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Review

In the last couple classes, we discussed
e Basic concepts of regression and classification
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Review
Review

In the last couple classes, we discussed
e Basic concepts of regression and classification
e Examples of regularization such as ridge (l2) regression and lasso (I1)

e Linear classifiers including logistic regression and softmax classifier

e We introduced loss functions and the concept of training a classifier through minimizing
the loss function
e We described stochastic gradient descent and momentum trick for classification
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Introduction to neural networks Network architectures

Nomenclature of basic network architectures

Neural Networks: Architectures

>
KRN
SIS
output layer
output layer .
input layer input layer

hidden layer hidden layer 1  hidden layer 2

“3-layer Neural Net”, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net” =« v _connected” lavers
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n to neural networks Network architectures

Caveat: don’t go too far for the brain analogy

Axon

Dendrite
terminal

Biological neurons:

o Many different types

Sehwann cell e Dendrite can perform complex non-linear
nucleus mysllo OperatiODS
Axon's All-Or-Nothing Action Potentials : :
(impulses)to Incréqasing Excitation @ Synapses are not a single weight but a complex
— Ebelow threshold non-linear dynamical system
*‘7 E at threshold e Rate code model may not be adequate

| E weak

E medium Also see London 2005 (Slide credit: CS231n)
E strong

I (Inhibition)
— 2 seconds —
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Back-pr on

Back-propagation and computational graph

@ As described in last lecture, training in supervised learning system often boils down
to minimizing of loss function w.r.t. some parameters
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Back-propagation and computational graph

@ As described in last lecture, training in supervised learning system often boils down
to minimizing of loss function w.r.t. some parameters

OL(w;x)
ow

e For neural networks, it is thus necessary to find for a weight in each layer
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Back-propagation and computational graph

@ As described in last lecture, training in supervised learning system often boils down
to minimizing of loss function w.r.t. some parameters

)

e For neural networks, it is thus necessary to find E)ag% for a weight in each layer
e Back-propagation (BP) is an efficient way to find such derivation. Actually it is in

fact just another way of spelling out the chain rule g—ﬁ = ‘3—5% in calculus
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As described in last lecture, training in supervised learning system often boils down
to minimizing of loss function w.r.t. some parameters

OL(w;x)
ow

e For neural networks, it is thus necessary to find for a weight in each layer

Back-propagation (BP) is an efficient way to find such derivation. Actually it is in

fact just another way of spelling out the chain rule ‘g—ﬁ = ‘3—5% in calculus

It is often easier to explain BP in terms of computational graph
o Computational graph can be interpreted as generalization of a neural networks
e Neuron no longer will be restricted to summation and activation function but can be any
computation as well (e.g., max)
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Back-propagation and computational graph

As described in last lecture, training in supervised learning system often boils down
to minimizing of loss function w.r.t. some parameters

)

e For neural networks, it is thus necessary to find E)L(g% for a weight in each layer

Back-propagation (BP) is an efficient way to find such derivation. Actually it is in

fact just another way of spelling out the chain rule ‘g—ﬁ = ‘3—5% in calculus

It is often easier to explain BP in terms of computational graph
o Computational graph can be interpreted as generalization of a neural networks
e Neuron no longer will be restricted to summation and activation function but can be any
computation as well (e.g., max)

Let me try to explain through an example
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“local gradient”
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BP at one node

activations

“local gradient”

0z
oz

0z oL
Oy 0z

gradients
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BP at one node

activations

“local gradient”
A

&,
> 0,2.\8 Ox f
% oL
0z
gradients
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BP at one node

activations

“local gradient”
Xy {6 9z
>

o
o"ﬁ\e or

) f

Oz oL
Oy 0z

=
’/’ o O gradients
Oy
11 /203
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BP at one node

activations

“local gradient”
Xy {6 9z
>

o
o"ﬁ\e or

) f

Oz oL
Oy 0z

=
’/’ o O gradients
Oy
12 /203
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A simple BP example

f($7y1z): (:B—f—y)Z 3
eg.x=-2,y=5,z=-4 y5

z 4
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A simple BP example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

af af
f=qz %:Za'{};:q
af of 4

Want: b5 Og” Bs

z -4

g3

-12
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A simple BP example

X -2
f($7y1z):(m+y)z q3
eg.x=-2,y=5,z=-4 y 5 -
q:m—f—y %:1’%:1 S /
of
of of o5
f=¢z 5 =%%5 =4 &
. Of of of
Want: b5 Og” Bs
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A simple BP example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

qg==x —}»1/ é;% — 1’ é%% =

af af
f=qz %:Za'{};:q
af of 4

Want: b5 Og” Bs

% 2
q 3
5
* f-12
1
z 4 /
o
of
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A simple BP example

f(z,y,2) = (z +y)z - q 3
eg.x=-2,y=5z=-4 .5 )
g=z+y %:1,%:1 = — |
f=qz %:Z»%:q %};
Want: gx—f,%,%
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A simple BP example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

af af
f=qz %:Za'{};:q
af of 4

Want: b5 Og” Bs

% 2
q 3
y 5
f-12
1
z 4
3 -~
of
0z
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A simple BP example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ og . 0q
af af
f:qz %:Za'{};:q
af of of
Want: B2 By Oz
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A simple BP example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ 9 _ { 99 _
of _  of _
f=qz %—Z,a—q
af of of
Want: 5:7 9y 3z
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A simple BP example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ 9 _ { 99 _
of _  of _
f=qz %—Z,a—q
af of of
Want: 5:7 9y 3z
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A simple BP example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

a 3/
qg==x —}»!/ Ei% — 1’ Ei% —
aof aof
f:qz gq—:z,?,);:
L

Want: b5 Og” Bs

Chain rule:
oF _ 0f oy
Oy 0q 9y

Jan 2019
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A simple B

P example

f(z,y,2) = (z +y)z
eg.x=-2,y=5z=-4
g=cty F=13=1
f=¢  H=mm-—d
Want: gx—f,%,%
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A simple BP example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ 9 _ { 99 _
of of
f:qz gq—:z,?,);:
af of of
Want: 5z 9y 3z
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Another example: flw,z)

= 1_+_ef(‘wgmg+wlzl+‘wg)

w0 2.00
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w0 2.00
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Another example: flw,z)

- 1 + ¢ (womo-twim +uwy)

w0 2.00
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Another example: flw,z)

- 1 + ¢ (womo-twim +uwy)

w0 2.00

(—=%5)(1.00) = —0.53

1.37%

00 0.37 ‘3; @ 0.73
N /05 \J 100
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Another example: flw,z)

- 1 + ¢ (womo-twim +uwy)

w0 2.00
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Bac

Yet another BP example

1
T 1 4 e (womtwiz twy)

Another example: flw,z)

x0 -1.00

(1)(—0.53) = —0.53

w1 -3.0(
w2 -3.0
o S df S df 2
flz)=e — s flz)== — %:_1/
d
fu(z) =az — E‘-i::a fo@)=c+z - %:1
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Another example: flw,z)

- 1 + ¢ (womo-twim +uwy)

w0 2.00
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Another example: flw,z)

- 1 + ¢ (womo-twim +uwy)

1.00 @ 1.00 @ 0373 A0

fo(z) =ax — —=a flz)=c+z —+ —=1
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Another example: flw,z)

- 1 + ¢ (womo-twim +uwy)

w0 2.00
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Another example: flw,z)
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Another example:

w0 2.00

x0 -1.00

w1 -3.0(

x1 -2.00

f(w,z)

- 1 + ¢ (womo-twim +uwy)

[local gradient] x [its gradient]

[11x[0.2]1=0.2
[1]1x[0.2] =0.2 (both inputs!)

100] A3\ 100 oS 037 N 137 a7 07

020\ 020 s LH/ 053 \_J 700

f) =1 - 4y
fi=)=e+2 - %:1
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Another example: flw,z)

- 1 + ¢ (womo-twim +uwy)

w0 2.00
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Another example:

- 1 + ¢ (womo-twim +uwy)

[local gradient] x [its gradient]
x0:[2]x[0.2]=0.4
wO0: [-1] x [0.2] =-0.2

0_GT) 100 o5 037 /N 137 s 07

020 \_/ 020

-0.53 LH/ 053 \__/ 100

f@) =1 4 e
)=t - %:1
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1

flw,z) = 1 + e~ (wozo+wizy+ws) (@)=
do(z) e ¢ - (l—i—eI
dm - (l+e_m)2 - 1+€_I

) (=) - a-o@)a

sigmoid gate

~ 1te = Sigmoid function

S. Cheng (OU-ECE)
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Breaking down at different

1 1
~ 1te = Sigmoid function

f(w,z)

1 + e~ (wozo+wizi+ws)

2 (1+”1)( - ):(1—a(m))a(w)

1+e*® l1+e®

(1+e=)

sigmoid gate

(0.73) * (1-0.73) = 0.2
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add gate: gradient distributor

-m.oo@ -20.00
200 \_°/ 100

S. Cheng (OU-ECE) Neural Networks Jan 2019 41 /203



add gate: gradient distributor

Q: What is a max gate?

-m.oo@ -20.00
200 \_°/ 100
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add gate: gradient distributor

max gate: gradient router

-m.oo@ -20.00
200 \_°/ 100
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add gate: gradient distributor
max gate: gradient router

Q: What is a mul gate?

-m.oo@ -20.00
200 \_°/ 100
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add gate: gradient distributor
max gate: gradient router

mul gate: gradient switcher

-m.oo@ -20.00
200 \_°/ 100

S. Cheng (OU-ECE) Neural Networks Jan 2019 45 /203



More examples: RELU

o Consider a “half-linear” function with negative side chopped off. That is,

f<z)={”” 'e

0 otherwise

o This is known to be the rectified linear unit (RELU)
e How should the gradient be propagated back?

m—»@—*y
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Merging gradients
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Merging gradients

OL(y1(x),y2(x)) _ OL Oyr  OL Oys
ox Oy1 Oxy  Oyz Oxy
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Back-propagation

Handling vector variables

Gradients for vectorized code (xy,zare This is now the
now vectors)  Jacobian matrix
(derivative of each
element of z w.r.t. each
element of x)

“local gradient”

oL
0z

gradients

Neural s Jan 2019 48 /203



Handling vector variables

A vectorized example: L = ||¢ — §||> = [|[Wz — §||?
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Handling vector variables
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L(q) = llg — dI*
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Handling vector variables

A vectorized example: L = ||¢ — §||> = [|[Wz — §||?

<0.1 0.5>
-0.3 0.8 W
-(O——()—
(0.2)
0.4 .

Wiizr + -+ Wipz,

Wn,ll‘l + -+ Wn,nxn
L(g) = lla — qlI?
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Handling vector variables
A vectorized example: L = ||¢ — §||> = [|[Wz — §||?

<0.1 0.5>
-0.3 0.8 W

0.22

o=

@),

Wiizi 4+ -+ Winzn
) ' ) 8qk B (5 .
q= Wz = : anL,] = Uikty
Wn,ll‘l + -+ Wn,nxn aqk
B Wi
X

L(q) = llg — dI*

Jan 2019 49 /203
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Handling vector variables
A vectorized example: L = ||¢ — §||> = [|[Wz — §||?

0.1 05 o
<_0.3 O.8> W <u(.'_ ()'.]1> _ (\()1.! ”[I|]>
0.22

o

@),

Wiz + - + Winzy dar .

q= Wz = : anL,] = Uikty
Woart + -+ Wyno, Oqx,

i Wi
T

L(q) = llg — dI*
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Handling vector variables

A vectorized example: L = ||q¢ — §||* = [|[Wx — §||?
0.1 0.5 0.2 . )
<—0.3 O.8> W < 0 0“1> ’ <()'.3 1.[_'1>
0.22

(0.26> q 0.116
- i
(0.2)
0.4 .

