi, and his age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?
For linear regression, we assume y ∼ xTw

x = (1.8, 23, 29, 1)T

w = (w1,w2,w3,b)T is an unknown weight vector
N.B. we append the feature vector by 1 to make the expression
more compact. b is a bias weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T, y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T, y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T, yN = 112.33

Write Xtrain =
(
x1, x2, · · · , xN

)
and ytrain = (y1, y2, · · · , yN)

T, we
want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 9 / 81

Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his
height, bmi, and his age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?
For linear regression, we assume y ∼ xTw

x = (1.8, 23, 29, 1)T

w = (w1,w2,w3,b)T is an unknown weight vector
N.B. we append the feature vector by 1 to make the expression
more compact. b is a bias weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T, y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T, y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T, yN = 112.33

Write Xtrain =
(
x1, x2, · · · , xN

)
and ytrain = (y1, y2, · · · , yN)

T, we
want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 9 / 81

Regression Linear regression

Linear regression – analytical solution

Assume that mean square loss is used, we want to minimize

L(w)

=
1
2
(ytrain − XT

trainw)T(ytrain − XT
trainw)

=
1
2
(
yT

trainytrain − wTXtrainytrain − yT
trainXT

trainw + wTXtrainXT
trainw

)

Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainXT
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainXT
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 10 / 81

Regression Linear regression

Linear regression – analytical solution

Assume that mean square loss is used, we want to minimize

L(w)

=
1
2
(ytrain − XT

trainw)T(ytrain − XT
trainw)

=
1
2
(
yT

trainytrain − wTXtrainytrain − yT
trainXT

trainw + wTXtrainXT
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainXT
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainXT
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 10 / 81

Regression Linear regression

Linear regression – analytical solution

Assume that mean square loss is used, we want to minimize

L(w)

=
1
2
(ytrain − XT

trainw)T(ytrain − XT
trainw)

=
1
2
(
yT

trainytrain − wTXtrainytrain − yT
trainXT

trainw + wTXtrainXT
trainw

)

Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainXT
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainXT
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 10 / 81

Regression Linear regression

Linear regression – analytical solution

Assume that mean square loss is used, we want to minimize

L(w)

=
1
2
(ytrain − XT

trainw)T(ytrain − XT
trainw)

=
1
2
(
yT

trainytrain − wTXtrainytrain − yT
trainXT

trainw + wTXtrainXT
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainXT
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainXT
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 10 / 81

Regression Linear regression

Linear regression – analytical solution

Assume that mean square loss is used, we want to minimize

L(w)

=
1
2
(ytrain − XT

trainw)T(ytrain − XT
trainw)

=
1
2
(
yT

trainytrain − wTXtrainytrain − yT
trainXT

trainw + wTXtrainXT
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainXT
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainXT
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 10 / 81

Regression Linear regression

Linear regression – analytical solution

Assume that mean square loss is used, we want to minimize

L(w)

=
1
2
(ytrain − XT

trainw)T(ytrain − XT
trainw)

=
1
2
(
yT

trainytrain − wTXtrainytrain − yT
trainXT

trainw + wTXtrainXT
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain + XtrainXT
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainXT
train)

−1Xtrain︸ ︷︷ ︸
(XT

train)
†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 10 / 81

Regression Example: mass estimation

Experiment

mass = bmi × height2

We generated 30 training data points and wiggled the masses with
Gaussian noises of a standard deviation of 3 kg
Trained weights: (1.17e+02, 3.11, 8.97e-03, -2.05e+02) #
(height,bmi,age,1)
The weights are quite reasonable

mass should not really depend on age
height should have a stronger effect to mass than bmi

MSE: 6.63. It is a bit high, let’s try to reduce it

S. Cheng (OU-ECE) Regression and Classification Jan 2017 11 / 81

Regression Example: mass estimation

Experiment

mass = bmi × height2

We generated 30 training data points and wiggled the masses with
Gaussian noises of a standard deviation of 3 kg

Trained weights: (1.17e+02, 3.11, 8.97e-03, -2.05e+02) #
(height,bmi,age,1)
The weights are quite reasonable

mass should not really depend on age
height should have a stronger effect to mass than bmi

MSE: 6.63. It is a bit high, let’s try to reduce it

S. Cheng (OU-ECE) Regression and Classification Jan 2017 11 / 81

Regression Example: mass estimation

Experiment

mass = bmi × height2

We generated 30 training data points and wiggled the masses with
Gaussian noises of a standard deviation of 3 kg
Trained weights: (1.17e+02, 3.11, 8.97e-03, -2.05e+02) #
(height,bmi,age,1)

The weights are quite reasonable
mass should not really depend on age
height should have a stronger effect to mass than bmi

MSE: 6.63. It is a bit high, let’s try to reduce it

S. Cheng (OU-ECE) Regression and Classification Jan 2017 11 / 81

Regression Example: mass estimation

Experiment

mass = bmi × height2

We generated 30 training data points and wiggled the masses with
Gaussian noises of a standard deviation of 3 kg
Trained weights: (1.17e+02, 3.11, 8.97e-03, -2.05e+02) #
(height,bmi,age,1)
The weights are quite reasonable

mass should not really depend on age
height should have a stronger effect to mass than bmi

MSE: 6.63. It is a bit high, let’s try to reduce it

S. Cheng (OU-ECE) Regression and Classification Jan 2017 11 / 81

Regression Example: mass estimation

Experiment

mass = bmi × height2

We generated 30 training data points and wiggled the masses with
Gaussian noises of a standard deviation of 3 kg
Trained weights: (1.17e+02, 3.11, 8.97e-03, -2.05e+02) #
(height,bmi,age,1)
The weights are quite reasonable

mass should not really depend on age
height should have a stronger effect to mass than bmi

MSE: 6.63. It is a bit high, let’s try to reduce it

S. Cheng (OU-ECE) Regression and Classification Jan 2017 11 / 81

Regression Example: mass estimation

Expanding features...

Let’s include some higher “order” features. For the raw feature
x1, x2, x3, we can also include products of them as a feature. So a
new feature vector becomes

(1, x1, x2, x3, x2
1, x2

2, x2
3, x1x2, x1x3, x2x3)

We can do linear regression just as before, just the number of
weights increases from 4 to 10
MSE: 1.01. Nice!

S. Cheng (OU-ECE) Regression and Classification Jan 2017 12 / 81

Regression Example: mass estimation

Expanding features...

Let’s include some higher “order” features. For the raw feature
x1, x2, x3, we can also include products of them as a feature. So a
new feature vector becomes

(1, x1, x2, x3, x2
1, x2

2, x2
3, x1x2, x1x3, x2x3)

We can do linear regression just as before, just the number of
weights increases from 4 to 10

MSE: 1.01. Nice!

S. Cheng (OU-ECE) Regression and Classification Jan 2017 12 / 81

Regression Example: mass estimation

Expanding features...

Let’s include some higher “order” features. For the raw feature
x1, x2, x3, we can also include products of them as a feature. So a
new feature vector becomes

(1, x1, x2, x3, x2
1, x2

2, x2
3, x1x2, x1x3, x2x3)

We can do linear regression just as before, just the number of
weights increases from 4 to 10
MSE: 1.01. Nice!

S. Cheng (OU-ECE) Regression and Classification Jan 2017 12 / 81

Regression Example: mass estimation

Expanding features (con’t)...

Let’s go even higher order and also include products like x1x2x3
and x2

1x2. So the new feature vector now becomes

(1, x1, x2, x3, x2
1, x2

2, x2
3, x1x2, x1x3, x2x3, x3

1, x3
2, x3

3, x2
1x2, · · ·)

Again we will do linear regression as before, the number of weights
now increases from to 25
MSE: 0.32...

S. Cheng (OU-ECE) Regression and Classification Jan 2017 13 / 81

Regression Example: mass estimation

Expanding features (con’t)...

Let’s go even higher order and also include products like x1x2x3
and x2

1x2. So the new feature vector now becomes

(1, x1, x2, x3, x2
1, x2

2, x2
3, x1x2, x1x3, x2x3, x3

1, x3
2, x3

3, x2
1x2, · · ·)

Again we will do linear regression as before, the number of weights
now increases from to 25

MSE: 0.32...

S. Cheng (OU-ECE) Regression and Classification Jan 2017 13 / 81

Regression Example: mass estimation

Expanding features (con’t)...

Let’s go even higher order and also include products like x1x2x3
and x2

1x2. So the new feature vector now becomes

(1, x1, x2, x3, x2
1, x2

2, x2
3, x1x2, x1x3, x2x3, x3

1, x3
2, x3

3, x2
1x2, · · ·)

Again we will do linear regression as before, the number of weights
now increases from to 25
MSE: 0.32...

S. Cheng (OU-ECE) Regression and Classification Jan 2017 13 / 81

Regression Example: mass estimation

Expanding features (con’t)...

We can go further to the 4-th order and the number of weights
now increases to 70
MSE: 1.13e-12. Wow!

S. Cheng (OU-ECE) Regression and Classification Jan 2017 14 / 81

Regression Example: mass estimation

Wait, how about testing error?

