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Pre-Word2Vec

e A word embedding technique (word represented by a vector)

e Model probability of neighboring words given a center word
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Word2Vec

o “Distributed representations of words and phrases and their compositionality”
(Mikolov et al. 2013)

e Try to reduce computational complexity
o Also referred to as the skip-gram model
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o Alternative model

o Continuous bag of words (CBOW): model in an opposite manner. Model center word
probability with surrounding words
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Latent semantic analysis

e Word2Vec uses a window and goes through entire document
e Latent semantic analysis (aka topic model) looks into co-occurence count instead

e Lower complexity
e Simply generate vector using SVD
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o Combine the idea of window and cooccurence counting
e By Pennington, Socher, Manning (2014)
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Evaluating word vector

o Intrinsic (intermediate task):

e Word vector analogy: man to woman = king to ?
e Word vector distances and their correlation with human judgments

e Extrinsic (real-world task):

e Name entity recognition
e Machine translation
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Fun word2vec analogies

Expression Nearest token
Paris - France + Italy Rome
bigger - big + cold colder
sushi - Japan + Germany bratwurst
Cu - copper + gold Au
Windows - Microsoft + Google Android
Montreal Canadians - Montreal + Toronto | Toronto Maple Leafs

Richard Socher
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Evaluation datasets

e Word vector analogies: syntactic and semantic examples
http://code.google.com/p/word2vec/source/browse/trunk/questions-words.txt

e Distances correlated with human judgments
http://www.cs.technion.ac.il/ gabr/resources/data/wordsim353/
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Name Entity Recognition (NER)

e Goal: try to predict whether a given word in a sentence is a name and its category
o Person ( )
o Organization (ORG)
o Location (LOC)
o Miscellaneous (MISC)
e For example,

° lives in Oklahoma and studies at the University of Oklahoma
o The Republicans will repeal the Affordable Care Act
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Problem with RNNs

@ Seq2seq models require RNNs to memorize the entire sentence before translating it. It
works great for short sentences but performance drops significantly for long sentences

o RNNs are relatively hard and computationally very expensive to train
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Attention for language translation
Bahdanau et al. 2014 (Bengio’s group)

@ The original model summarizes the input with a single
vector ¢
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http://arxiv.org/abs/1409.0473

Attention for language translation
Bahdanau et al. 2014 (Bengio’s group)

@ The original model summarizes the input with a single
vector ¢

e Different output position probably more relevant to a
part of the input
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Attention for language translation
Bahdanau et al. 2014 (Bengio’s group)

@ The original model summarizes the input with a single
vector ¢

e Different output position probably more relevant to a
part of the input
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Attention for language translation
Bahdanau et al. 2014 (Bengio’s group)
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vector ¢

e Different output position probably more relevant to a
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Attention for language translation
Bahdanau et al. 2014 (Bengio’s group)

@ The original model summarizes the input with a single
vector ¢

e Different output position probably more relevant to a
part of the input
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where egj; = a(s;_1, hj) is an alignment score to see how
well the inputs around position j matches output at
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Transformer
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https://arxiv.org/pdf/1706.03762.pdf
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Positional encoding
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GPT/GPT-2

o GPT means generative pre-training

Language model from OpenAl

If we only care about building a model (not translation), only need decoders

Can be use for different task with little refinement (transfer learning)
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GPT applications

Text Task e S
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Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.
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BERT

e “Bidirectional Encoder Representations from Transformers”: encoder only model

e Quite a bit larger model size
o Base model: 12 encoder blocks (layers), embedding (hidden) size 768, 12 heads (110M in
total)
o Large model: 24 encoder blocks, embedding size 1024, 16 heads (340M in total)
o In contrast, the original transformer model has 6 encoder and 6 decoder blocks, 512
embedding size, and 8 heads
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BERT Pretraining

@ The main idea is bidirectional. It is obvious but we can train such model with the
original task
@ The authors pre-train BERT with the following tasks
o Mask LM (MLM)
o Next Sentence Prediction (NSP)
e Input = [CLS] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]
Label = IsNext
o Input = [CLS] the man [MASK] to the store [SEP]
penguin [MASK] are flight #+#less birds [SEP]
Label = NotNext
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BERT finetuning/applications
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(b) Single Sentence Classification Tasks:
SST-2, CoLA
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BERT Positional encoding
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Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.
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Comparison

BERT RoBERTa DistilBERT XLNet
Size (mi”ions) Base: 110 Base: 110 Base: 66 Base: ~110
Large: 340 Large: 340 Large: ~340
Training Time Base: 8 x V100 x 12 Large: 1024 x V100 x 1 | Base: 8 x V100 x 3.5 Large: 512 TPU Chips x
days* day; 4-5 times more days; 4 times less than | 2.5 days; 5 times more
Large: 64 TPU Chips x 4 | than BERT. BERT. than BERT.
days (or 280 x V100 x 1
days*)
Performance Outperforms state-of- | 2-20% improvement 3% degradation from 2-15% improvement
the-art in Oct 2018 over BERT BERT over BERT
Data 16 GB BERT data 160 GB (16 GB BERT 16 GB BERT data. Base: 16 GB BERT data
(Books Corpus + data + 144 GB 3.3 Billion words. Large: 113 GB (16 GB
Wikipedia). additional) BERT data + 97 GB
3.3 Billion words. additional).
33 Billion words.
Method BERT (Bidirectional BERT without NSP** BERT Distillation Bidirectional
Transformer with MLM Transformer with
and NSP) Permutation based
modeling

https://towardsdatascience.com/bert-roberta-distilbert-xlnet-which-one-to-use-3d5ab82ba5f8
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Set Transformer

Objective: create function to preserve permutation invariance (used in stacked capsule
autoencoder)

e Encoder: SAB(SAB(X))

e Decoder: rFF(SAB(PMA(Z)))
rFF: row-wise feedforward layer
SAB(X):= MAB(X,X)
PMA(Z):= MAB(S,rFF(Z)), where S is a learnable set of k seed vectors
MAB(X,Y):=LayerNorm(H+rFF(H)), where H=LayerNorm(X+Multihead(X,Y,Y;w))

and w is learnable parameter

(a) Our model (b) MAB (c) SAB (d) ISAB
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