L(q) = llg — dI*
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Handling vector variables

A vectorized example: L = ||¢ — §||> = [|[Wz — §||?

0.1 0.5 .
<—0.3 0.8) W<“(I'_ Uhl)(u'.'z 1.[_'1>

022 0.44
Q 0.26) ¢ (rmz>< )0.116
N L2
(0.2)
0.4 .

L(q) = llg — dI*
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Handling vector variables

A vectorized example: L = ||¢ — §||> = [|[Wz — §||?

0.1 05
<_0.3 O.8> W(u(.'_ 0‘.]1)_(“1.;2 ”u]>

0 22 (1 14
(0.2)
0.4 .

0. 26 0.5 >3> 0.116
¥O: L
1.00

)

W11‘1+ JFW nn —1007
L(q) = llg — qlI?
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Handling vector variables

A vectorized example: L = ||¢ — §||> = [|[Wz — §||?

0.1 0.5 /0 o
<—O,3 O.8> W <“(.|~ Uhl)-(()'.’:

0
0.4

022
026

(lll

(o) AQ

Wpizt + -
L(q) = [lg — qII?

S. Cheng (OU-ECE)
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)

+W nTn
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) 0.116
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1.00

oL oL
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Handling vector variables

A vectorized example: L = ||¢ — §||> = [|[Wz — §||?

01 05
<—0.3 0.8) <“{._ Uhl)(u'.'z 1.[_'1>
0088 0176\ W —

022 (lll
0.104 0.208

0 26 ) 0.116
Ly Lo
0 44 1.00
(0.2) 0 2
9
0.4 . / |

Wiizr + -+ Wipz,

8L o 8L 8(]1 8L 8(]2

Wn 11+ -+ Wn ndn oW, = qu oW, + 87(12 oW,

L(q) = llg — dI*
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Handling vector variables

A vectorized example: L = ||¢ — §||> = [|[Wz — §||?

01 05
<—0.3 0.8) <“{._ Uhl)(u'.'z 1.[_'1>
0088 0176\ W —

022 (lll
0.104 0.208

0 26 ) 0.116
L L2
o 44 1.00
0.2 0 2
0.4 2

—0.112\ ¥
0.636

Wiizr + -+ Wipz,

OL 0L dq1  OL dqs

Wn1m1+ +Wnn$n or; _aiqlagg 87q26x

L(q) = llg — dI*
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Example: Softmax

o 7o) = siet
doi(o exp(o;
a( ) = ezé (jk))2 exp(0;) = —0a4(0)7j(0)
do;(0) _ exp(o;) exp(0;)

° o = Seowlon) (5 explon)? OP0) = 0il0)1 = 0(0))
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ag

Example: Softmax + Cross-entropy

o L=—3qlogoio)

0 9L _ _a
Jdoy g
a .
° goLi =2 _% 82_ = Zl;éi %Ui(o)al(o) - %Ui(o)(l —0(0))

=0i(l—q)—q(l—0i)=0i—q

Makes lot of sense!
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Example: IoU (reference)

o Interception over union is commonly used to quantify segmentation quality for image
segmentation

e For pixel v, X, is the estimated mask and Y, € {0,1} is the ground truth
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Example: IoU (reference)

o Interception over union is commonly used to quantify segmentation quality for image
segmentation

e For pixel v, X, is the estimated mask and Y, € {0,1} is the ground truth
o IoU(X) = {3, where I(X) = 5, XY, and U(X) & 5,(X, + Y, — X,Y,)

dIoU(X)
X,

S. Cheng (OU-ECE) Neural Networks
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Example: IoU (reference)

Interception over union is commonly used to quantify segmentation quality for image
segmentation

For pixel v, X, is the estimated mask and Y, € {0,1} is the ground truth

ToU(X) = 434, where I(X) & ¥, X,Y, and U(X) & ¥, (X, + Y, — X, Y;)

o OoU(X) _ U(x) 20 —p(x) 210
Xy UZ(X)
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Example: IoU (reference)

Interception over union is commonly used to quantify segmentation quality for image
segmentation

For pixel v, X, is the estimated mask and Y, € {0,1} is the ground truth

ToU(X) = 434, where I(X) & ¥, X,Y, and U(X) & ¥, (X, + Y, — X, Y;)

oroU(x)  UX) G —1(x) %5
X, UZ(X)

U(X)Y,—I(X)(1-Y,)
U(Xx)?
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Example: IoU (reference)

Interception over union is commonly used to quantify segmentation quality for image
segmentation

e For pixel v, X, is the estimated mask and Y, € {0,1} is the ground truth
o IoU(X) = {3, where I(X) = 5, XY, and U(X) & 5,(X, + Y, — X,Y,)
dIoU(X) U(X)%?*I(X)%UT@_ U(X)Y,—I(X)(1-Y,) oIoU(X) U(lX) Y, =
oX, UZ(X) = U(X)? = X, )10y
U(X)2 v
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Implementation

Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

class ComputationalGraph(object):

i

def forward(inputs):

# 1. [pass inputs to input gates...]
# 2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs_gradients




Implementation

Modularized implementation: forward / backward API

y
(x,y,z are scalars)

def

def

class MultiplyGate(object):

forward(x,y):
Z = X*y

return z

backward(dz):

#dx = ... #tosz\\\\\‘\\---~\\
# dy = ... #todo

OL
0z

return [dx, dy]

™\

oL
ox

Neural Networks
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Implementation

Modularized implementation: forward / backward API

class MultiplyGate(object):
X def forward(x,y):
Z = X*y
Z self.x = x # must keep these around!
self.y =y
return z
y def backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]

(x,y,z are scalars)

dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]




Remark of BP

@ During the forward pass, each computing unit will evaluate the output and also the
corresponding local derivatives of the output w.r.t. the inputs
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Remark of BP

@ During the forward pass, each computing unit will evaluate the output and also the
corresponding local derivatives of the output w.r.t. the inputs

@ During the backward pass, the local derivatives and the evaluated outputs will be
“consumed” to compute the overall derivatives
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Remark of BP

@ During the forward pass, each computing unit will evaluate the output and also the
corresponding local derivatives of the output w.r.t. the inputs

@ During the backward pass, the local derivatives and the evaluated outputs will be
“consumed” to compute the overall derivatives

e For a large network, there can be a large spike of memory consumption during the
forward pass
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Remark of BP

@ During the forward pass, each computing unit will evaluate the output and also the
corresponding local derivatives of the output w.r.t. the inputs

@ During the backward pass, the local derivatives and the evaluated outputs will be
“consumed” to compute the overall derivatives

e For a large network, there can be a large spike of memory consumption during the
forward pass

o Note that BP only computes the gradients. It does not perform the optimization.
Sometimes you may hear people said that they trained their networks with BP. What
they said was not literally right. We will discuss more on optimizer later today
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Remark of BP

@ During the forward pass, each computing unit will evaluate the output and also the
corresponding local derivatives of the output w.r.t. the inputs

@ During the backward pass, the local derivatives and the evaluated outputs will be
“consumed” to compute the overall derivatives

e For a large network, there can be a large spike of memory consumption during the
forward pass

o Note that BP only computes the gradients. It does not perform the optimization.
Sometimes you may hear people said that they trained their networks with BP. What
they said was not literally right. We will discuss more on optimizer later today

e With BP in place, why we still can’t train deep networks?
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Gradient vanishing and

o As each training step is nothing more than going approximately downhill along the
negative gradient
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Gradient vanishing and exploding problems

o As each training step is nothing more than going approximately downhill along the
negative gradient

e Gradient vanishing: no training can continue as gradient goes to zero
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Gradient vanishing and exploding problems

o As each training step is nothing more than going approximately downhill along the
negative gradient
e Gradient vanishing: no training can continue as gradient goes to zero
e Gradient exploding: training dies as gradients goes overflow and usually resulting in NaN
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Gradient vanishing and

o As each training step is nothing more than going approximately downhill along the
negative gradient

e Gradient vanishing: no training can continue as gradient goes to zero
e Gradient exploding: training dies as gradients goes overflow and usually resulting in NaN

o As layers stack up, these problems become more and more likely to happen
o These make training deep ANN challenging
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Initialization Input pre

Input preprocessing

Step 1: Preprocess the data

original data zero-centered data normalized data

10 -10
3 e = s 9 =16 =3 3 1

X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)




zation Input prepr

Input preprocessing

Step 1: Preprocess the data

In practice, you may also see PCA and Whitening of the data

original data decorrelated data whitened data

14 1) -5 B g -10 =5 5

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

Neural Net
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Input preprocessing

TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening




Initialization Weight initialization

Weight initialization

- Q: what happens when W=0 init is used?

output layer
input layer
hidden layer

Neural Networks Jan 2019 61 /203



initialization

Weight initialization

- Firstidea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W = 0.01* np.random.randn(D,H)
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Weight initialization

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W = 0.01* np.random.randn(D,H)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.
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Initialization Weight initialization

Weight initialization

Let’s look at some activation statistics
e 10 layers

@ 500 neurons per layer

tanh(-) for activation

e W =0.01 *x np.random.randn(fan__in, fan_ out) as described in the last slide
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Weight initialization

input layer had mean ©.000927 and std 0.998388

hidden layer
hidden layer
hidden layer
hidden layer
hidden layer
hidden layer
hidden layer
hidden layer
hidden layer
hidden layer

1

2
3
4
5
6
74
8
9
I

had mean -0.000117 and std ©.213681
had mean -6.000001 and std ©.047551
had mean -6.600002 and std ©.010630
had mean ©.000001 and std ©.062378
had mean 0.000002 and std ©.000532
had mean -0.000000 and std ©.000119
had mean ©.000000 and std ©.000026
had mean -8.600000 and std ©.000006
had mean 0.000000 and std ©.000001

0 had mean -0.000000 and std ©.€00000

Initialization Weight initializatio

layer std

Neural Networ




Weight

input layer had mean ©.000927 and std 0.998388

hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden

layer
layer
layer
layer
layer
layer
layer
layer
layer
layer

1

2
3
4
5
6
74
8
9
I

had
had
had
had
had
had
had
had
had

initialization

mean -0.000117 and std ©.213081
mean -0.000001 and std ©.047551
mean -0.000002 and std 0.610630
mean 0.000001 and std 0.002378
mean ©.000002 and std 6.000532
mean -0.000000 and std 0.600119
mean ©.000000 and std 0.000026
mean -0.000000 and std 6.000006
mean 0.000000 and std ©.000001

0 had mean -0.000000 and std ©.€00000

Initialization Weight initialization

layer std

All activations
become zero!

Q: think about the
backward pass.
What do the
gradients look like?

Hint: think about backward
pass for a W*X gate.



Initialization Weight initialization

Weight initialization

W = np.random.randn(fan in, fan out) * 1.0 # layer initialization

At g e oo WS, LN Almost all neurons
hidden layer 1 had mean -6.000430 and std ©.981879

hidden layer had mean -0.000849 and std ©.981649

hidden layer

hidden layer
hidden layer

2
3 had mean ©.080566 and std ©.981601
4
5
hidden layer 6 had mean
7
8
9
1

completely
* 1 *

had mean -6.000682 and std 0.981614

1.0 instead of *0.01

hidden layer
hidden layer
hidden layer
hidden layer

had mean
0 had mean

.000899 and std
000584 and std

981728
981736

e e saturated, either -1
' ‘ and 1. Gradients
will be all zero.

layer mean

12




Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n.
Then,

Var(y) = Var Z wix; | = ZVar(wix,-)
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Var(XY) = E[X]*Var(Y) + E[Y)*Var(X) + Var(X)Var(Y)

Var(XY) = E[(XY)? — E[XY]?
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Initialization Weight initialization

Var(XY) = E[X]*Var(Y) + E[Y)*Var(X) + Var(X)Var(Y)

Var(XY) = E[(XY)? — E[XY]?
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1 Wei a,

Var(XY) = E[X]Var(Y) + E[Y2Var(X) + Var(X)Var(Y)

Var(XY) = E[(XY)? — E[XY]?