1.0 1.5 2.0 2.5 3.0
Maximum degree of features

0

1

2

3

4

5

6

7

8

9

M
SE

Training error
Testing error

S. Cheng (OU-ECE) Regression and Classification Jan 2017 15 / 81

Regression Example: mass estimation

Wait, how about testing error...? Oops

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Maximum degree of features

0

10000

20000

30000

40000

50000

60000

M
SE

Training error
Testing error

S. Cheng (OU-ECE) Regression and Classification Jan 2017 16 / 81

Regression Example: curve fitting

Curve fitting
Why is it so bad for testing? Let’s visit another even simpler example

Let’s try to fit a quadratic curve y = (x − 3)2 with linear
regression. And again our training data will be wiggled a little bit
by a Gaussian noise

0 2 4 6 8 10
10

0

10

20

30

40

50
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 17 / 81

Regression Example: curve fitting

Curve fitting (2nd order)

Let’s include higher order feature just as before. Take (1, x, x2) as
feature by including x2

0 2 4 6 8 10
10

0

10

20

30

40

50

60
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 18 / 81

Regression Example: curve fitting

Curve fitting (3rd order)

(1, x, x2, x3)

0 2 4 6 8 10
10

0

10

20

30

40

50

60
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 19 / 81

Regression Example: curve fitting

Curve fitting (4th order)

(1, x, x2, x3, x4)

0 2 4 6 8 10
10

0

10

20

30

40

50

60
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 20 / 81

Regression Example: curve fitting

Curve fitting (5th order)

(1, x, x2, x3, x4, x5)

0 2 4 6 8 10

0

20

40

60

80 Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 21 / 81

Regression Example: curve fitting

Curve fitting (6rd order)

(1, x, x2, x3, x4, x5, x6)

0 2 4 6 8 10
20

0

20

40

60

80

100

120

140
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 22 / 81

Regression Example: curve fitting

Curve fitting (7rd order)

(1, x, x2, x3, x4, x5, x6, x7)

0 2 4 6 8 10
20

0

20

40

60

80

100

120

140
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 23 / 81

Regression Example: curve fitting

Curve fitting (8th order)

(1, x, x2, x3, x4, x5, x6, x7, x8)

0 2 4 6 8 10
50

0

50

100

150

200

250
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 24 / 81

Regression Example: curve fitting

Curve fitting (9th order)

(1, x, x2, x3, x4, x5, x6, x7, x8, x9)

0 2 4 6 8 10
200

0

200

400

600

800

1000

1200

1400

1600
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 25 / 81

Regression Bias-variance trade-off

Overfitting vs underfitting

1 2 3 4 5 6
Max degree

0

2

4

6

8

10

M
SE

Training error
Testing error

S. Cheng (OU-ECE) Regression and Classification Jan 2017 26 / 81

Lesson learned

Lesson learned

Given sufficiently complex model, we can learn “anything”, but ...
Machine learning is all about generalization
It is testing error but not training error that actually counts

Machine learning is very similar to optimization, we just try to
find our best model by minimizing a loss function, but...

Unlike optimization, we don’t actually know the true objective
function
Loss function is just an approximated goal

Should try to avoid neither overfitting nor underfitting
Everything should be made as simple as possible, but not simpler –
Albert Einstein
Occam’s razor: overly complex model is not a good thing (if you
don’t have sufficient data to fit the model)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 27 / 81

Lesson learned

Lesson learned

Given sufficiently complex model, we can learn “anything”, but ...
Machine learning is all about generalization
It is testing error but not training error that actually counts

Machine learning is very similar to optimization, we just try to
find our best model by minimizing a loss function, but...

Unlike optimization, we don’t actually know the true objective
function
Loss function is just an approximated goal

Should try to avoid neither overfitting nor underfitting
Everything should be made as simple as possible, but not simpler –
Albert Einstein
Occam’s razor: overly complex model is not a good thing (if you
don’t have sufficient data to fit the model)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 27 / 81

Lesson learned

Lesson learned

Given sufficiently complex model, we can learn “anything”, but ...
Machine learning is all about generalization
It is testing error but not training error that actually counts

Machine learning is very similar to optimization, we just try to
find our best model by minimizing a loss function, but...

Unlike optimization, we don’t actually know the true objective
function
Loss function is just an approximated goal

Should try to avoid neither overfitting nor underfitting
Everything should be made as simple as possible, but not simpler –
Albert Einstein
Occam’s razor: overly complex model is not a good thing (if you
don’t have sufficient data to fit the model)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 27 / 81

Lesson learned

Lesson learned

Given sufficiently complex model, we can learn “anything”, but ...
Machine learning is all about generalization
It is testing error but not training error that actually counts

Machine learning is very similar to optimization, we just try to
find our best model by minimizing a loss function, but...

Unlike optimization, we don’t actually know the true objective
function
Loss function is just an approximated goal

Should try to avoid neither overfitting nor underfitting

Everything should be made as simple as possible, but not simpler –
Albert Einstein
Occam’s razor: overly complex model is not a good thing (if you
don’t have sufficient data to fit the model)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 27 / 81

Lesson learned

Lesson learned

Given sufficiently complex model, we can learn “anything”, but ...
Machine learning is all about generalization
It is testing error but not training error that actually counts

Machine learning is very similar to optimization, we just try to
find our best model by minimizing a loss function, but...

Unlike optimization, we don’t actually know the true objective
function
Loss function is just an approximated goal

Should try to avoid neither overfitting nor underfitting
Everything should be made as simple as possible, but not simpler –
Albert Einstein
Occam’s razor: overly complex model is not a good thing (if you
don’t have sufficient data to fit the model)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 27 / 81

Lesson learned

High-bias vs high-variance

Sometimes we also refer to over-
fitting and underfitting roughly as
high-variance and high-bias

High-bias: model is too rigid
to learn (thus biased) and it
cannot adapt to the data
High-variance: model is too
elastic and can fit any
arbitrary data. When fitted
with different training data,
the weights just converge to
totally different values (thus
high variance)

� � � � � �

����������

�

�

�

�

�

��

�
�
�

��������������

�������������

9RHIV¾X 3ZIV¾X

S. Cheng (OU-ECE) Regression and Classification Jan 2017 28 / 81

Lesson learned

High-bias vs high-variance

Sometimes we also refer to over-
fitting and underfitting roughly as
high-variance and high-bias

High-bias: model is too rigid
to learn (thus biased) and it
cannot adapt to the data

High-variance: model is too
elastic and can fit any
arbitrary data. When fitted
with different training data,
the weights just converge to
totally different values (thus
high variance)

� � � � � �

����������

�

�

�

�

�

��

�
�
�

��������������

�������������

9RHIV¾X 3ZIV¾X

S. Cheng (OU-ECE) Regression and Classification Jan 2017 28 / 81

Lesson learned

High-bias vs high-variance

Sometimes we also refer to over-
fitting and underfitting roughly as
high-variance and high-bias

High-bias: model is too rigid
to learn (thus biased) and it
cannot adapt to the data
High-variance: model is too
elastic and can fit any
arbitrary data. When fitted
with different training data,
the weights just converge to
totally different values (thus
high variance)

� � � � � �

����������

�

�

�

�

�

��

�
�
�

��������������

�������������

9RHIV¾X 3ZIV¾X

S. Cheng (OU-ECE) Regression and Classification Jan 2017 28 / 81

Lesson learned

More on overfitting (high-variance)

In the high-variance domain,
the model is essentially
learning the training data
noise. That’s why weights
converge to different values for
different training data
Model complexity is relative.
If more training data are
available, the model used to be
overfitted may not be
overfitted anymore. So should
we change a model every time
we added new data?!

� � � � � �

����������

�

�

�

�

�

��

�
�
�

��������������

�������������

9RHIV¾X 3ZIV¾X

S. Cheng (OU-ECE) Regression and Classification Jan 2017 29 / 81

Lesson learned Regularization

Regularization

Rather than using a simple model, we could restrain a more complex
model from running wild with additional constraints. This process is
commonly known as regularization

As regularization can mitigate the overfitting problem, we can use
a more expressive model even when we have only few data. And
the same model can be used as data size increases
A regularized complex model typically outperforms an
unregularized simple model

S. Cheng (OU-ECE) Regression and Classification Jan 2017 30 / 81

Lesson learned Regularization

Ridge regression
A most common type of regularization is by restraining the magnitudes
of the weights

For example, in ridge regression, we try to achieve this by simply
including 1

2λwTw in the loss objective function. Thus

L(w) =
1
2
(y − XTw)T(y − XTw) +

1
2
λwTw

=
1
2
(
yTy − wTXy − yTXTw + wT[XXT + λI]w

)

And the gradient is

∇wL(w) = −Xy + [XXT + λI] w

As before, if we set ∇wL(w) = 0, we have

w = [XXT + λI]−1Xy

S. Cheng (OU-ECE) Regression and Classification Jan 2017 31 / 81

Lesson learned Regularization

Ridge regression
A most common type of regularization is by restraining the magnitudes
of the weights

For example, in ridge regression, we try to achieve this by simply
including 1

2λwTw in the loss objective function. Thus

L(w) =
1
2
(y − XTw)T(y − XTw) +

1
2
λwTw

=
1
2
(
yTy − wTXy − yTXTw + wT[XXT + λI]w

)
And the gradient is

∇wL(w) = −Xy + [XXT + λI] w

As before, if we set ∇wL(w) = 0, we have

w = [XXT + λI]−1Xy

S. Cheng (OU-ECE) Regression and Classification Jan 2017 31 / 81

Lesson learned Regularization

Ridge regression
A most common type of regularization is by restraining the magnitudes
of the weights

For example, in ridge regression, we try to achieve this by simply
including 1

2λwTw in the loss objective function. Thus

L(w) =
1
2
(y − XTw)T(y − XTw) +

1
2
λwTw

=
1
2
(
yTy − wTXy − yTXTw + wT[XXT + λI]w

)
And the gradient is

∇wL(w) = −Xy + [XXT + λI] w

As before, if we set ∇wL(w) = 0, we have

w = [XXT + λI]−1Xy

S. Cheng (OU-ECE) Regression and Classification Jan 2017 31 / 81

Lesson learned Regularization

Ridge regression
A most common type of regularization is by restraining the magnitudes
of the weights

For example, in ridge regression, we try to achieve this by simply
including 1

2λwTw in the loss objective function. Thus

L(w) =
1
2
(y − XTw)T(y − XTw) +

1
2
λwTw

=
1
2
(
yTy − wTXy − yTXTw + wT[XXT + λI]w

)
And the gradient is

∇wL(w) = −Xy + [XXT + λI] w

As before, if we set ∇wL(w) = 0, we have

w = [XXT + λI]−1Xy

S. Cheng (OU-ECE) Regression and Classification Jan 2017 31 / 81

Lesson learned Regularization

Lasso

Another common regularization is lasso. Instead of λwTw, the
scaled l1-norm of w, λ‖w‖1 is added to the loss objective function
Thus, we want to

min
w

1
2
(y − XTw)T(y − XTw) + λ‖w‖1,

where ‖w‖1 = |w1|+ |w2|+ · · ·+ |wD|

Unlike ridge regression, one cannot write the close form solution
directly though

But a local optimum can be found with iterative soft-thresholding
For the next several slides, I just used sciki-learn library1 in Python

Lasso tends to enforce a sparse weight solution. It was popular
several years ago because of compressed sensing

1The ridge regression function in the 0.18.1 version of sciki-learn appears to have
bug. Both ridge regression and lasso function are implemented as lasso.

S. Cheng (OU-ECE) Regression and Classification Jan 2017 32 / 81

https://www.kaggle.com/residentmario/soft-thresholding-with-lasso-regression

Lesson learned Regularization

Lasso

Another common regularization is lasso. Instead of λwTw, the
scaled l1-norm of w, λ‖w‖1 is added to the loss objective function
Thus, we want to

min
w

1
2
(y − XTw)T(y − XTw) + λ‖w‖1,

where ‖w‖1 = |w1|+ |w2|+ · · ·+ |wD|
Unlike ridge regression, one cannot write the close form solution
directly though

But a local optimum can be found with iterative soft-thresholding
For the next several slides, I just used sciki-learn library1 in Python

Lasso tends to enforce a sparse weight solution. It was popular
several years ago because of compressed sensing

1The ridge regression function in the 0.18.1 version of sciki-learn appears to have
bug. Both ridge regression and lasso function are implemented as lasso.

S. Cheng (OU-ECE) Regression and Classification Jan 2017 32 / 81

https://www.kaggle.com/residentmario/soft-thresholding-with-lasso-regression

Lesson learned Regularization

Lasso

Another common regularization is lasso. Instead of λwTw, the
scaled l1-norm of w, λ‖w‖1 is added to the loss objective function
Thus, we want to

min
w

1
2
(y − XTw)T(y − XTw) + λ‖w‖1,

where ‖w‖1 = |w1|+ |w2|+ · · ·+ |wD|
Unlike ridge regression, one cannot write the close form solution
directly though

But a local optimum can be found with iterative soft-thresholding
For the next several slides, I just used sciki-learn library1 in Python

Lasso tends to enforce a sparse weight solution. It was popular
several years ago because of compressed sensing

1The ridge regression function in the 0.18.1 version of sciki-learn appears to have
bug. Both ridge regression and lasso function are implemented as lasso.

S. Cheng (OU-ECE) Regression and Classification Jan 2017 32 / 81

https://www.kaggle.com/residentmario/soft-thresholding-with-lasso-regression

Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−50

0

50

100

150

200

250
λ = 0.15

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 33 / 81

Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−50

0

50

100

150

200

250
λ = 0.3

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 34 / 81

Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−50

0

50

100

150

200
λ = 0.5

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 35 / 81

Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−20

0

20

40

60

80

100

120

140

160
λ = 1

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 36 / 81

Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−20

0

20

40

60

80

100

120
λ = 2

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 37 / 81

Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−10

0

10

20

30

40

50

60

70

80
λ = 4

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 38 / 81

Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−10

0

10

20

30

40

50

60

70

80
λ = 8

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 39 / 81

Lesson learned Regularization

Conclusion

Machine learning is all about generalization (from data)
One can decrease the training error to arbitrarily small (by
increasing model complexity)
On the other hand, we really only care about test error, which is
composed of

Bias: High bias when model is too rigid (model complexity is too
low) to adapt to the training data
Variance: High variance when model is too flexible (model
complexity is too high) that different sets of training data will
converge to completely different weight parameters

Occam’s razor: a good explanation should be minimal

S. Cheng (OU-ECE) Regression and Classification Jan 2017 40 / 81

Lesson learned Regularization

Conclusion

For supervised learning systems (both classification and
regression), we can typically reduce it to an optimization problem
of minimizing a loss function (instead of training error) w.r.t.
some weights
Regularization terms can typically be incorporated in the loss
function to keep the weights from running wild
It is almost always better to use a more complex but regularized
model than a simple model when one has sufficient training data

Provided that one regularized wisely
That is why deep neural networks typically work better

Actually with sufficient data, we don’t need to worry about
overfitting
Furthermore, sometimes you may even want to overfit a small
training set (attain 0 training error but large testing error) just to
make sure your model is correct

S. Cheng (OU-ECE) Regression and Classification Jan 2017 41 / 81

Lesson learned Regularization

Conclusion

For supervised learning systems (both classification and
regression), we can typically reduce it to an optimization problem
of minimizing a loss function (instead of training error) w.r.t.
some weights
Regularization terms can typically be incorporated in the loss
function to keep the weights from running wild
It is almost always better to use a more complex but regularized
model than a simple model when one has sufficient training data

Provided that one regularized wisely
That is why deep neural networks typically work better

Actually with sufficient data, we don’t need to worry about
overfitting

Furthermore, sometimes you may even want to overfit a small
training set (attain 0 training error but large testing error) just to
make sure your model is correct

S. Cheng (OU-ECE) Regression and Classification Jan 2017 41 / 81

Lesson learned Regularization

Conclusion

For supervised learning systems (both classification and
regression), we can typically reduce it to an optimization problem
of minimizing a loss function (instead of training error) w.r.t.
some weights
Regularization terms can typically be incorporated in the loss
function to keep the weights from running wild
It is almost always better to use a more complex but regularized
model than a simple model when one has sufficient training data

Provided that one regularized wisely
That is why deep neural networks typically work better

Actually with sufficient data, we don’t need to worry about
overfitting
Furthermore, sometimes you may even want to overfit a small
training set (attain 0 training error but large testing error) just to
make sure your model is correct

S. Cheng (OU-ECE) Regression and Classification Jan 2017 41 / 81

Lesson learned Regularization

New perspective?!

S. Cheng (OU-ECE) Regression and Classification Jan 2017 42 / 81

https://arxiv.org/pdf/1812.11118.pdf
https://arxiv.org/pdf/1812.11118.pdf

Classification Binary classification

Linear classification
The same linear regression idea can be transferred to classification
problems

Consider binary classification whether an image contains a cat or
not

We can first vectorize the input image into a column vector x (with
an extra 1 appended to account for bias)

E.g., for a very small 2 × 2 image patch
(

10 25
36 90

)
, it will be

converted to

x = (10, 25, 36, 90, 1)T

We will decide if the image contains a cat of not by verifying if

xTw ≶ 0,

where we will need to obtain the weight w through training (more
later)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 43 / 81

Classification Binary classification

Linear classification
The same linear regression idea can be transferred to classification
problems

Consider binary classification whether an image contains a cat or
not

We can first vectorize the input image into a column vector x (with
an extra 1 appended to account for bias)

E.g., for a very small 2 × 2 image patch
(

10 25
36 90

)
, it will be

converted to

x = (10, 25, 36, 90, 1)T

We will decide if the image contains a cat of not by verifying if

xTw ≶ 0,

where we will need to obtain the weight w through training (more
later)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 43 / 81

Classification Binary classification

Linear classification
The same linear regression idea can be transferred to classification
problems

Consider binary classification whether an image contains a cat or
not

We can first vectorize the input image into a column vector x (with
an extra 1 appended to account for bias)