Var(X)Var(Y)
= (BIX?] - EIX]*)(E[Y?] - E[Y]?)
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Var(XY) = E[X]*Var(Y)+ E + Var(X)Var(Y)

Var(XY) = E[(XY)? — E[XY]?
= E[X?|E[Y?] - E[X)?E[Y]?

Var(X)Var(Y
= (BE[X?] - BIX]*)(B[Y?] - E[Y]?)
= E[X?|E[Y?] — EX|?E[Y?] — E[X?|E[Y)? + E[X)2E[Y]?
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Var(XY) =

Var(X)Var(Y)
(E[XZ] E[X]’)(E[Y?] - E[Y]?)
E[X?|E[Y?] - EX]?E[Y?] — E[X?|E[Y]* + E[X]*E[Y]?

[ ]
E[X?|E[Y?] - EIX*(E[Y?] - E[Y]?)
E[Y]Q(E[Xz] E[X]?) - EIX]?E[Y]?
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(X)Var(Y)

Var(X)Var(Y
= (BE[X? - EIX]*)(E[Y?] - B[Y]?
= E[X?|E[Y?] — E[X)2E[Y?]
= BIX?|B[Y?] - BEIX]*(E[Y?] - E[Y]?)
E[Y*(E[X? - E[X]?) — E[X]2E[Y]?
=Var(XY) - E[X)>V

S. Cheng (OU-ECE)

69 /203



tion Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n.
Then,

Var(y) = Var (Z wil'i) = ZVar(wimi)

= Z Elw;|*Var(z;) + E[z;)*Var(w;) 4+ Var(z;) Var(w;)

(2
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Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n.
Then,

Var(y) = Var (Z wil'i) = ZVar(wimi)

= Z Elw;|*Var(z;) + E[z;)*Var(w;) 4+ Var(z;) Var(w;)

(2

= Z Var(z;)Var(w;)

= (nVar(w)) Var(z)
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Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n.
Then,

Var(y) = Var (Z wil'i) = ZVar(wimi)

= Z Elw;|*Var(z;) + E[z;)*Var(w;) 4+ Var(z;) Var(w;)

= Z Var(z;)Var(w;)
= (nVar(w)) Var(z)

Thus, output will have same variance as input if nVar(w) = 1
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ght initializz

e e e mean 6. 061190 andsti o azves3 | W = np.random.randn(fan_in, fan out) / np.sqrt(fan_in) # layer initialization

hidden layer
hidden layer

2 had mean -0.000175 and std ©.486051
3 had mean ©.000055 and std 6.407723
hidden layer 4 had mean -0.000306 and std ©.357108
hidden layer 5 had mean ©.000142 and std ©.320917
hidden layer 6 had mean -6.000389 and std 6.292116
hidden layer 7 had mean -0.000228 and std ©.273387
hidden layer 8 had mean -6.000291 and std ©.254935
hidden layer 9 had mean 6.660361 and std 0.239266
hidden layer 10 had mean ©.000139 and std ©.228008

7 Reasonable initialization.
(Mathematical derivation
. assumes linear activation




Initialization Weight initialization

Xavier weight initialization

e By the same argument, if we want the variance of the backprop gradient does not

change, we want mVar(w) = 1, where m is the number of outputs

2
n+m

@ To account for both directions, one may initialize the weight with variance

e This is known as Xavier weight initialization
o torch.nn.init.xavier_uniform__/torch.nn.init.xavier_normal

layer=torch.nn.Linear(10,20)
nn.init.xavier_normal_(layer.weight)

w=torch.empty(10,20) # tensor without initialization
nn.init.xavier_normal_ (w)
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Weight initialization

input layer had mean 0.600561 and std ©.999444

hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden

layer
layer
layer
layer
layer
layer
layer
layer
layer
layer

1

2
3
4
5
6
7
8
9
I

had
had
had
had
had
had
had
had
had
0 h,

mean
mean
mean
mean
mean
mean
mean
mean
mean

0

]
0
]
0
]
0
:]
)

398623
272352
186076
136442
099568
072234
049775
635138
025404

layer mean

and
and
and
and
and
and
and
and
and

std
std
std
std
std
std
std
std
std

ad mean ©.018468 and std

cceococooo

.582273
403795
276912
198685
140299
103280
072748
051572
938583
0.026076

[W = np.random.randn(fan_in, fan out) / np.sqrt(fan_in) # layer initialization ]

layer std

but when using the ReLU
nonlinearity it breaks.




Initializatic Weight initialization

Variance calibration for ReLU

¢ > :L‘(l_l) *;—» y(lil) 4> .’E(l) — Z — y(l) — .

Note that it doesn’t work when the activation layer is ReLU. But...!

Var(y) = Var ngl)xl(l)

Note that y(l) now denotes the sum of input before going through the activationsfunction.
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Initializatic Weight initialization

Variance calibration for ReLU

C e (1)

=]

=D [ ) —

2

— ) — -

Note that it doesn’t work when the activation layer is ReLU. But...!

Var(y®) = Var [ 302 | =3 Var@2{") = nvar(w®z®)

Note that y(l) now denotes the sum of input before going through the activationsfunction.

S. Cheng (OU-ECE)
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Initialization Weight initialization

Variance calibration for ReLU

=D [ ) —

Note that it doesn’t work when the activation layer is ReLU. But...!

C e (1)

=]

2

— ) — -

Var(y") = Var (Z w§“x§”> =3 Var(w’a{") = nVar(w®z®)

= nEw)*Var(z®) + nE[zV)?>Var(w®) + nVar(z®) Var(w®)

Note that y(l) now denotes the sum of input before going through the activationsfunction.

S. Cheng (OU-ECE)
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Variance calibration for ReLU

¢ > :L‘(l_l) *;—» y(lil) 4> .’E(l) — Z — y(l) — .

Note that it doesn’t work when the activation layer is ReLU. But...!

Var(y") = Var (Z w§“x§”> =3 Var(w’a{") = nVar(w®z®)

= nEw)*Var(z®) + nE[zV)?>Var(w®) + nVar(z®) Var(w®)
= nE[zVVar(w") + nVar(z) Var(w®)

Note that y(l) now denotes the sum of input before going through the activationsfunction.
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Initialization Weight initialization

Variance calibration for ReLU

> :L‘(l_l) *;—» y(lil) 4>=—> .’E(l) — Z — y(l) — .

Note that it doesn’t work when the activation layer is ReLU. But...!

Var(y'”) = Var (Z w(l)ac ) = ZVar(wgl):I;l(-l)) = nVar(wWz®)

nE[wY)?Var(zV) + nE[z®)?Var(w®) + nVar(2?) Var (w®)
nE[z1)2Var(w) + nVar(2") Var(w®)
nE[(z")?]Var(w")

Note that y(l) now denotes the sum of input before going through the activationsfunction.

S. Cheng (OU-ECE) Neural Networks Jan 2019 74 /203



Initialization Weight initialization

Variance calibration for ReLU

> :L‘(l_l) *;—» y(lil) 4>=—> .’E(l) — Z — y(l) — .

Note that it doesn’t work when the activation layer is ReLU. But...!

Var(y'”) = Var (Z w(l)ac ) = ZVar(wgl):I;l(-l)) = nVar(wWz®)

nE[w®2Var(z®) + nElzO12Var(w®) + nvar(z® ) Var (w®)
nE[x(l)Pvar(w(l)) +nVar(:c(l))Var(w(l))
nE[(zW)Var(w®)

n(Var(y(l_l))/2)Var(w(l)) = (gvar(w(l))) Var(y(l_l))

Note that y(l) now denotes the sum of input before going through the activationsfunction.
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Initialization Weight initialization

Variance calibration for ReLU

> :L‘(l_l) *;—» y(lil) 4>=—> .’E(l) — Z — y(l) — .

Note that it doesn’t work when the activation layer is ReLU. But...!

Var(y'”) = Var (Z w(l)ac ) = ZVar(wgl):I;l(.l)) = nVar(wWz®)

nkE [w()] Var(z ())+nE[ ] ar(w (l))-i‘DVar(:c(l))Var(w(l))
nE[zW]2Var(w®) + nVar(z®)Var(w®)
nE[(zW)Var(w®)

n(Var(y!=1) /2)Var(w®) = (gVar(w(l))) Var(y®D)

Variance of y conserved across a layer if §Var(w) =1

Note that y(l) now denotes the sum of input before going through the activationsfunction.
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Weight initialization

input layer had mean 0.600561 and std 6.999444 |
hidden layer ad mean 0.562488 and std 0.825232

= np.random.randn(fan_in, fan_out) / np.sqrt(fan_in/2) # layer initialization

hidden layer 2 had mean 0.553614 and std 0.827835
hidden layer 3 had mean 0.545867 and std ©.813855
hidden layer 4 had mean ©.565396 and std ©.826962
hidden layer 5 had mean 0.547678 and std 0.834092
hidden layer 6 had mean 0.587103 and std 0.860035
hidden layer 7 had mean 0.596867 and std 0.870610
hidden layer 8 had mean ©0.623214 and std ©.889348
hidden layer 9 had mean 0.567498 and std ©.845357
hidden layer 10 had mean 6.552531 and std 0.844523

CRNDGE W
z

layer mean
ay

tayer std

1
— g iarlw] =1 ours

- AVarlw] =1 Xavier

Neural Networ




Initialization Weight initialization

Kaiming weight initialization

e The ReLU adjustment was first proposed by Kaiming He and his coauthors in an
ICCV 2015 paper. The initialization method is adopted and popularized by ResNet

e This is known as Kaiming weight initialization
o Unlike Xavier initialization, only fan-in is considered = Var(w) = 2
o torch.nn.init.kaiming uniform_ /torch.nn.init.kaiming_normal__

layer=torch.nn.Linear(10,20)
nn.init.kaiming_ normal_ (layer.weight)
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Batch normalization

Batch normalization

Batch Normalization [loffe and Szegedy, 2015]

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

(k) _ B[k
#(k) — T [

Var[z(*)] this is a vanilla
differentiable function...
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Regularization Batch normalization

Batch normalization

Batch Normalization [loffe and Szegedy, 2015]

“you want unit gaussian activations?
just make them so.”

1. compute the empirical mean and
variance independently for each
dimension.

2. Normalize
) _ r(k) _ E[x(k)]
Var[z(F)]
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Batch normalization

[loffe and Szegedy, 2015]

| ¢ | Usually inserted after Fully
| B‘N | Connected / (or Convolutional, as
I we’ll see soon) layers, and before
| tal‘h | nonlinearity.
.
! k k
| BN | * Problem: do we (k) — zk) — E[-’E( )]
‘ I necegsan!y want a unit /—Var[m(k)]
tanh ‘ gaussian input to a
] tanh layer?
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Batch normalization

Batch normalization

Batch Normalization [loffe and Szegedy, 2015]

Normalize:

(k) _ E[£(*)
i:(k:) - €L [.’17 ]

k
Var[x ( )] Note, the network can learn:
And then allow the network to squash 7(’“) = 4/ Var[z(¥)]
the range if it wants to:

8®) — E[z®)

to recover the identity
mapping.

y®) = 4 ()FE) 4 g(k)

S. Cheng (OU-ECE)
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zation Batch normalization

Batch normalization

Batch Normalization lloffe and Szegedy, 2013]
Input: Values of = over a mini-batch: B = {z1. .., }; - Improves gradient flow through
Parameters to be learned: ~, 3 the network
Output: {y; = BN, 5(z:)} - Allows higher learning rates
Lo - Reduces the strong dependence
ps — — > @ // mini-batch mean on initialization
L =1

- Acts as a form of regularization
in a funny way, and slightly
reduces the need for dropout,

T — B maybe

—_— // normalize
\/ 0?3 + €

Y; < YZ; + B = BN, g(z;) // scale and shift

m

1 -y ’
oF = Z(q;l — up)? // mini-batch variance
=1

:/L'\i(—
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Batch normalization

Batch normalization

Batch Normalization [loffe and Szegedy, 2015]

Input: Values of x over a mini-batch: B = {z1..m }; Note: at test time BatchNorm layer
Parameters to be learned: ~, 3 functions differently:
Output: {y; = BN, 5(z,)}
Lo The mean/std are not computed
HB = — D // mini-batch mean| based on the batch. Instead, a single
i=1 fixed empirical mean of activations

m

0% & E(Il — up)? // mini-batch variance during training is used.
™ =1
= . TiZ s Hmridlieg (g.g. can .be estimated during training
T foEte with running averages)
Y; < YZ; + B = BN, g(z;) // scale and shift
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Batch normalization
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Dropout

Reducing testing error

How to improve single-model performance?

Train Loss
09
08
07
06
05
0 2500 5000 7500 10000 12500 15000 17500 20000

Neural Netw

Accuracy

—e— train
+— val

".“'.'“"'”“,” 282000009
9@
808w

0

2500 5000 7500 10000 12500 15000 17500 20000

Jan 2019

84 /203



Ensemble trick

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

S. Cheng (OU-ECE)



Regulari ic Dropout

Ensemble trick

Fun Tips/Tricks:

- can also get a small boost from averaging multiple
model checkpoints of a single model.
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Regularization Dropout

Ensemble trick

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

05 Single Model A

o+, Standard LR Schedule [/}

03 R\

02

0.1 o

0 (
2 N > 7

i g

o v Y

0.3

50 i —

-~ D
* 21;\1 ///20 ®

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Ensemble trick

ation Dropout

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

05 Single Model A

o4, Standard LR Schedule [/}

03 AN 03

02 024

0.1 o 0.1 \:
o f a4

o 5 P 4 -0 |~

- /4 s

-0.2 W w’ 2 -02 ]

=03 03

i f o 2l

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

Che ECE)

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

%7 Snapshot Ensemble = /)
04 Cyclic LR Schedule A \

Neural Networks

Cifar10 (L=100,k=24, B=300 epochs)

10!
= Standard Ir scheduling
—— Cosine annealing with restart Ir 0.1
10° | | I
| | | | |
@
@
S 10"
=)
]
© 107
=)
10?
| |
Model | Model | Model | Model | Model | Model
1 2 5 6
104 1 1 1 1 1
0 50 100 150 200 250 300
Epochs

Cyclic learning rate schedules can
make this work even better!
Jan 2019




Regularization Dropout

Ensemble trick

Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

True:
data batch = dataset.sample data batch()
loss = network.forward(data batch)
dx = network.backward()
X += - learning rate * dx
X _test = 0.995*x test + 0.005%x

Polyak and Juditsky, “ ion of ic approximation by ing”, SIAM Journal on Control and Optimization, 1992.
S. Cheng (OU-ECE) Neural Networks Jan 2019
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[Srivastava et al., 2014]

Dropout
rks

(b) After applying dropout.
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Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

Dropout




Dropout

Dropout

p = 0.5 # probability of keeping a unit active.

def train_step(X):
""" X contains the data """

H1 np.makimum(@, np.dot(Wl, X) + bl)

H1 *= Ul # drop!

Ul = np.random.rand(*Hl.shape) < p # first dropout I

H2 = np.maximum(0, np.dot(W2, Hl1) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

! hack

S. Cheng (OU-ECE) Neural Networks

Example forward
pass with a 3-
layer network
using dropout
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Dropout

Dropout

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail Ax_—s

is furry —X—— . cat
~___— score

has claws +/
mischievous

look

T
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Dropout

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
240% ~ 10233 possible masks!
Only ~ 1082 atoms in the universe...

S. Cheng (OU-ECE) Jan 2019




Dropout

Dropout: Test time

Output Input
(label) (image)
Rand
Dropout makes our output random! [y|= fW. e

Want to “average out” the randomness at test-time
y=£(z) = B.[f(2,2)] = [ pe)f (o, 2)dz

But this integral seems hard ...

S. Cheng (OU-ECE)



Regularization Dropout

Dropout

Dropout: Test time

Want to approximate
the integral

S. Cheng (OU-ECE) Neural Networks Jan 2019 95 /203



Regularization Dropout

Dropout

Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: E[a] = wW1x + way

S. Cheng (OU-ECE) Neural Networks Jan 2019 96 /203



Regularization Dropout

Dropout

Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

Attest time we have: £ |a] = w1z + way
During training we have: g4 :%(wlx + way) + %(wlx +0y)

1 1
+ Z(Ox + 0y) + Z(Ox + way)

1
25(11113c + way)

S. Cheng (OU-ECE) Neural Networks Jan 2019
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Dropout

Dropout

Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: F [CL} = w1 + way

During training we have: Ela] =i(w1x+w2y) n i(wlx +0y)

+ L0z +0y) + 105 + way)
At test time, multiply 14 4
by probability p =§(w1x+w2y)

S. Cheng (OU-ECE) Neural Networks Jan 2019
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Dropout

Dropout

Dropout: Test time

def predict(X):
H1 = np.maximum(@, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 np.maximum(®, np.dot(W2, H1) + b2) * p # /|
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time

S. Cheng (OU-ECE)

Neural Networks
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Regularization Dropout

Dropout

""" Vanilla Dropout: Not recommended implementation (see notes below) """

e e e Dropout Summary

def train_step(X):
""" X contains the data """

np.maximum(®, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # first dropout
H1 *= U1 # droy .
A2 = np.maximum(0, np.dot(WZ, HI) + bZ) drop N forward paSS
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

x &
=
o

def pred:Lct (X):

ensembled forward p
H1 = np.maximum(@, np. dot(w1 X) + bl)|* p # NOTE: scale the activations H
H2 = pp.maximum(@, np.dot(W2, H1) + b2) * p # NOTE: scale the activations Scale at teSt tlme

out = np.dot(W3, H2) + b3

Neural Net



Regular Dropout

Dropout

More common: “Inverted dropout”

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
H1 = np.maximum(0, np.dot(Wl, X) + bl)
Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /
H1 *= Ul # drop!
H2 = np.maximum(©®, np.dot(W2, H1) + b2)
U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p! |
H2 *= U2 # drop!
out = np.dot(W3, H2) + b3

S / test time is unchanged!
def prEdiCt(x):_, -

H1 = np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, Hl1) + b2)
out = np.dot(W3, H2) + b3

Neural Networks Jan 2019 101 /203



Dropout

Load image
and label

Compute
loss

S. Cheng (OU-ECE) Neural Networks Jan 2019 102 /203



Dropout

Load image
and label

Transform image

S. Cheng (OU-ECE) Neural Networks Jan 2019 103 /203



Data augmentation

Data Augmentation
Horizontal Flips

S. Cheng (OU-ECE) Neural Networks Jan 2019 104 /203



Data augmentation

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

S. Cheng (OU-ECE)

Neural Networks
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Data augmentation

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. Foreach size, use 10 224 x 224 crops: 4 corners + center, + flips

S. Cheng (OU-ECE) Neural Networks Jan 2019 106 /203



Data augmentation

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

S. Cheng (OU-ECE) Neural Networks Jan 2019 107 /203



Data augmentation

Data Augmentation  pore complex:

Color Jitter 1. Apply PCAto all [R, G, B]

Simple: Randomize pixels in training set
contrast and brightness

- 2. Sample a “color offset”
| along principal component
directions

3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

S. Cheng (OU-ECE) Neural Networks Jan 2019 108 /203



Data augmentation

Data Augmentation
Get creative for your problem!

Random mix/combinations of :

translation

rotation

stretching

shearing,

lens distortions, ... (go crazy)

S. Cheng (OU-ECE)
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tion functions

Activation functions

S. Cheng

Lo wo

@® synapse
axon from a neuron
woTo

cell body

i (Zw,w, + b)
Zwiwi +b :

output axon

activation
function

Neural Networks

Jan 2019
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Activation functions

Threshold-based activation

@ Step function: earliest, used in

perceptron
1.0
. exp(z)—exp(—z)
0.5 ° Tanh: o rexp(—2)
1
0.0
-10 0 10
. . .. . 1 0
e Sigmoid (logistic) function: Tron(=a)
1.0 -1
-10 0 10
0.5
0.0
-10 0 10
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Activation functions Threshold-based activation function

Threshold-based activation

e Historically very popular since they model well a saturated neuron




Activation functions Threshold-based activation function

Threshold-based activation

e Historically very popular since they model well a saturated neuron
e However,

e Saturated neurons lead to vanishing gradient
e exp is a bit compute expensive
o some concerns that sigmoid is not zero-centered (tanh solved the problem)
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Activation functions Threshold-based activation function

Threshold-based activation

e Historically very popular since they model well a saturated neuron
e However,
e Saturated neurons lead to vanishing gradient
e exp is a bit compute expensive
o some concerns that sigmoid is not zero-centered (tanh solved the problem)
@ In most hidden layers, sigmoid and tanh should be avoided because of the gradient
vanishing problem

S. Cheng (OU-ECE) Neural Networks Jan 2019 112 /203



o Rectified linear unit: f(x) = max(zx,0)

o Introduced by Nair and Hinton in 2010 and
10/ popularized by Alexnet in 2012
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10

S. Cheng (OU-ECE)

10

ation functions = ReLU

o Rectified linear unit: f(x) = max(zx,0)
o Introduced by Nair and Hinton in 2010 and
popularized by Alexnet in 2012

o Pros

e No gradient vanishing problem
o Computationally efficient
o Converges much faster than sigmoid/tanh

Neural Networks Jan 2019
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10

Activation functions = ReLU

S. Cheng (OU-ECE)

10

Rectified linear unit: f(z) = max(zx,0)

Introduced by Nair and Hinton in 2010 and
popularized by Alexnet in 2012

o Pros
e No gradient vanishing problem
o Computationally efficient
o Converges much faster than sigmoid/tanh
o Cons
o Not zero-centered and output always positive
o Not differentiable at 0 (doesn’t seem to be a
problem in practice)
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10

Activation functions = ReLU

S. Cheng (OU-ECE)

10

Rectified linear unit: f(z) = max(zx,0)

Introduced by Nair and Hinton in 2010 and
popularized by Alexnet in 2012

o Pros
e No gradient vanishing problem
o Computationally efficient
o Converges much faster than sigmoid/tanh
o Cons
o Not zero-centered and output always positive
o Not differentiable at 0 (doesn’t seem to be a
problem in practice)

Bottom line, just use ReLU when in doubt

Neural Networks Jan 2019 113 /203



Activation functions = ReLU

“Softplus”

10/ ° f(z)= %log(l + exp(Bz))

o Act as a smooth version of ReLU

o In practice, it doesn’t seem to work so well

51 The use of softplus is generally discouraged. ... one might
expect it to have advantage over the rectifier due to being
differentiable everywhere or due to saturating less

completely, but empirically it does not ~Deep Learning

-10 0 10 book
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Activation functions = ReLU

X 50| ReLU U(a:):max(O,;q:) //
< gate —

oL _ o0 0L oL LA
dx Oz o oo . 4 .