E.g., for a very small 2 × 2 image patch
(

10 25
36 90

)
, it will be

converted to

x = (10, 25, 36, 90, 1)T

We will decide if the image contains a cat of not by verifying if

xTw ≶ 0,

where we will need to obtain the weight w through training (more
later)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 43 / 81

Classification Binary classification

Logistic regression

We can introduce a scoring function

f(x;w) = H(xTw),

where H(t) =

{
1, t ≥ 0
0, t < 0

is a step function and we have a cat if

f(x;w) = 1 and no cat if f(x;w) = 0

Note that f(x;w) essentially is a perceptron model and is difficult
to train because of the discontinuity of H(·). Instead, we could
replace H(·) by the sigmoid (or logistic) function S(t) = 1

1+e−t

Hence, known as logistic regression

S. Cheng (OU-ECE) Regression and Classification Jan 2017 44 / 81

Classification Binary classification

Logistic regression

We can introduce a scoring function

f(x;w) = H(xTw),

where H(t) =

{
1, t ≥ 0
0, t < 0

is a step function and we have a cat if

f(x;w) = 1 and no cat if f(x;w) = 0
Note that f(x;w) essentially is a perceptron model and is difficult
to train because of the discontinuity of H(·). Instead, we could
replace H(·) by the sigmoid (or logistic) function S(t) = 1

1+e−t

Hence, known as logistic regression

S. Cheng (OU-ECE) Regression and Classification Jan 2017 44 / 81

Classification Binary classification

Loss function of logistic regression

Another advantage of using S(·) is that we can interpret the output as
probability and then the loss function can be specified by a
“cross-entropy loss” as follows (will explain next)

L(w; x) =

{
− log f(x;w), if the image is a cat
− log(1 − f(x;w)), otherwise

S. Cheng (OU-ECE) Regression and Classification Jan 2017 45 / 81

Classification Multi-class classification

Softmax classifier

For multiclass problem, we can extend the logistic scoring function
to

fi(x;W) = σi(Wx),

where σi(y) = exp(yi)∑
j exp(yj)

is known as a softmax function and is
really just a normalized exponential function

Again, we can interpret fi(x;W) as the estimated probability of x
belong to class i

E.g., p(cat; x,W) = fcat(x;W)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 46 / 81

Classification Multi-class classification

Softmax classifier

For multiclass problem, we can extend the logistic scoring function
to

fi(x;W) = σi(Wx),

where σi(y) = exp(yi)∑
j exp(yj)

is known as a softmax function and is
really just a normalized exponential function
Again, we can interpret fi(x;W) as the estimated probability of x
belong to class i

E.g., p(cat; x,W) = fcat(x;W)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 46 / 81

Classification Multi-class classification

Surrogate loss function

Both classifiers below will result in zero prediction error if the
ground truth is dog

p(cat) p(dog) p(ship)

Classifier A
p(cat) p(dog) p(ship)

Classifier B
However, Classifier B is apparently better than Classifier A. Using
zero-one loss will not be able to distinguish them though.
A surrogate loss function should be used instead. The most
common one is the cross-entropy loss function

S. Cheng (OU-ECE) Regression and Classification Jan 2017 47 / 81

Classification Multi-class classification

Cross entropy loss function

q(cat) q(pig)q(dog)

Actual

p(cat) p(dog) p(pig)

Estimate

Let say the image is actually a dog. We can express this as a
distribution as shown on the left

Ideally we would like the estimated probability distribution
matches the actual one
We can measure the difference between two distributions with
KL-divergence given by

KL(q‖p) =
∑

i
qi log

qi
pi

S. Cheng (OU-ECE) Regression and Classification Jan 2017 48 / 81

Classification Multi-class classification

Cross entropy loss function

q(cat) q(pig)q(dog)

Actual

p(cat) p(dog) p(pig)

Estimate

Let say the image is actually a dog. We can express this as a
distribution as shown on the left
Ideally we would like the estimated probability distribution
matches the actual one

We can measure the difference between two distributions with
KL-divergence given by

KL(q‖p) =
∑

i
qi log

qi
pi

S. Cheng (OU-ECE) Regression and Classification Jan 2017 48 / 81

Classification Multi-class classification

Cross entropy loss function

q(cat) q(pig)q(dog)

Actual

p(cat) p(dog) p(pig)

Estimate

Let say the image is actually a dog. We can express this as a
distribution as shown on the left
Ideally we would like the estimated probability distribution
matches the actual one
We can measure the difference between two distributions with
KL-divergence given by

KL(q‖p) =
∑

i
qi log

qi
pi

S. Cheng (OU-ECE) Regression and Classification Jan 2017 48 / 81

Classification Multi-class classification

KL-divergence is non-negative

KL(p‖q) =
∑

i
pi log2

pi

qi

= −
∑

i
pi log2

qi

pi

= −
∑

i

pi

ln 2
ln

qi

pi

≥ −
∑

i

pi

ln 2

(
qi

pi
− 1
)

=
1
ln 2

(∑
i

pi −
∑

i
qi

)
= 0

Fact
For any real x, ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 49 / 81

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Classification Multi-class classification

KL-divergence is non-negative

KL(p‖q) =
∑

i
pi log2

pi

qi

= −
∑

i
pi log2

qi

pi

= −
∑

i

pi

ln 2
ln

qi

pi

≥ −
∑

i

pi

ln 2

(
qi

pi
− 1
)

=
1
ln 2

(∑
i

pi −
∑

i
qi

)
= 0

Fact
For any real x, ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 49 / 81

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Classification Multi-class classification

KL-divergence is non-negative

KL(p‖q) =
∑

i
pi log2

pi

qi

= −
∑

i
pi log2

qi

pi

= −
∑

i

pi

ln 2
ln

qi

pi

≥ −
∑

i

pi

ln 2

(
qi

pi
− 1
)

=
1
ln 2

(∑
i

pi −
∑

i
qi

)
= 0

Fact
For any real x, ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 49 / 81

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Classification Multi-class classification

KL-divergence is non-negative

KL(p‖q) =
∑

i
pi log2

pi

qi

= −
∑

i
pi log2

qi

pi

= −
∑

i

pi

ln 2
ln

qi

pi

≥ −
∑

i

pi

ln 2

(
qi

pi
− 1
)

=
1
ln 2

(∑
i

pi −
∑

i
qi

)
= 0

Fact
For any real x, ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 49 / 81

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Classification Multi-class classification

KL-divergence is non-negative

KL(p‖q) =
∑

i
pi log2

pi

qi

= −
∑

i
pi log2

qi

pi

= −
∑

i

pi

ln 2
ln

qi

pi

≥ −
∑

i

pi

ln 2

(
qi

pi
− 1
)

=
1
ln 2

(∑
i

pi −
∑

i
qi

)
= 0

Fact
For any real x, ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 49 / 81

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two
distribution

KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p

It is not an actual distant measure: KL(q||p) 6= KL(p||q)
We can pick KL(q‖p) as the loss function, then

L(W; x) = KL(q‖p) =
∑

i
qi log

qi

pi
= −

[
−
∑

i
qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑

i
qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑

i
qi log pi = − log pj(x) = − log fj(x)(x;W) = − log σj(x)(Wx),

where j(x) is the actual class index of x
The total loss is just sum over all training x: L(W) =

∑
x L(W; x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 50 / 81

Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two
distribution

KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p
It is not an actual distant measure: KL(q||p) 6= KL(p||q)

We can pick KL(q‖p) as the loss function, then

L(W; x) = KL(q‖p) =
∑

i
qi log

qi

pi
= −

[
−
∑

i
qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑

i
qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑

i
qi log pi = − log pj(x) = − log fj(x)(x;W) = − log σj(x)(Wx),

where j(x) is the actual class index of x
The total loss is just sum over all training x: L(W) =

∑
x L(W; x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 50 / 81

Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two
distribution

KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p
It is not an actual distant measure: KL(q||p) 6= KL(p||q)

We can pick KL(q‖p) as the loss function, then

L(W; x) = KL(q‖p) =
∑

i
qi log

qi

pi
= −

[
−
∑

i
qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑

i
qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑

i
qi log pi

= − log pj(x) = − log fj(x)(x;W) = − log σj(x)(Wx),

where j(x) is the actual class index of x
The total loss is just sum over all training x: L(W) =

∑
x L(W; x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 50 / 81

Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two
distribution

KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p
It is not an actual distant measure: KL(q||p) 6= KL(p||q)

We can pick KL(q‖p) as the loss function, then

L(W; x) = KL(q‖p) =
∑

i
qi log

qi

pi
= −

[
−
∑

i
qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑

i
qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑

i
qi log pi = − log pj(x)

= − log fj(x)(x;W) = − log σj(x)(Wx),

where j(x) is the actual class index of x
The total loss is just sum over all training x: L(W) =

∑
x L(W; x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 50 / 81

Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two
distribution

KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p
It is not an actual distant measure: KL(q||p) 6= KL(p||q)

We can pick KL(q‖p) as the loss function, then

L(W; x) = KL(q‖p) =
∑

i
qi log

qi

pi
= −

[
−
∑

i
qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑

i
qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑

i
qi log pi = − log pj(x) = − log fj(x)(x;W) = − log σj(x)(Wx),

where j(x) is the actual class index of x

The total loss is just sum over all training x: L(W) =
∑

x L(W; x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 50 / 81

Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two
distribution

KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p
It is not an actual distant measure: KL(q||p) 6= KL(p||q)

We can pick KL(q‖p) as the loss function, then

L(W; x) = KL(q‖p) =
∑

i
qi log

qi

pi
= −

[
−
∑

i
qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑

i
qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑

i
qi log pi = − log pj(x) = − log fj(x)(x;W) = − log σj(x)(Wx),

where j(x) is the actual class index of x
The total loss is just sum over all training x: L(W) =

∑
x L(W; x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 50 / 81

Optimization

Optimization

For linear regression and ridge regression, we have a close form
solution for minimizing the loss function but in most other models,
we do not

In practice, to minimize the loss function w.r.t. the weight W, we
can use simple steepest descent. That is,

W = W −∆W with ∆W = ε∇WL(W),

where ε is the learning rate and suppose to be small. It is often
just set heuristically. We may talk more about it later in this
course
So to optimize, we need to find the gradient of L wrt W

S. Cheng (OU-ECE) Regression and Classification Jan 2017 51 / 81

Optimization

Optimization

For linear regression and ridge regression, we have a close form
solution for minimizing the loss function but in most other models,
we do not
In practice, to minimize the loss function w.r.t. the weight W, we
can use simple steepest descent. That is,

W = W −∆W with ∆W = ε∇WL(W),

where ε is the learning rate and suppose to be small. It is often
just set heuristically. We may talk more about it later in this
course

So to optimize, we need to find the gradient of L wrt W

S. Cheng (OU-ECE) Regression and Classification Jan 2017 51 / 81

Optimization

Optimization

For linear regression and ridge regression, we have a close form
solution for minimizing the loss function but in most other models,
we do not
In practice, to minimize the loss function w.r.t. the weight W, we
can use simple steepest descent. That is,

W = W −∆W with ∆W = ε∇WL(W),

where ε is the learning rate and suppose to be small. It is often
just set heuristically. We may talk more about it later in this
course
So to optimize, we need to find the gradient of L wrt W

S. Cheng (OU-ECE) Regression and Classification Jan 2017 51 / 81

Optimization

Derivative of softmax loss

Recall that L(W) =
∑

x L(W; x) = −
∑

x
∑

l q(x)
l log σl(Wx), where

q(x)
j is non-zero (= 1) only when j is the true label of x

∇L(W) =
∑

x ∇L(W; x). Let’s focus on computing the individual
gradient ∇L(W; x)
Write L(W; x) =

∑
l ql log σl(o), where o = Wx. And we drop the

superscript (x) for clarity
Using chain rule,

∂

∂wi,j
L(W; x) =

∑
k

∂

∂ok
L(W; x) ∂ok

∂wi,j
= xj

∂

∂oi
L(W; x)

We need to find ∂
∂oi

L(W; x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 52 / 81

Optimization

Derivative of softmax loss

Recall that L(W) =
∑

x L(W; x) = −
∑

x
∑

l q(x)
l log σl(Wx), where

q(x)
j is non-zero (= 1) only when j is the true label of x

∇L(W) =
∑

x ∇L(W; x). Let’s focus on computing the individual
gradient ∇L(W; x)

Write L(W; x) =
∑

l ql log σl(o), where o = Wx. And we drop the
superscript (x) for clarity

Using chain rule,

∂

∂wi,j
L(W; x) =

∑
k

∂

∂ok
L(W; x) ∂ok

∂wi,j
= xj

∂

∂oi
L(W; x)

We need to find ∂
∂oi

L(W; x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 52 / 81

Optimization

Derivative of softmax loss

Recall that L(W) =
∑

x L(W; x) = −
∑

x
∑

l q(x)
l log σl(Wx), where

q(x)
j is non-zero (= 1) only when j is the true label of x

∇L(W) =
∑

x ∇L(W; x). Let’s focus on computing the individual
gradient ∇L(W; x)
Write L(W; x) =

∑
l ql log σl(o), where o = Wx. And we drop the

superscript (x) for clarity

Using chain rule,

∂

∂wi,j
L(W; x) =

∑
k

∂

∂ok
L(W; x) ∂ok

∂wi,j
= xj

∂

∂oi
L(W; x)

We need to find ∂
∂oi

L(W; x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 52 / 81

Optimization

Derivative of softmax loss

Recall that L(W) =
∑

x L(W; x) = −
∑

x
∑

l q(x)
l log σl(Wx), where

q(x)
j is non-zero (= 1) only when j is the true label of x

∇L(W) =
∑

x ∇L(W; x). Let’s focus on computing the individual
gradient ∇L(W; x)
Write L(W; x) =

∑
l ql log σl(o), where o = Wx. And we drop the

superscript (x) for clarity
Using chain rule,

∂

∂wi,j
L(W; x) =

∑
k

∂

∂ok
L(W; x) ∂ok

∂wi,j
= xj

∂

∂oi
L(W; x)

We need to find ∂
∂oi

L(W; x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 52 / 81

Optimization

Derivative of softmax loss

Recall that L(W) =
∑

x L(W; x) = −
∑

x
∑

l q(x)
l log σl(Wx), where

q(x)
j is non-zero (= 1) only when j is the true label of x

∇L(W) =
∑

x ∇L(W; x). Let’s focus on computing the individual
gradient ∇L(W; x)
Write L(W; x) =

∑
l ql log σl(o), where o = Wx. And we drop the

superscript (x) for clarity
Using chain rule,

∂

∂wi,j
L(W; x) =

∑
k

∂

∂ok
L(W; x) ∂ok

∂wi,j
= xj

∂

∂oi
L(W; x)

We need to find ∂
∂oi

L(W; x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 52 / 81

Optimization

∂
∂oi

L(W; x)

Recall L(W; x) =
∑

l ql log σl(o) and2 σl(o) = exp(ol)∑
k exp(ok)

. It is easy
to verify that ∂

∂oi
σj(o) = −σi(o)σj(o) and

∂
∂oi

σi(o) = σi(o)(1 − σi(o)).

Thus,

∂

∂oi
L(W; x) = − ∂

∂oi

∑
l

ql log σl(o)

=
qi
σi
(σi)(1 − σi)−

∑
l 6=i

ql
σl
σiσl = qi −

∑
l

qlσi

= qi − σi

Using chain rule
∂

∂wi,j
L(W; x) =

∑
k

∂

∂ok
L(W; x) ∂ok

∂wi,j
=

∂

∂oi
L(W; x)xj = (qi − σi)xj

2o = Wx
S. Cheng (OU-ECE) Regression and Classification Jan 2017 53 / 81

Optimization

∂
∂oi

L(W; x)

Recall L(W; x) =
∑

l ql log σl(o) and2 σl(o) = exp(ol)∑
k exp(ok)

. It is easy
to verify that ∂

∂oi
σj(o) = −σi(o)σj(o) and

∂
∂oi

σi(o) = σi(o)(1 − σi(o)). Thus,

∂

∂oi
L(W; x) = − ∂

∂oi

∑
l

ql log σl(o)

=
qi
σi
(σi)(1 − σi)−

∑
l 6=i

ql
σl
σiσl = qi −

∑
l

qlσi

= qi − σi

Using chain rule
∂

∂wi,j
L(W; x) =

∑
k

∂

∂ok
L(W; x) ∂ok

∂wi,j
=

∂

∂oi
L(W; x)xj = (qi − σi)xj

2o = Wx
S. Cheng (OU-ECE) Regression and Classification Jan 2017 53 / 81

Optimization

∂
∂oi

L(W; x)

Recall L(W; x) =
∑

l ql log σl(o) and2 σl(o) = exp(ol)∑
k exp(ok)

. It is easy
to verify that ∂

∂oi
σj(o) = −σi(o)σj(o) and

∂
∂oi

σi(o) = σi(o)(1 − σi(o)). Thus,

∂

∂oi
L(W; x) = − ∂

∂oi

∑
l

ql log σl(o)

=
qi
σi
(σi)(1 − σi)−

∑
l 6=i

ql
σl
σiσl = qi −

∑
l

qlσi

= qi − σi

Using chain rule
∂

∂wi,j
L(W; x) =

∑
k

∂

∂ok
L(W; x) ∂ok

∂wi,j
=

∂

∂oi
L(W; x)xj = (qi − σi)xj

2o = Wx
S. Cheng (OU-ECE) Regression and Classification Jan 2017 53 / 81

Optimization

Stochastic gradient descent

An immediate issue that one will come across is that the original
“full-batch” gradient descent is too slow

Recall that L(W) supposes to a sum over individual loss of all
training data L(W; x)
But L(W) is really just an approximate as any training set is
stochastic in natural in any case. Why not just approximate L(W)
not as refined with few data? That is, just pick a subset Xi from the
training set and use

Li(W) =
∑
x∈Xi

L(W; x)

instead. And this is known as the mini-batch gradient descent
One may go to the extreme and only pick one x to estimate the
gradient. This formally is known as the stochastic gradient
descent. But in practice, no one uses it. But people often say
stochastic gradient descent when they actually mean mini-batch
gradient descent