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

S. Cheng (OU-ECE)

Neural Networks
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Dead ReLU neurons

active ReL,U

\

DATA CLOUD

dead RelLU
will never activate
=> never update

S. Cheng (OU-ECE) Neural Networks Jan 2019 116 /203




Dead ReLU neurons

DATA CLOUD active ReLU
=> people like to initialize
ReLU neurons with slightly dead ReLU
positive biases (e.g. 0.01) will never activate

=> never update

S. Cheng (OU-ECE) eural Networks Jan 2019 117 /203




ation functions = ReLU

@ lan Goodfellow eee X

Lead author of the Deep Learning textbook: http:/fwww.deeplearningbook.org - Upvoted by
Rahul Bohare, M.S. Machine Learning & Computer Vision, Technical University of Munich (2019) and
Viresh Ranjan, PhD Student in Machine LearningAuthor has 212 answers and 3.4M answer views ...

Rrelated Where is Sparsity important in Deep Learning?

The main thing that's important is sparsity of *connections*: each unit should usually be
connected to relatively few other units. In the human brain, estimates of the number of
neurons vary, but it something like 1e10-1e11 neurons. Each neuron is only connected to
about 1e4 other neurons on average though. In machine learning, we see this in

convolutional networks. Each neuron receives input only from a very small patch in the layer
below.

@ Theoretically ReLLU promotes
sparsity

Sparsity of connections can be seen as resembling sparsity of weights, because it's

equivalent (in terms of the Function it represents) to having a fully connected network with @ many zeros in trained model
zero weights in most places. Sparsity of connections is better though, because you don't pay

the computational cost of explicitly multiplying each input by zero and adding up all those ° But lt iS Controversial lf that iS a
zeros.

dominant factor

So far, learning weights that are sparse hasn't really paid off, at least not in the context of
neural nets. Statisticians often learn sparse models in order to understand which variables
are most important, but that's an analysis technique, not a strategy for making better
predictions.

Learning activations that are sparse doesn't really seem to matter either. Five years ago,
people thought that part of why relus worked well was that they were sparse, but it turns
out that all that matters is that they are piecewise linear. Maxout can beat relus in some
contexts and performs about the same as relus in other contexts, and it’s not sparse at all:
http://imlr.org/proceedings/papers/v28/goodfellow13.pdf =




ReLU

Activation functions = ReLU

Leaky

100

leaky-relu: max(x, 0.01x)
relu: max(x, 0)

-10

g (OU-ECE)

10

o f(x) = max(z,0.01z)

Neural Networks

Jan 2019
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https://towardsdatascience.com/leaky-relu-vs-relu-activation-functions-which-is-better-1a1533d0a89f
https://medium.com/@chinesh4/why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-and-relu-6-969359e48310

ReLU

Activation functions = ReLU

Leaky

100

leaky-relu: max(x, 0.01x)
relu: max(x, 0)

-10

10

o f(x) = max(z,0.01z)

@ Does not saturate

Neural Networks
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ReLU

on functions = ReLU

Leaky

100

leaky-relu: max(x, 0.01x)
relu: max(x, 0)

-10

10

o f(z) = max(z,0.01x)
@ Does not saturate

o Computationally efficient

Neural Networks
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Leaky

ReLU

Activation functions = ReLU

100

leaky-relu: max(x, 0.01x)
relu: max(x, 0)

-10

g (OU-ECE)

10

f(z) = max(z,0.01z)

@ Does not saturate

Computationally efficient

@ Seem to work better than ReLU (see
experiments here and here)

Neural Networks Jan 2019
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ation functions = ReLU

Leaky ReLU

f(z) = max(z,0.01z)

10 leak :
_ y-relu: max(x, 0.01x)
@ Does not saturate

relu: max(x, 0)

) Computationally efficient

5 @ Seem to work better than ReLU (see
experiments here and here)

Generalize to Parametric Rectifier (PReLU)

o — e Replace 0.01 with a learnable a. i.e.,

_10 0 1‘0 f(x) = max(z, ax)
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Activation functions = ReLU

Maxout

e Try to generalize ReLU and leaky ReLLU

max(wlx + by, wlx + by)




Activation functions = ReLU

Maxout

e Try to generalize ReLU and leaky ReLLU

max(wlx + by, wlx + by)

Pros
o Linear regime
@ Does not saturate

@ Does not die

Neural Netw:



Activation functions = ReLU

Maxout

e Try to generalize ReLU and leaky ReLLU

max(wlx + by, wlx + by)

Pros Cons
o Linear regime e Double amount of parameters
@ Does not saturate

@ Does not die

Neural Netw:



Activation functions = ELU

o Exponential linear unit:
x ifx>0

ELU(z,a) = N .
—— relu: max(x, O J—
10 eelu: maax(i, D))+ min(a(e* - 1), 0) a (6 1) OtherWISe

—— celu: max(x, 0) + min(a(e - 1), 0)
—— selu: scale(max(x, 0) + min(a(e* - 1), 0))

Neural Networks Jan 2019 121 /203
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Activation functions = ELU

o Exponential linear unit:

if >0
ELU(z,a) = v .

—— relu: max(x, 0)

10 elu: max(x, 0) + min(a(e* - 1), 0)

—— celu: max(x, 0) + min(a(e - 1), 0)

—— selu: scale(max(x, 0) + min(a(e* - 1), 0))

a(e® —1) otherwise

o Closer to zero mean

Neural Networks Jan 2019
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Activation functions = ELU

o Exponential linear unit:

if
ELU(z, o) = T ifx>0

—— relu: max(x, 0)

10 elu: max(x, 0) + min(a(e* - 1), 0)

—— celu: max(x, 0) + min(a(e - 1), 0)

—— selu: scale(max(x, 0) + min(a(e* - 1), 0))

a(e® —1) otherwise
o Closer to zero mean
o Work better than ReLLU according to this

Neural Netw:
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Activation functions = ELU

—— relu: max(x, 0)

10 elu: max(x, 0) + min(a(e* - 1), 0)

—— celu: max(x, 0) + min(a(e - 1), 0)

—— selu: scale(max(x, 0) + min(a(e* - 1), 0))

o Exponential linear unit:
if 0
ELU(z,a) = v e

a(e® —1) otherwise
o Closer to zero mean
o Work better than ReLLU according to this

if 0

o CELU: f(z)=4{" e

a(e®/* —1)  otherwise

o = — x/a to make function differentiable at 0

Neural Netw:
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Activation functions = ELU

o Exponential linear unit:

T ifx>0
ELU(z,a) = N
—— relu: max(x, 0) i
10 elu: max(x, 0) + min(a(e* - 1), 0) a(e - 1) OtherWISe
—— celu: max(x, 0) + min(a(e? - 1), 0)
—— selu: scale(max(x, 0) + min(a(e* - 1), 0)) @ Closer to zero mean

o Work better than ReLLU according to this

x ifx>0
a(e®/* —1)  otherwise
o = — x/a to make function differentiable at 0
o SELU: Adjust a and add scale to make function

self-normalize (zero-mean, unit variance input=-
zero-mean, unit variance output)

o SELU(z) = AELU(z, o))
o A~ 1.0507, o = 1.6733

e CELU: f(x) =
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Activation functions Gated activation function

Gaussian ELU (often known as GeLU)

o GeLU is motivated by dropout. The authors like to drop some of the node randomly
based on the input
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Activation functions Gated activation function

Gaussian ELU (often known as GeLU)

o GeLU is motivated by dropout. The authors like to drop some of the node randomly
based on the input

o Nodes are still randomly dropped if we consider input as stochastic

o But the actual operation is deterministic w.r.t. the input
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Ac on functions Gated activation function

Gaussian ELU (often known as GeLU)

o GeLU is motivated by dropout. The authors like to drop some of the node randomly
based on the input

o Nodes are still randomly dropped if we consider input as stochastic
o But the actual operation is deterministic w.r.t. the input

They choose an activation function GeLU (z) = x®(x) ~ xo(1.702x), where
®(x) = Pr(Z < z) for Z ~ N(0,1) is the cdf of Z
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Ac on functions Gated activation function

Gaussian ELU (often known as GeLU)

o GeLU is motivated by dropout. The authors like to drop some of the node randomly
based on the input

o Nodes are still randomly dropped if we consider input as stochastic

o But the actual operation is deterministic w.r.t. the input

They choose an activation function GeLU (z) = x®(x) ~ xo(1.702x), where
®(x) = Pr(Z < z) for Z ~ N(0,1) is the cdf of Z

e Quite widely adopted by OpenAl and used in Transformers
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Activation functions Gated activation function

Swish and Hardswish

10| — gelu: x(x)
silu (swish): xo(x)
_ ! NE——— - o
o o e Swish: f(z) = zo(fx)
8 .
e [ is a learnable parameter
e When f is fixed to 1, it is equal to SiLU
6 . . . .
e Often SiLLU rather than Swish is implemented
. o Converge to ReLU when g — oo
2 /
('] -
-10.0 -7.5 -5.0 -25 0.0 2.5 5.0 7.5 10.0
Baselines ReLU LReLU PReLU Softplus ELU SELU
Swish > Baseline 9 8 6 i, 8 8
Swish = Baseline 0 1 3 1 0 1
Swish < Baseline 0 0 0 1 1 0

Neural Net



https://arxiv.org/pdf/1710.05941v1.pdf

Activation functions Gated activation function

Swish and Hardswish

10| — gelu: x(x)
silu (swish): xo(x)
o e IS0, min 2, 0 e Swish: f(z) = zo(fx)
¢ e [ is a learnable parameter
e When f is fixed to 1, it is equal to SiLU

¢ o Often SiLU rather than Swish is implemented
. o Converge to ReLU when g — oo

/ 0 if x < -3,
: / e Hardswish: f(z) =< 2 if x> +3,
| — x-(r+3)/6 otherwise

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

o Piecewise approximation of Swish
e Use in MobileNet V3

Baselines ReLU LReLU PReLU Softplus ELU SELU
Swish > Baseline 9 8 6 7 8 8
Swish = Baseline 0 1 3 1 0 1
Swish < Baseline 0 0 0 1 1 0
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Activation functions Gated activation function

GLU and variants

e Gated Linear Unit: GLU(z, W, V,b,¢) = o(zW +b) @ (xV + ¢)



https://arxiv.org/pdf/1612.08083.pdf
https://dl.acm.org/doi/10.1145/1273496.1273577
https://arxiv.org/pdf/2002.05202.pdf

ation functions Gated activation function

GLU and variants

e Gated Linear Unit: GLU(z, W, V,b,¢) = o(zW +b) @ (xV + ¢)
e Introduced by Dauphin et al. and inspired by a bilinear unit by Mnih and Hinton:
Bilinear(z, W.V.b.c) = (W +b) @ (zV + ¢)
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Activation functions Gated activation function

GLU and variants

e Gated Linear Unit: GLU(z, W, V,b,¢) = o(zW +b) @ (xV + ¢)
e Introduced by Dauphin et al. and inspired by a bilinear unit by Mnih and Hinton:
Bilinear(z, W.V.b.c) = (W +b) @ (zV + ¢)

@ Other variants introduced in Shazeer
ReGLU(z, W, V., b, ¢) = max(0,zW +b) @ (xV + ¢)

GEGLU(z, W, V,b,c) = GELU(zW +b) ® (2V + ¢)
SwiGLU(z, W, V, b, ¢, B) = Swishg(aW +b) ® (zV +¢)
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Activation functions L on Learned

Trend (from paperswithcode)

Usage Over Time
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1 == Sigmoid Activation
g oo - GELU

I~ = Tanh Activation

= Leaky ReLU
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https://paperswithcode.com/method/relu

Activation functions  Lesson Learned

Summary (IMHO)

o Still a hot topic and nothing is final
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o Still a hot topic and nothing is final
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o ReLU > Sigmoid/tanh
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ation functions  Lesson Learned

Summary (IMHO)

Still a hot topic and nothing is final

Vanishing gradient seems to be a bigger problem than exploding gradient
o ReLU > Sigmoid/tanh

@ Zero-mean is not essential. But all positive does hurt performance
o ReLU/Softplus < ELU, Leaky-ReLU, etc.