S. Cheng (OU-ECE) Regression and Classification Jan 2017 54 / 81

Optimization

Stochastic gradient descent

An immediate issue that one will come across is that the original
“full-batch” gradient descent is too slow

Recall that L(W) supposes to a sum over individual loss of all
training data L(W; x)

But L(W) is really just an approximate as any training set is
stochastic in natural in any case. Why not just approximate L(W)
not as refined with few data? That is, just pick a subset Xi from the
training set and use

Li(W) =
∑
x∈Xi

L(W; x)

instead. And this is known as the mini-batch gradient descent
One may go to the extreme and only pick one x to estimate the
gradient. This formally is known as the stochastic gradient
descent. But in practice, no one uses it. But people often say
stochastic gradient descent when they actually mean mini-batch
gradient descent

S. Cheng (OU-ECE) Regression and Classification Jan 2017 54 / 81

Optimization

Stochastic gradient descent

An immediate issue that one will come across is that the original
“full-batch” gradient descent is too slow

Recall that L(W) supposes to a sum over individual loss of all
training data L(W; x)
But L(W) is really just an approximate as any training set is
stochastic in natural in any case. Why not just approximate L(W)
not as refined with few data? That is, just pick a subset Xi from the
training set and use

Li(W) =
∑
x∈Xi

L(W; x)

instead. And this is known as the mini-batch gradient descent

One may go to the extreme and only pick one x to estimate the
gradient. This formally is known as the stochastic gradient
descent. But in practice, no one uses it. But people often say
stochastic gradient descent when they actually mean mini-batch
gradient descent

S. Cheng (OU-ECE) Regression and Classification Jan 2017 54 / 81

Optimization

Stochastic gradient descent

An immediate issue that one will come across is that the original
“full-batch” gradient descent is too slow

Recall that L(W) supposes to a sum over individual loss of all
training data L(W; x)
But L(W) is really just an approximate as any training set is
stochastic in natural in any case. Why not just approximate L(W)
not as refined with few data? That is, just pick a subset Xi from the
training set and use

Li(W) =
∑
x∈Xi

L(W; x)

instead. And this is known as the mini-batch gradient descent
One may go to the extreme and only pick one x to estimate the
gradient. This formally is known as the stochastic gradient
descent. But in practice, no one uses it. But people often say
stochastic gradient descent when they actually mean mini-batch
gradient descent

S. Cheng (OU-ECE) Regression and Classification Jan 2017 54 / 81

Optimization

Gradient descent with moment
Going downhill reduces the error, but
the direction of steepest descent does
not point at the minimum unless the
ellipse is a circle

The gradient is big in the direction
in which we only want to travel a
small distance
The gradient is small in the
direction in which we want to travel
a large distance

A simple solution is to introduce
“momentum” to the change of W.
That is,
∆W = λ(ε∇WL(W)) + (1− λ)∆W(old)

Will talk more about optimization
methods later. So much for today

2Slide borrowed from Hinton’s coursera course
S. Cheng (OU-ECE) Regression and Classification Jan 2017 55 / 81

Optimization

Gradient descent with moment
Going downhill reduces the error, but
the direction of steepest descent does
not point at the minimum unless the
ellipse is a circle

The gradient is big in the direction
in which we only want to travel a
small distance
The gradient is small in the
direction in which we want to travel
a large distance

A simple solution is to introduce
“momentum” to the change of W.
That is,
∆W = λ(ε∇WL(W)) + (1− λ)∆W(old)

Will talk more about optimization
methods later. So much for today

2Slide borrowed from Hinton’s coursera course
S. Cheng (OU-ECE) Regression and Classification Jan 2017 55 / 81

Optimization

Gradient descent with moment
Going downhill reduces the error, but
the direction of steepest descent does
not point at the minimum unless the
ellipse is a circle

The gradient is big in the direction
in which we only want to travel a
small distance
The gradient is small in the
direction in which we want to travel
a large distance

A simple solution is to introduce
“momentum” to the change of W.
That is,
∆W = λ(ε∇WL(W)) + (1− λ)∆W(old)

Will talk more about optimization
methods later. So much for today

2Slide borrowed from Hinton’s coursera course
S. Cheng (OU-ECE) Regression and Classification Jan 2017 55 / 81

Optimization

Remark on computing gradient

For the previous discussion, we always assume that the gradient
can be found analytically. In practice, it may not be true also

But gradient of L(W) can easily be computed numerically. For

example, say W =

(
4.1 3.3
−1.2 2.1

)
,

∂

∂W1,1
L(W) ≈ 1

h

[
L
((

4.1 + h 3.3
−1.2 2.1

))
− L

((
4.1 3.3
−1.2 2.1

))]

Actually, the numerical gradient is useful even if an analytical
gradient exists. It at least provides a mean to debug your system

And luckily, for some packages such as Theano, they automatically
find the analytical gradient for you

S. Cheng (OU-ECE) Regression and Classification Jan 2017 56 / 81

Optimization

Remark on computing gradient

For the previous discussion, we always assume that the gradient
can be found analytically. In practice, it may not be true also
But gradient of L(W) can easily be computed numerically. For

example, say W =

(
4.1 3.3
−1.2 2.1

)
,

∂

∂W1,1
L(W) ≈ 1

h

[
L
((

4.1 + h 3.3
−1.2 2.1

))
− L

((
4.1 3.3
−1.2 2.1

))]

Actually, the numerical gradient is useful even if an analytical
gradient exists. It at least provides a mean to debug your system

And luckily, for some packages such as Theano, they automatically
find the analytical gradient for you

S. Cheng (OU-ECE) Regression and Classification Jan 2017 56 / 81

Optimization

Remark on computing gradient

For the previous discussion, we always assume that the gradient
can be found analytically. In practice, it may not be true also
But gradient of L(W) can easily be computed numerically. For

example, say W =

(
4.1 3.3
−1.2 2.1

)
,

∂

∂W1,1
L(W) ≈ 1

h

[
L
((

4.1 + h 3.3
−1.2 2.1

))
− L

((
4.1 3.3
−1.2 2.1

))]

Actually, the numerical gradient is useful even if an analytical
gradient exists. It at least provides a mean to debug your system

And luckily, for some packages such as Theano, they automatically
find the analytical gradient for you

S. Cheng (OU-ECE) Regression and Classification Jan 2017 56 / 81

Optimization

Conclusion

For classification, we can feed the output of a linear regressor to a
logistic function or softmax function to form a linear classifier

For only two classes, we have the logistic “regression” classifier
For multi-class cases, we have the softmax classifiers

For finding the optimal weights, we may not be able to get the
solution right away analytically (possible though for linear
regression and ridge regression)

Can optimize iteratively with gradient descent
Can speed up gradient descent by using mini-batch instead of full
batch
Momentum is a common trick to improve optimization efficiency
also

S. Cheng (OU-ECE) Regression and Classification Jan 2017 57 / 81

Optimization

Conclusion

For classification, we can feed the output of a linear regressor to a
logistic function or softmax function to form a linear classifier

For only two classes, we have the logistic “regression” classifier
For multi-class cases, we have the softmax classifiers

For finding the optimal weights, we may not be able to get the
solution right away analytically (possible though for linear
regression and ridge regression)

Can optimize iteratively with gradient descent
Can speed up gradient descent by using mini-batch instead of full
batch
Momentum is a common trick to improve optimization efficiency
also

S. Cheng (OU-ECE) Regression and Classification Jan 2017 57 / 81

Support vector machine

SVM

Denote ŵ = w
‖w‖ , ŵ · x1

(ŵ · x−1) is the distance of
the boundary line of x1
(x−1) from the origin

Thus, the distance between
the two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all x(i)

max
2

‖w‖
s.t. yi(w · x(i) − b) ≥ 1

Equivalently,

min‖w‖2 s.t. yi(w · x(i) − b) ≥ 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 58 / 81

Support vector machine

SVM

Denote ŵ = w
‖w‖ , ŵ · x1

(ŵ · x−1) is the distance of
the boundary line of x1
(x−1) from the origin
Thus, the distance between
the two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all x(i)

max
2

‖w‖
s.t. yi(w · x(i) − b) ≥ 1

Equivalently,

min‖w‖2 s.t. yi(w · x(i) − b) ≥ 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 58 / 81

Support vector machine

SVM

Denote ŵ = w
‖w‖ , ŵ · x1

(ŵ · x−1) is the distance of
the boundary line of x1
(x−1) from the origin
Thus, the distance between
the two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all x(i)

max
2

‖w‖
s.t. yi(w · x(i) − b) ≥ 1

Equivalently,

min‖w‖2 s.t. yi(w · x(i) − b) ≥ 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 58 / 81

Support vector machine

SVM

Denote ŵ = w
‖w‖ , ŵ · x1

(ŵ · x−1) is the distance of
the boundary line of x1
(x−1) from the origin
Thus, the distance between
the two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all x(i)

max
2

‖w‖
s.t. yi(w · x(i) − b) ≥ 1

Equivalently,

min‖w‖2 s.t. yi(w · x(i) − b) ≥ 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 58 / 81