Sparsity may have a role after all (just my guess)

e Softplus < ReLLU
e ELU, Leaky-ReLU < Swish, GELU

@ When in doubt, just use ReLLU and it is usually good enough
o Can try out GeLU/Swish if complexity is not a huge concern
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Optimization Optimizers

Optimizers

Optimization

# Vanilla Gradient D ent

while True:
weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step _size * weights _grad # perform parameter update




Optimization Optimizers

Optimizers

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

S. Cheng (OU-ECE) Neural Networks Jan 2019 128 /203



Optimization Optimizers

Optimizers
Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

S. Cheng (OU-ECE) Neural Networks Jan 2019 129 /203



Optimizers

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

S. Cheng (OU-ECE)
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Optimizers

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient, °
gradient descent
gets stuck

S. Cheng (OU-ECE) eural Networks 131 /203



Optimization Optimizers

Optimizers

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimizers

Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

1 N

1 N
VWL = NEZ: m'wyz, )

S. Cheng (OU-ECE) eural Networks Jan 2019



Optimization Optimizers

Exponential moving average

Y].) t:]_
a-Vi+(1—-a) S, t>1
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Exponential moving average

Y].) t:]_
OSt:
a-Vi+(1—-a) S, t>1

o Si=alVii+(1-a)Yio+(1—a)?Yig+--]
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Optimization Optimizers

Exponential moving average

Y].7 t:]_
OSt:
a-Yi+(l—a) - Si—1, t>1

o Sy=alYii+(1- )Y+ (1 —a)?Y g+ ] = Ymtloal¥iat 0o/ gt

1+(1-a)+(1—a)?+--
||“‘|IIIIII|||II|l!
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Momentum update

Sutskever et al.: Alternative:
Ax < pAx —Ir(1 — p)VxL Ax — pAx + (1 — p)VxL
X ¢ x+ Ax X+ x—1Ir-Ax
p € [0,1), u = 0 = No momentum w € [0,1), 1 = 0= No momentum

e 1 often takes values such as 0.5, 0.9, and 0.99. And can annealed over time as well
o Allows “velocity” to build up along shallow directions
e Velocity becomes damped in steep valley with rapid change of gradient sign

Remark: In PyTorch, Ax < pAx + VxL is implemented instead of the one shown on the
right. It saves one mulitiplication operation, but note that Ir is effectively 1%# times larger
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Optimization Optimizers

Momentum update vs SGD

number of steps=10

1 I
| — sgd
— momentum
5
0_
-5
_10 [l I [l
-10 -5 0 5
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Optimizers

— | CM_ball (Classical
Momentum)

Momentum Jump

—
Slope Jump

ST NAG_ball (Nesterov’s
Accelerated Gradient) |

Reference:
https://stats.stackexchange.com/questions/179915/whats-the-difference-between-momentum-based-gradient-descent-and-nesterovs-acc



https://stats.stackexchange.com/questions/179915/whats-the-difference-between-momentum-based-gradient-descent-and-nesterovs-acc

Optimization

Optimizers

Momentum update

momentum
step
actual step

gradient

Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

actual step

Nesterov: the only difference...

vp = g1 — (1= pw)lrV f(og1+pv1)
———

Tt = Tt—1 + V¢

We want to deal with V f(x;_1) instead

Neural Networks

€

Jan 2019
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Optimization Optimizers

In many cases such as backprop, we only have gradient for the current . However, NAG
can be “fixed” as follows

v = g1 — €V f(ap 1+t 1)

Tt = Te—1 + V¢
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In many cases such as backprop, we only have gradient for the current . However, NAG
can be “fixed” as follows

v = g1 — €V f(ap 1+t 1)

Ty = Typ—1 + V¢
Pick i‘t =T+ MU,

vp = pvp—1 — €V f(T-1)
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Optimization Optimizers

In many cases such as backprop, we only have gradient for the current . However, NAG
can be “fixed” as follows

v = g1 — €V f(ap 1+t 1)

Tt = Te—1 + V¢

Pick i‘t =T+ MU,

vp = pvp—1 — €V f(T-1)
Ty = Tt + vy = Tp—1 + V¢ + vy
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Optimization Optimizers

In many cases such as backprop, we only have gradient for the current . However, NAG
can be “fixed” as follows

v = g1 — €V f(ap 1+t 1)
Ty = Typ—1 + V¢
Pick i‘t =T+ MU,

vp = pvp—1 — €V f(T-1)
Ty = Tt + vy = Tp—1 + V¢ + vy
=Tp1 — pug—1 + v + puy
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Optimization Optimizers

In many cases such as backprop, we only have gradient for the current . However, NAG
can be “fixed” as follows

vp = pvp—1 — €V f(mp_1+pvg 1)

Tt = Te—1 + V¢

~

Pick i‘t =T+ MU,

vp = pvp—1 — €V f(T-1)

Ty = Tt + vy = Tp—1 + V¢ + vy
=Tp1 — pug—1 + v + puy
= T4—1 + v + p(vy — vi—1)

Neural Netw:



Optimization Optimizers

Optimizers

number of steps=10

1 I
| — sgd
— momentum
5L+ — nag
0 -
-5
_10 1 I 1
-10 -5 0 5
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Optimization Optimizers

AdaGrad

cache += dx**2
x += - learning rate * dx|/ (np.sqrt(cache) + le-7)

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

The idea is to penalize direction that has already have explored a lot (with large
cumulative partial derivative)
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Optimization Optimizers

Optimizers

number of steps=10

— nag
— adagrad
5
ok
-5
-10} .
-10 -5
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Optimization Optimizers

RMSProp

RMSPrOp update [Tieleman and Hinton, 2012]

| cache += dx**2
X += - learning rate * dx / (np.sqrt(cache) + le-7)

Icache = decay rate * cache + (1 - decay rate) * dx
learning rate * dx / (np.sqrt(cache) + le-7)

S. Cheng (OU-ECE) Neural Networks Jan 2019 143 /203



Optimization Optimizers

RMSProp

rmsprop: A mini-batch version of rprop Introduced in a slide in
Geoff Hinton’s Coursera
« rprop is equivalent to using the gradient but also dividing by the size of the class. lecture 6

gradient.

— The problem with mini-batch rprop is that we divide by a different number
for each mini-batch. So why not force the number we divide by to be very
similar for adjacent mini-batches?

* rmsprop: Keep a moving average of the squared gradient for each weight

2
=09 1) + oE
MeanSquare(w, t) =0.9 MeanSquare(w, t-1) O.l( Aw(t))

+ Dividing the gradient by \/ MeanSquare(w, t) makes the learning work much

better (Tijmen Tieleman, unpublished).

144 /203



zation Optimizers

RMSProp

rmsprop: A mini-batch version of rprop Introduced in a slide in
Geoff Hinton’s Coursera
« rprop is equivalent to using the gradient but also dividing by the size of the class. lecture 6

gradient.

— The problem with mini-batch rprop is that we divide by a different number
for each mini-batch. So why not force the number we divide by to be very
similar for adjacent mini-batches?

* rmsprop: Keep a moving average of the squared gradient for each weigl;t
MeanSquare(w, t) =0.9 MeanSquare(w, t-1)+0.1 (a%w (t))

+ Dividing the gradient by \/ MeanSquare(w, t) makes the learning work much

better (Tijmen Tieleman, unpublished).

Cited by several papers as: [52] T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.,
2012.
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Optimization Optimizers

Optimizers

number of steps=10

— nag
— adagrad
5} — rmsprop
ok
-5
-10} .
-10 -5
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Optimization Optimizers

[Kingma and Ba, 2014]

Adam update

(incomplete, but close)

betal*m + (1l-betal)*dx

beta2*v + (1l-beta2)*(dx**2)
- learning rate * m / (np.sqrt(v) + le-7)

S. Cheng (OU-ECE) Neural Networks Jan 2019



Optimization Optimizers

[Kingma and Ba, 2014]

Adam update

(incomplete, but close)

momentum
betal*m + (1-betal)*dx
beta2*v + (1-beta2)*(dx**2)
- learning rate * m / (np.sqrt(v) + le-7)

RMSProp-like

Looks a bit like RMSProp with momentum
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Optimization Optimizers

[Kingma and Ba, 2014]

Adam update

(incomplete, but close)

momentum
betal*m + (1-betal)*dx
beta2*v + (1-beta2)*(dx**2)
- learning rate * m / (np.sqrt(v) + le-7) .
RMSProp-like

Looks a bit like RMSProp with momentum

cache = decay rate * cache + (1 - decay rate) * dx**2
X += - learning rate * dx / (np.sqrt(cache) + le-7)
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zation Optimizers

Adam (full form)

first_moment = 0

second_moment = ©

for t in range(1, num_iterations):
dx_= compute_gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - betal ** t)

second_unbias = second_moment / (1 - beta2 ** t) Bias correction
| X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1le-7)) |Ad Grad / RMSP
aGra rop
Bias correction for the fact that Adam with beta1 = 0.9,
first and second moment beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
estimates start at zero is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
Ch ECE) Neural Networks 150 /203




zation Optimizers

Optimizers

number of steps=10

I 1 T
— hag
— rmsprop
5L—— — adam
0 i
-5
—-10 1 T 1
-10 -5 0 5
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Optimization Optimiz

Pathological cases

Pathological curvature

tanh(wy)? + |wy|? + sigmoid(w;) 5.0
2.5
0.0

—-2.5

w2

=5.0

-7.5

-10.0

-12.5



https://pytorch-lightning.readthedocs.io/en/stable/notebooks/course_UvA-DL/03-initialization-and-optimization.html

Optimizers

Pathological cases

Steep optima Steep optima

SGD
SGDMaom
NAG
Adam

teed

Jan 201



Optimization Optimizers

Adam and Local Minima

Steep optima
20 p op

. o oo o Several reported that Adam can be

N o Adam caught in deep local minimum and

os ] doesn’t work well with ResNet (see this
‘ PyTorch tutorial post and here)

= 0.0

. . e Caught in deep minimum can be bad

1ol as the value of testing function can

_1‘57 differ quite a bit for sharp minimum

e . @ On the other hand, actual performance

-2 -t - ! 2 depends significantly with subtle

T—E— details. T didn’t see Adam got trapped
A by the local minima example. But I
didn’t try train on ResNet myself

™ Flat Minimum * Sharp Minimum

S. Cheng (OU-ECE) Neural Networks Jan 2019
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Optimization

AdamW

Optimizers

input : y(Ir), B, Bz2(betas), o(params), f(6)(ohjective)

A(weight decay), amsgrad, mazimize

¢ (epsilon)

—maz

initialize : my « 0 (first moment), vy « 0 ( second moment), T +~0

fort=1to ... do
if mazimize :
g+ —Vafi(6i 1)
else
Gt — Vofi(f: 1)
O — 01 — YA0i
my +— Bimyy + (1 — Bi)ge
v Bovi 1+ (1 - Ba)g}
iy —my/(1 - B1)
T« ve/(1 - B3)
if amsgrad
" +— max %)
B + 0, — v/ (VT + €)

else
O — 6, — vﬁ/(\/%ﬂrf)

(T

return 6;

Neural Netv

o In “The Marginal Value of Adaptive
Gradient Methods in Machine
Learning,” the authors question the
effectiveness of adaptive gradient
methods including AdaGrad, RMSProp
and Adam. The debate is not final

Jan 2019
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Optimization

AdamW

Optimizers

input : y(Ir), B, Bz2(betas), o(params), f(6)(ohjective)

A(weight decay), amsgrad, mazimize

¢ (epsilon)