Support vector machine

KKT conditions

We can absorb the constraint using Lagrange multiplier and rewrite the
optimization problem (why?) as

min
w,b

max
αi≥0

1
2
‖w‖2 −

∑
i

αi(y(i)(w · x(i) − b)− 1)

Consider a slightly modified problem

max
αi≥0

min
w,b

1
2
‖w‖2 −

∑
i

αi(y(i)(w · x(i) − b)− 1)︸ ︷︷ ︸
L

Generally speaking, the solution of the dual problem will be smaller.
However, when the two solutions are the same the complementary slackness
conditions α∗

i (y(i)(w∗ · x(i) − b∗)− 1) = 0 have to be satisfied. Together with
y(i)(w · x(i) − b) ≥ 1, αi ≥ 0,∇wL = 0, these are known as the KKT conditions,
which are necessary condition for optimality

S. Cheng (OU-ECE) Regression and Classification Jan 2017 59 / 81

Support vector machine

Dual problem

Let’s try to minimize L w.r.t. w and b
∂L
∂w = 0 ⇒ w =

∑
i αiy(i)x(i)

∂L
∂b = 0 ⇒

∑
i αiy(i) = 0

Therefore the dual problem can now be rewritten as

max
αi≥0

∑
i
αi −

1
2
∑
i,j

αiαjy(i)y(j)x(i) · x(j)

such that ∑
i
αiy(i) = 0

Note that if we let all α fixed except two of them, the above is just a
quadratic function that can be solved analytically

S. Cheng (OU-ECE) Regression and Classification Jan 2017 60 / 81

Support vector machine

Support vectors

Say after solving the dual problem, we have

w =
∑

i
α∗

i y(i)x(i)

Evaluating a new input x is simply computing the sign of

w · x + b =
∑

i
α∗

i y(i)x(i) · x + b

Now, recall the complementary slackness condition
α∗

i (y(i)(w∗ · x(i) − b∗)− 1) = 0, actually most α∗
i will be equal to 0

except those with corresponding x(i) “touching” the boundary, which
are the support vectors

S. Cheng (OU-ECE) Regression and Classification Jan 2017 61 / 81

Support vector machine

Soft-margin SVM and hinge loss

Hard-margin SVM

min‖w‖2 s.t. yi(w · x(i) − b) ≥ 1

Soft-margin SVM (allow constrain to be
violate)

min
w,b,ξ

1
2
‖w‖2 + C

∑
i
ξi

such that y(i)(w · x(i) − b) ≥ 1 − ξi, ξi ≥ 0

S. Cheng (OU-ECE) Regression and Classification Jan 2017 62 / 81

Support vector machine

Soft-margin SVM

minw,b,ξ
1
2‖w‖2 + C

∑
i ξi such that

y(i)(w · x(i) − b) ≥ 1 − ξi, ξi ≥ 0
For the dual problem, write

L =
1
2
‖w‖2 + C

∑
i
ξi −

∑
i
αi[y(i)(w · x(i) − b)− 1 + ξi]−

∑
i

riξi

We should minimize L w.r.t. w, b, and ξi. This gives us
w =

∑
i αiy(i)x(i),

∑
i αiy(i) = 0 , and C − αi − ri = 0. So the dual

problem can be rewritten as

max
α

∑
i
αi −

1
2
∑

i
y(i)y(j)αiαjx(i) · x(j)

such that 0 ≤ αi ≤ C, and
∑

i αiy(i) = 0

S. Cheng (OU-ECE) Regression and Classification Jan 2017 63 / 81

Support vector machine

Complimentary slackness conditions

Note that we have the conditions αi[y(i)(w · x(i) − b)− 1 + ξi] = 0 and
riξi = 0. Also C − αi − ri = 0 as we shown earlier, therefore

If 0 < ri < C ⇒ 0 < αi < C, y(i)(w · x(i) − b)− 1 + ξi = 0 and since
ξi = 0,

y(i)(w · x(i) − b) = 1

If ri = 0, αi = C, y(i)(w · x(i) − b)− 1 + ξi = 0 but ξi ≥ 0, therefore

y(i)(w · x(i) − b) ≤ 1

If ri = C, αi = 0, y(i)(w · x(i) − b)− 1 + ξi ≥ 0 and since ξi = 0,

y(i)(w · x(i) − b) ≥ 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 64 / 81

Support vector machine

Sequential minimal optimization

A major reason that SVM is so popular is that there are efficient
methods in solving the optimization problem for training
One popular method is SMO due to John Platt, the key idea is to
select heuristically two α at a time and fix the rest

Pick one of the α that violates the KKT conditions. Pick the
second α that maximizes the optimization step
The remaining problem will be a simple quadratic optimization
problem with closed form solution

S. Cheng (OU-ECE) Regression and Classification Jan 2017 65 / 81

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf

Support vector machine

Kernel trick
Note that during both evaluating and testing. We just need to
manipulate the inner products among training features x(i) and with a
new input x

Potentially, we can increase the model complexity by evaluating
these inner product projected to a higher dimensional space
(including higher order monomials) without actually projection
E.g., x = [x1, x2], φ(x) = [x1x1, x1x2, x2x1, x2x2]

>,
φ(x)>φ(z) = (x>z)2 , K(x, z)
More generally, K(x, z) = (x>z + c)d corresponds to inner product
of φ(x) including all monomials up to order d
Generally, inner product can also be interpreted as the similarity
between two vectors. One may think a reasonable (so-called
Gaussian) kernel will be

K(x, z) = exp

(
−‖x − z‖2

2σ2

)
,

which actually corresponds to features projected to infinite
dimensional spaceS. Cheng (OU-ECE) Regression and Classification Jan 2017 66 / 81

Support vector machine

Valid kernel (Mercer)

For any m vectors, x(1), · · · , x(m), we can define a “kernel matrix” K
with Ki,j = K(x(i), x(j)). It is easy to verify that K is symmetric
(trivial) and positive semi-definite

for any z = [z1, · · · , zm]>, z>Kz =
∑

i,j ziφ(x(i))>φ(x(j))zj =∑
i,j,k ziφk(x(i))φk(x(j))zj =

∑
k
(∑

i ziφk(x(i))
)2 ≥ 0

S. Cheng (OU-ECE) Regression and Classification Jan 2017 67 / 81

Support vector machine

Kernel SVM

Note that for both solving the dual problem and evaluating a new
input only involve inner product of input and training vectors. So
we can apply the kernel trick. The dual problem will be modified
as

max
α

∑
i
αi −

1
2
∑

i
y(i)y(j)αiαjK(x(i), x(j))

After solving for α, an input x can be evaluated with

w · x + b =
∑

i
α∗

i y(i)K(x(i), x) + b

S. Cheng (OU-ECE) Regression and Classification Jan 2017 68 / 81

Support vector machine

Multi-class SVM

We can easily extend soft-margin SVM to multi-class case. Let

sl(x) = wl
T
[
1
x

]
be the score for class l.

We can define the hinge

loss for sample x as∑
l6=j

h(sl(x)− sj(x) + ∆) =
∑
l6=j

max(0, sl(x)− sj(x) + ∆),

where j is the true label of x and ∆ contributes a margin ensuring
that the true label score has to be at least ∆ more than the rest to
be penalty free
Multi-class SVM:

min ‖w‖2 + C
∑

i

∑
l6=j(xi)

h(sl(xi)− sj(xi)(xi) + ∆)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 69 / 81

Support vector machine

Multi-class SVM

We can easily extend soft-margin SVM to multi-class case. Let

sl(x) = wl
T
[
1
x

]
be the score for class l. We can define the hinge

loss for sample x as∑
l6=j

h(sl(x)− sj(x) + ∆) =
∑
l6=j

max(0, sl(x)− sj(x) + ∆),

where j is the true label of x and ∆ contributes a margin ensuring
that the true label score has to be at least ∆ more than the rest to
be penalty free

Multi-class SVM:

min ‖w‖2 + C
∑

i

∑
l6=j(xi)

h(sl(xi)− sj(xi)(xi) + ∆)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 69 / 81

Support vector machine

Multi-class SVM

We can easily extend soft-margin SVM to multi-class case. Let

sl(x) = wl
T
[
1
x

]
be the score for class l. We can define the hinge

loss for sample x as∑
l6=j

h(sl(x)− sj(x) + ∆) =
∑
l6=j

max(0, sl(x)− sj(x) + ∆),

where j is the true label of x and ∆ contributes a margin ensuring
that the true label score has to be at least ∆ more than the rest to
be penalty free
Multi-class SVM:

min ‖w‖2 + C
∑

i

∑
l6=j(xi)

h(sl(xi)− sj(xi)(xi) + ∆)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 69 / 81

Support vector machine

Support vector regression

Reference: A Tutorial on Support Vector Regression
Hard-margin

min
1
2
‖w‖2

s.t.