—maz

initialize : my « 0 (first moment), vy « 0 ( second moment), T +~0

fort=1to ... do
if mazimeze :
g+ —Vafi(6i 1)
else
Gt — Vofi(f: 1)
O — 01 — YA0i
my +— Bimyy + (1 — Bi)ge
v Bovi 1+ (1 - Ba)g}
iy —my/(1 - B1)
T« ve/(1 - B3)
if amsgrad
T max(5, )
B + 0, — v/ (VT + €)

else
0, — 6, —“fﬁl?f(\/%‘f’f)

return 6;

o In “The Marginal Value of Adaptive
Gradient Methods in Machine
Learning,” the authors question the
effectiveness of adaptive gradient
methods including AdaGrad, RMSProp
and Adam. The debate is not final

@ Some argued that Adam needs more
regularization but the the conventional
L2 regularization, which is the same as
weight decay in plain SGD

Neural Netw:



Optimization

AdamW

Optimizers

input : y(Ir), B, Bz2(betas), o(params), f(6)(ohjective)

A(weight decay), amsgrad, mazimize

¢ (epsilon)

—maz

initialize : my « 0 (first moment), vy « 0 ( second moment), T +~0

fort=1to ... do
if mazimeze :
g+ —Vafi(6i 1)
else
Gt — Vofi(f: 1)
O — 01 — YA0i
my +— Bimyy + (1 — Bi)ge
v Bovi 1+ (1 - Ba)g}
iy —my/(1 - B1)
T« ve/(1 - B3)
if amsgrad
T max(5, )
B + 0, — v/ (VT + €)

else
0, — 6, —“fﬁl?f(\/%‘f’f)

return 6;

o In “The Marginal Value of Adaptive
Gradient Methods in Machine
Learning,” the authors question the
effectiveness of adaptive gradient
methods including AdaGrad, RMSProp
and Adam. The debate is not final

@ Some argued that Adam needs more
regularization but the the conventional
L2 regularization, which is the same as
weight decay in plain SGD

o L2 regularization and weight decay
are not the same in Adam
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Optimization

AdamW

Optimizers

input : y(Ir), B, Bz2(betas), o(params), f(6)(ohjective)

A(weight decay), amsgrad, mazimize

¢ (epsilon)

—maz

initialize : my « 0 (first moment), vy « 0 ( second moment), T +~0

fort=1to ... do

if mazimize :

g+ —Vafi(6i 1)
else

Gt + Vo fi(6:1)
O — 01 — YA0i
my — fime1+ (1 - Bi)ge
v Bovi 1+ (1 - Ba)g}
iy —my/(1 - B1)

T« ve/(1 - B3)

if amsgrad

T max(5, )

Oy < 0 — 4/ (VT +€)
else

ati—at—“fﬁl?f(\/%+f)

return 6;

o In “The Marginal Value of Adaptive
Gradient Methods in Machine
Learning,” the authors question the
effectiveness of adaptive gradient
methods including AdaGrad, RMSProp
and Adam. The debate is not final

@ Some argued that Adam needs more
regularization but the the conventional
L2 regularization, which is the same as
weight decay in plain SGD

o L2 regularization and weight decay
are not the same in Adam
o AdamW implements weight decay for
Adam, essential just an extra step

Neural Netw:



Optimization Optimizers

LR Scheduler

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

3
loss

low learning rate

. , Q: Which one of these
high learning rate

\ learning rates is best to use?

good learning rate

S. Cheng (OU-ECE) Neural Networks Jan 2019 156 /203



Optimization Optimizers

LR Scheduler

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

b
loss => Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

low learning rate

i ) exponential decay:
high learning rate

good learning rate 1/t decay:
epoch = 010/(1 + k‘t)
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Optimization Optimizers

LR Scheduler

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

] ? Loss ,
loss Learning rate decay!

low learning rate

high learning rate

More critical with SGD+Momentum,
= less common with Adam

epoch >

good learning rate

S. Cheng (OU-ECE) Neural Networks Jan 2019 158 /203



Optimization

LR Scheduler

Optimizers

In [78]:

out[78]:

from torch.optim.lr_scheduler import OneCycleLR

r=[]
scheduler = OnecycleLR(optinizer,
x_1r = le-3, # Upper LR boundaries
anneal _strategy = 'cos') # annealing strategy

for _ in range(32):
1r.append(scheduler.get_last_lr())
scheduler.step()

plt.plot(lr, o-")

[<matplotlib.lines.Line2D at 0x7fa96e6hb340>]

0.0010 1

0.0008 §

0.0006 q

0.0004 q

0.0002

0.0000

o 5 10 15 20 25 30

o Many more schedulers are available
o Check out torch.optim.Ir_scheduler

o optimizer = optim.SGD(parms,Ir)
scheduler = Ir__scheduler.CyclicLR ...

loss.backward|()
optimizer.step()
scheduler.step()
o In particular, check out
e OneCycleLR
o Recommended by FastAl
o CosineAnnealingWarmRestartsLR

o Try to escape local minima

Neural Net



2nd order optimizers

Second order optimization methods

second-order Taylor expansion:

J(0) ~ J(6) + (6 — &) T Ve (60) + % (0 —6,)"H(6 — 6,)

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(65)

Q: what is nice about this update?

S. Cheng (OU-ECE) eural Networks 160 /203



Optimization Optimizers

2nd order optimizer

Second order optimization methods

0* =0, — H 'VoJ(0,)

Inverting Hessian is very expensive (O(N?3)). Avoiding that resulting in so-called
Quasi-Newton methods

S. Cheng (OU-ECE) Neural Networks Jan 2019 161 /203
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Second order optimization methods

0* =0, — H 'VoJ(0,)

Inverting Hessian is very expensive (O(N?3)). Avoiding that resulting in so-called
Quasi-Newton methods

e Rank-1 inverse Hessian update (simple but not too commonly used)
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2nd order optimizer

Second order optimization methods

0* =0, — H 'VoJ(0,)

Inverting Hessian is very expensive (O(N?3)). Avoiding that resulting in so-called
Quasi-Newton methods

e Rank-1 inverse Hessian update (simple but not too commonly used)
@ Rank-2 inverse Hessian update
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2nd order optimizer

Second order optimization methods

0* =0, — H 'VoJ(0,)

Inverting Hessian is very expensive (O(N?3)). Avoiding that resulting in so-called
Quasi-Newton methods
e Rank-1 inverse Hessian update (simple but not too commonly used)
@ Rank-2 inverse Hessian update
o BFGS (most popular) and DFS
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Optimizers

2nd order optimizer

Second order optimization methods

0* =0, — H 'VoJ(0,)

Inverting Hessian is very expensive (O(N?3)). Avoiding that resulting in so-called
Quasi-Newton methods

e Rank-1 inverse Hessian update (simple but not too commonly used)

@ Rank-2 inverse Hessian update

o BFGS (most popular) and DFS

e LBFGS
e Does not store the entire inverse Hessian
o Tradeoff space with time and accuracy
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Optimization Optimizers

Quasi-Newton methods (watch this)

o Ref:
@ https://www.youtube.com/watch?v=u02z0AT 83k
@ Nocedal & Wright - Numerical Optimization (B «» H)
@ http://users.ece.utexas.edu/ cmcaram/EE381V__2012F /Lecture_10_Scribe_ Notes.fi-
nal.pdf
@ The inverse of Hessian H is expensive to compute. Want to approximate it iteratively
instead

S. Cheng (OU-ECE) Neural Networks Jan 2019 162 /203
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Optimization Optimizers

Quasi-Newton methods (watch this)

o Ref:
@ https://www.youtube.com/watch?v=u02z0AT 83k
@ Nocedal & Wright - Numerical Optimization (B « H)
@ http://users.ece.utexas.edu/ cmcaram/EE381V__2012F /Lecture_10_Scribe_ Notes.fi-
nal.pdf
@ The inverse of Hessian H is expensive to compute. Want to approximate it iteratively
instead
o Quasi-Newton methods:
@ Approximate Newton direction
dy < —Bkgr,

where Bj, ~ Hk_1 and gr = VJ(0k)
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o Ref:
@ https://www.youtube.com/watch?v=u02z0AT 83k
@ Nocedal & Wright - Numerical Optimization (B « H)
@ http://users.ece.utexas.edu/ cmcaram/EE381V__2012F /Lecture_10_Scribe_ Notes.fi-
nal.pdf
@ The inverse of Hessian H is expensive to compute. Want to approximate it iteratively
instead
o Quasi-Newton methods:
@ Approximate Newton direction
dy < —Bygr,
where Bj, ~ Hk_1 and gr = VJ(0k)
© Line search: 041 = 0k + axdy
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Optimization Optimizers

Quasi-Newton methods (watch this)

o Ref:
@ https://www.youtube.com/watch?v=u02z0AT 83k
@ Nocedal & Wright - Numerical Optimization (B « H)
@ http://users.ece.utexas.edu/ cmcaram/EE381V__2012F /Lecture_10_Scribe_ Notes.fi-
nal.pdf
@ The inverse of Hessian H is expensive to compute. Want to approximate it iteratively
instead
o Quasi-Newton methods:
@ Approximate Newton direction
dy < —Bygr,
where Bj, ~ Hk_1 and gr = VJ(0k)
© Line search: 041 = 0k + axdy
@ Update gxt1 = VJ(0r11)
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Optimization Optimizers

Quasi-Newton methods (watch this)

o Ref:
@ https://www.youtube.com/watch?v=u02z0AT 83k
@ Nocedal & Wright - Numerical Optimization (B « H)
@ http://users.ece.utexas.edu/ cmcaram/EE381V__2012F /Lecture_10_Scribe_ Notes.fi-
nal.pdf
@ The inverse of Hessian H is expensive to compute. Want to approximate it iteratively
instead
o Quasi-Newton methods:
@ Approximate Newton direction
dy < —Bygr,
where Bj, ~ Hk_1 and gr = VJ(0k)
© Line search: 041 = 0k + axdy
@ Update gxt1 = VJ(0r11)
@ Approximate inverse Hessian

By.+1 = update_ formula(By, Ox+1 — Ok, gr+1 — k)
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VJ(9k+1) ~ VJ(@k) + H(9k+1 —0r)
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Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VJ(9k+1) ~ VJ(Qk) + H(9k+1 —0r)

e We may assume the above is satisfied and use this to iteratively approximate H.
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Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VJ(9k+1) ~ VJ(Qk) + H(9k+1 —0r)
e We may assume the above is satisfied and use this to iteratively approximate H.