{
y(i) − 〈w, x(i)〉 − b ≤ ε

〈w, x(i)〉+ b − y(i) ≤ ε

Soft-margin
min

1
2
‖w‖2 + C

∑
i
(ξi + ξ∗i)

s.t.

y(i) − 〈w, x(i)〉 − b ≤ ε+ ξi

〈w, x(i)〉+ b − y(i) ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

S. Cheng (OU-ECE) Regression and Classification Jan 2017 70 / 81

https://alex.smola.org/papers/2003/SmoSch03b.pdf

Support vector machine

Dual problem of SVR

L ,
1
2
‖w‖2 + C

∑
i
(ξi + ξ∗i)−

∑
i
(ηiξi + η∗i ξ

∗
i)

−
∑

i
αi(ε+ ξi − y(i) + 〈w, x(i)〉+ b)

−
∑

i
α∗

i (ε+ ξ∗i + y(i) − 〈w, x(i)〉 − b)

We can reformulate the problem to minw,ξi,ξ∗i
maxαi,α∗

i ,ηi,η∗
i

L and this leads to

max

{
1
2
∑

i,j(αi − α∗
i)(αj − α∗

j)〈x(i), x(j)〉
−ε
∑

i(αi + α∗
i) +

∑
i y(i)(αi − α∗

i)

s.t.
∑

i(αi − α∗
i) = 0 and αi, α

∗
i ∈ [0,C]

⇒ w =
∑

i
(αi − α∗

i)x(i)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 71 / 81

Kernel PCA

Kernel PCA

Principal component analysis (PCA) is a very common technique
for dimension reduction. Consider data in high dimension, often
data only vary along several dimensions and so we can keep
dimensions for data with the highest variations and discard the
rest
The problem of PCA is that the analysis is linear. So for data like
below, they are not separable

S. Cheng (OU-ECE) Regression and Classification Jan 2017 72 / 81

Kernel PCA

Kernel PCA

Consider the N d-dimensional data points as x(1), · · · , x(N). Assuming
the project vectors in high dimensional are zero-mean (will come back
to that later), the covariance matrix C at the high dimension can then
be approximate by

C =
1
N

N∑
i=1

φ(x(i))φ(x(i))>

If we want to apply PCA at this high dimension, we need to
eigen-decompose C. That is, we want to find v such that Cv = λv.
Amazingly, we have the following theorem regarding v

S. Cheng (OU-ECE) Regression and Classification Jan 2017 73 / 81

Kernel PCA

Eigenvectors of projected space

Theorem (Eigenvectors)

Eigenvectors of C can be represented as weighted sum of φ(x(i)). That
is, v =

∑N
i=1 αiφ(x(i))

Proof.
Assume that Cv = λv, thus

Cv =
1
N

N∑
i=1

φ
(

x(i)
)
φ
(

x(i)
)>

v = λv

⇒v =
N∑

i=1

φ
(
x(i))> v
Nλ︸ ︷︷ ︸
αi

φ
(

x(i)
)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 74 / 81

Kernel PCA

Gram matrix

The previous theorem gives us some ideas what eigenvectors in the high
dimensional space are like. Let’s substitute v =

∑N
i=1 αiφ(x(i)) into Cv = λv.

We have,

λ

N∑
j=1

αjφ
(

x(j)
)
= λv = Cv =

1
N

N∑
i=1

φ
(

x(i)
)
φ
(

x(i)
)> N∑

j=1
αjφ

(
x(j)
)

=
1
N

N∑
i=1

φ
(

x(i)
) N∑

j=1
αjφ
(

x(i)
)>

φ
(

x(j)
)

Now let’s define the Gram matrix G with its i,j element given by

Gi,j = 〈φ
(

x(i)
)
, φ
(

x(j)
)
〉 = φ

(
x(i)
)>

φ
(

x(j)
)
, K(x(i), x(j)),

where K(·, ·) is the kernel function. For example, we can have the Gaussian
kernel with K(x, y) = exp(−‖x − y‖2/c)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 75 / 81

Kernel PCA

Solving for v

λ

N∑
j=1

αjφ
(

x(k)
)>

φ
(

x(j)
)
=

1
N

N∑
i=1

φ
(

x(k)
)>

φ
(

x(i)
) N∑

j=1
αjφ
(

x(i)
)>

φ
(

x(j)
)

⇒λ

N∑
j=1

αjG(k, j) = 1
N

N∑
i=1

G(k, i)
N∑

j=1
αjG(i, j) ⇒ λ(Gα)k =

1
N

N∑
j=1

αj(G2)k,j

⇒λ(Gα)k =
1
N
(G2α)k ⇒ λGα =

1
N

G2α ⇒ λNα = Gα

Thus, α is actually an eigenvector of G with eigenvalue λN

Similar to the original PCA, we can sort the eigenvalues. And given α,
the eigenvector in φ-space is v =

∑N
i=1 αiφ(x(i))

When receive a new input x, we can project to v as
〈φ(x), v〉 =

∑N
i=1 αi〈φ(x), φ(x(i))〉 =

∑N
i=1 αiK(x, x(i))

S. Cheng (OU-ECE) Regression and Classification Jan 2017 76 / 81

Kernel PCA

Centering φ(x(i))

We mentioned earlier that we have assumed φ(x(i)) are zero-mean. In general,
this is not true but can be easily fixed below. If φ(x(i)) are not zero-mean,
φ(x(i)) should be replaced by φ(x(i))− 1

N
∑N

k=1 φ(x(k)) instead. Thus we
should have the correct Gram matrix

G̃

=

IN − 1
N

1 · · · 1
...

. . .
...

1 · · · 1

>φ(x(1))>

...
φ(x(N))>

 [φ(x(1)), · · · , φ(x(N))]

IN − 1
N

1 · · · 1
...

. . .
...

1 · · · 1

=

IN − 1
N

1 · · · 1
...

. . .
...

1 · · · 1

>

G

IN − 1
N

1 · · · 1
...

. . .
...

1 · · · 1

= G − 1
N1NG − 1

NG1N +
1

N2 1NG1N,

where 1N is N × N matrix with all ones

S. Cheng (OU-ECE) Regression and Classification Jan 2017 77 / 81

Kernel PCA

Summary of Kernel PCA

Decide a kernel and compute the normalized Gram matrix
Eigen-decompose the normalized Gram matrix
Sort the eigenvalues in the descending order. An eigenvector
composes of the weights α for constructing the corresponding
principal component in the φ-space
Given an input x, the projection to a principal component with
weight α is given by

∑N
i=1 αiK(x, x(i))

S. Cheng (OU-ECE) Regression and Classification Jan 2017 78 / 81

Kernel PCA

Denoising with Kernel PCA
Now, consider K principal components v1, · · · , vK in (φ-space) with

vk =
N∑

i=1
α
(k)
i φ(x(i)) for k = 1, · · · ,K

We have a denoised version of x (let’s call z here) if we only keep
projection of x onto the K principal components in the φ-space. That
is,

φ(z) =
K∑

k=1
〈φ(x), vk〉vk.

The problem is that it is not immediately clear how to find z to satisfy
the above. So instead, let’s try to minimize

L = ‖φ(z)−
K∑

k=1
〈φ(x), vk〉vk‖

S. Cheng (OU-ECE) Regression and Classification Jan 2017 79 / 81

Kernel PCA

Minimizing L

L = ‖φ(z)−
K∑

k=1

〈φ(x), vk〉vk‖

= 〈φ(z), φ(z)〉 − 2
K∑

k=1

〈φ(x), vk〉〈vk, φ(z)〉+Ω

= K(z, z)− 2
N∑

i=1

K∑
k=1

〈φ(x), vk〉α(k)
i 〈φ(x(i)), φ(z)〉+Ω

= K(z, z)− 2
N∑

i=1

K∑
k=1

〈φ(x), vk〉α(k)
i︸ ︷︷ ︸

γi

K(x(i), z) + Ω

= K(z, z)− 2
N∑

i=1
γiK(x(i), z) + Ω

Note that Ω does not depend on z and hence can be ignored.
S. Cheng (OU-ECE) Regression and Classification Jan 2017 80 / 81

Kernel PCA

Maximizing Λ

Now, if we focus on kernel with the form K(x, y) = K(‖x − y‖), the first term
K(z, z) is a constant and can be ignored as well. So minimizing L is the same
as maximizing

Λ =
N∑

i=1
γiK(x(i), z)

Let’s maximize Λ by setting ∇zΛ to 0,

∇zΛ = 2
N∑

i=1
γiK′(‖x(i) − z‖2)(x(i) − z) = 0

⇒z =

∑N
i=1 γiK′(‖x(i) − z‖2)x(i)∑N

i=1 γiK′(‖x(i) − z‖2)
=

∑N
i=1 γie−

‖x(i)−z‖2
c x(i)∑N

i=1 γie−
‖x(i)−z‖2

c

Thus, we can iteratively update

z(m) =

∑N
i=1 γie−

‖x(i)−z(m−1)‖2
c x(i)∑N

i=1 γie−
‖x(i)−z(m−1)‖2

c

S. Cheng (OU-ECE) Regression and Classification Jan 2017 81 / 81

	Math review
	ML basic
	Empirical risk minimization

	Regression
	Loss function
	Linear regression
	Example: mass estimation
	Example: curve fitting
	Bias-variance trade-off

	Lesson learned
	Regularization

	Classification
	Binary classification
	Multi-class classification

	Optimization
	Support vector machine
	Kernel PCA