That is (known as secant equation) Hpy = qx, where py, = 011 — 0 and
Q. = VJ(Or+1) — VI ()
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VJ(9k+1) ~ VJ(Qk) + H(9k+1 —0r)

e We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpy = qx, where py, = 011 — 0 and
ar = VI (Ok11) — VJ(0k)

o Let Hyy1 = Hy + uv?
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VJ(9k+1) ~ VJ(Qk) + H(9k+1 —0r)

e We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpy = qx, where py, = 011 — 0 and
ar = VI (Ok11) — VJ(0k)

o Let Hyy = Hy +uwv’ = (Hy + uwl)pr = q
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VJ(9k+1) ~ VJ(Qk) + H(9k+1 —0r)

e We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpy = qx, where py, = 011 — 0 and
ar = VI (Ok11) — VJ(0k)

o Let Hyq = Hy +w? = (Hy +uwoD)pr = g = u(vTpr) = g1 — Hypr
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VJ(9k+1) ~ VJ(Qk) + H(9k+1 —0r)
e We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpy = qx, where py, = 011 — 0 and
ar = VI (Ok11) — VJ(0k)
o Let Hyq = Hy +w? = (Hy +uwoD)pr = g = u(vTpr) = g1 — Hypr
= u= lepk( — Hypr)
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VJ(9k+1) ~ VJ(Qk) + H(9k+1 —0r)
e We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpy = qx, where py, = 011 — 0 and
@k = VI (Or41) — VJ(Qk:)
o Let Hy1 = Hy, +uv” = (Hy +w”)py = G = u(vlpy) = = Hypy,
= u= lepk( — Hipy) = Hps1 = Hy + ,UT (gx — Hipr)v"
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VJ(9k+1) ~ VJ(Qk) + H(9k+1 —0r)

e We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpy = qx, where py, = 011 — 0 and
ar = VJ(O11) — VJ(Qk:)

o Let Hk+1 = Hy +uw’ = (Hy, +uw")py, = G = u(vl'py) = = Hypy,

= u= (Qk — Hipy) = Hps1 = Hy + ,UT (gx — Hipr)v"
o We are free to pick v. But since we know H has to be symmetric, let’s pick
v = qr — Hipr.
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Optimization Optimizers

Approximation with rank-1 update

@ As Hessian is essentially the “derivative” of V.J, we have
VJ(9k+1) ~ VJ(Qk) + H(9k+1 —0r)
e We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpy = qx, where py, = 011 — 0 and
@k = VI (Or41) — VJ(Hk:)
o Let Hk+1 = Hy, +uw’ = (Hy, +uwv")py, = G = u(vlpy) = = Hypy,
= u= (Qk — Hipy) = Hps1 = Hy + ,UT (gx — Hipr)v"
o We are free to pick v. But since we know H has to be symmetric, let’s pick
v = qp — Hgpr. Thus

1
Hjp 1= Hp+ vl
- i

with v = q. — Hip
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Optimization Optimizers

Updating B

o Recall that we need By, = H,_ ! to approximate the Newton direction (dj < —Bjg)
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Optimization Optimizers

Updating B

o Recall that we need By, = H,_ ! to approximate the Newton direction (dj < —Bjg)

e We don’t need to invert the matrix Hj directly. Note that Hpp = qx give us
Hyi1 = Hy+ ——vvT and v = g — Hypy

vTpy
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Optimization Optimizers

Updating B

o Recall that we need By, = H,_ ! to approximate the Newton direction (dj < —Bjg)

e We don’t need to invert the matrix Hj directly. Note that Hpp = qx give us
Hyi1 = Hy+ ——vvT and v = g — Hypy

vT'py,
o Similarly, since Hpy = qr = Bqr = pg, we have

wa

Byt1 = B +
* wTQk

with w = pr — Brqgy
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Optimization Optimizers

Rank-2 approximation

e BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art
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Optimization Optimizers

Rank-2 approximation

e BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art

@ Recall our rank-1 approximation that
Hyp1 = Hi + 7—vv’ and v = qp — Hypy

vy
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Optimization Optimizers

Rank-2 approximation

e BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art

@ Recall our rank-1 approximation that
Hyp1 = Hi + 7—vv’ and v = qp — Hypy

vy

o Consider update Hyy1 = Hy + éuuT + %wa instead.
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Optimization Optimizers

Rank-2 approximation

e BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art

@ Recall our rank-1 approximation that
Hyp1 = Hi + 7—vv’ and v = qp — Hypy

vy

o Consider update Hyy1 = Hy + éuuT + %wa instead.

e Need to pick v and w, ¢ and Hypy are reasonable choice
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Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art

@ Recall our rank-1 approximation that
Hyp1 = Hi + 7—vv’ and v = qp — Hypy

vy

o Consider update Hyy1 = Hy + éuuT + %wa instead.

e Need to pick v and w, ¢ and Hypy are reasonable choice

o Again, we want Hy1pr = qr = Hipr + Lau(alpr) + %Hkpk(PfHkTpk) = Q-
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Optimizers

e BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art

@ Recall our rank-1 approximation that
Hyp1 = Hi + 7—vv’ and v = qp — Hypy

vy

o Consider update Hyy1 = Hy + éuuT + %wa instead.

e Need to pick v and w, ¢ and Hypy are reasonable choice

o Again, we want Hy1pr = g = Hipr + San(afpr) + 5Hipw(pf Hi p) = g By
inspection, this can be satisfied if we pick a = qkTpk and 8 = —p{ngk.
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Optimizers

BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art

Recall our rank-1 approximation that
Hyp1 = Hi + 7—vv’ and v = qp — Hypy

vy

Consider update Hyx41 = Hy + éuuT + %wa instead.

e Need to pick v and w, ¢ and Hypy are reasonable choice
Again, we want Hy1pr = qx = Hipr + 5ar(qh px) + 5Hipr (9t H 1) = qx- By
inspection, this can be satisfied if we pick a = q,{pk and 8 = —ng g pr. Thus we have

T T
qrq Hyprpy, Hy
Hy1 = H+ =5 — k

afp  pFHlpy
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Optimization Optimizers

Sherman-Morrison-formula

@ But we are interested in By, = kal

@ Sherman-Morrison-formula:

1, T A—1
(A—l—uvT)_l:A_l—i—A o A

1—vTA- 1y

1+vT A—1qy

(A +wl) (A—l _ M)
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Optimization Optimizers

Sherman-Morrison-formula

@ But we are interested in By, = kal

@ Sherman-Morrison-formula:

1, T A—1
(A—l—uvT)_l:A_l—i—A o A

1—vTA- 1y

1+vT A—1qy

(A +uvT) (A‘l — M) = AA +uwT AT
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Optimization Optimizers

Sherman-Morrison-formula

@ But we are interested in By, = kal

@ Sherman-Morrison-formula:

1, T A—1
(A—l—uvT)_l:A_l—i—A o A

1—vTA- 1y

—1,,,T A—1 —1,,,T A—1 T A—1,,,T A—1
(A+UUT)(A_1—A uv’ A >=AA_1+U,UTA_1—AA w' A" tuvt A" uvt A

1+vT A—1qy 1+vT A—1y
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Optimization Optimizers

Sherman-Morrison-formula

@ But we are interested in By, = kal

@ Sherman-Morrison-formula:

1, T A—1
(A—l—uvT)_l:A_l—i—A o A

1—vTA- 1y

—1,,,T A—1 —1,,,T A—1 T A—1,,,T A—1
(A+UUT)(A_1—A uv’ A >=AA_1+U,UTA_1—AA w' A" tuvt A" uvt A

1+vT A—1qy 1+vT A—1y
— T pA—1 _ wlA ' runT Ay T AL
=1+uv' A TroTA Ta
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Optimization Optimizers

Sherman-Morrison-formula

@ But we are interested in By, = kal

@ Sherman-Morrison-formula:

1, T A—1
(A—l—uvT)_l:A_l—i—A o A

1—vTA- 1y

—1,,,T A—1 —1,,,T A—1 T A—1,,,T A—1
(A+UUT)(A_1—A uv’ A >=AA_1+U,UTA_1—AA w' A" tuvt A" uvt A

1+vT A—1qy 1+vT A—1y
_ T A—1 _ wlA ' tunT A tuwTA— T A—-1 u(1+vTA_1u)UTA_1
=I+uw'A 1+0vT A=y =I+uv' A 1+vT A-1y

g (OU-ECE) Neural Networks Jan 2019 166 /203



Optimization Optimizers

Sherman-Morrison-formula

@ But we are interested in By, = kal

@ Sherman-Morrison-formula:

1, T A—1
(A—l—uvT)_l:A_l—i—A o A

1—vTA- 1y

—1,,,T A—1 —1,,,T A—1 T A—1,,,T A—1
(A+UUT)(A_1—A uv’ A >=AA_1+U,UTA_1—AA w' A" tuvt A" uvt A

1+vT A-1y 1+vT A-1y
_ T p—1 T pA—1,,T p—1 _ 140l A= 1y T A1
=J4 UQ}TA 1 w'A 11%1/71“/;4717;“} A =J4+ UUTA 1 u( +11)+UTA11)1UU
=T +uwwlA ' —wlA1=1 O
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Optimization Optimizers

T
_ L Hipipy, Hy Ty\—1 _ g4—1_, A 'upTA!
@ Recall Hy41 = Hi + quk — ng;fpk and (A+w® )"t =A""+ ToTA-Ta

D

Neural Net



Optimization Optimizers

T T B B
o Recall Hy 1 = Hy + Wk Hipuoi By g (A 4Ty~ = A= 4 A lwnTA~t

q]{pk pFHI'py 1—vTA- Ty
D
T —1_ T gr—1 T
-1 _ 99" \—1 _ r7—1 H™"qq" H _ Bqq” B
e D' =(H+ L~ =H =B+ L=
(H + qu) + (¢Tp)(1—qTH-1q/(q"p)) + qTp—qT Bq
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Optimization Optimizers

T
@ Recall Hyy1 = Hyp + Do _ Hkpkasz and (A —|—uvT)*1 = A1 4 A upT AT

T TH 10T A1
at'p pi HE pr v A— 1y
D
T —1 T —1 T
-1 _ 99" \—-1 _ 77—1 H™"qq" H _ Bqq” B
e D' =(H+ L~ =H = =
(H + qu) + (¢Tp)(1—qTH-1q/(q"p)) B+ qTp—qT Bq
_ HppTHN-1 _ -1 D 'Hpp"HD !
° (D pTHTp) =D pTHTp(1—pTHD-1Hp/(pT HT p))
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Optimization Optimizers

T
@ Recall Hyy1 = Hyp + Do _ Hkpkasz and (A —|—uvT)*1 = A1 4 A upT AT

T TH 10T A1
G PEeps AT
D
T —1_ T gr—1 T
-1 _ 99" \—-1 _ 77—1 H™"qq" H _ Bqq” B
e D' =(H+ L~ =H = =
(H + qu) + (¢Tp)(1—qTH-1q/(q"p)) B+ qTp—qT Bq
° (D . prTH)q —pD-1_ D 'Hpp"HD ! —pD-1_ D '‘Hpp"HD?
pTHTp pTHTp(1—pTHD~1Hp/(pT HTp)) — pTHp—pTHD~1Hp
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Optimization Optimizers

T
qrq Hipept H T p-1
® Recall Hyyy = Hy + —7 = — Tipppt and (A+uw™) ™ = A7 + A w A
4. Pk k
D
T —1_ T gr—1 T
e Dl = (H+ 9 \-1_ -1 H™"qq" H _ Bqq” B
(H + qu) + (¢Tp)(1—qTH-1q/(q"p)) B+ qTp—qT Bq
° (D . prTH)q —pD-1_ D 'Hpp"HD ! —pD-1_ D '‘Hpp"HD?
pTHTp pTHTp(1—pTHD~1Hp/(pT HTp)) — pTHp—pTHD~1Hp
Bqq' BH B
e D-'Hp= (BH 344 P 99" p
p=( p+ qTp— qTBq) (p—l— qTp— qTBq)
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Optimization Optimizers

T
k) Hyprepy Hi, T 1 LT AT
@ Recall Hk:Jrl = Hk + T - pTHTp and (A “+ uv ) = A" m
4. Pk ke Pk
D
T —1 T —1 T
-1 _ 99" \—1 _ -1 H™"qq" H _ Bqq” B
e D' =(H+ L~ =H =B+ L=
(H + qu) + (¢Tp)(1—qTH-1q/(q"p)) + qTp—qT Bq
° (D . prTH)q —pD-1_ D 'Hpp"HD ! —pD-1_ D '‘Hpp"HD?
pTHTp - pTHTp(1—pTHD~1Hp/(pT HTp)) — pTHp—pTHD~1Hp
1 _ qu BHp Bqq"p
e D'H BH B — L e
p=( p+ qTp— qTBq) (p—l— qTp— qTBq)
Hpp"H _ -1 D~ 'HppTHD™!
e (D— =D —
( pTHTp ) pTqqTp(¢Tp—qT Bq)
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T
k) Hyprepy Hi, T 1 LT AT
@ Recall Hk:Jrl = Hk + T - pTHTp and (A “+ uv ) = A" m
4. Pk ke Pk
D
T —1 T —1 T
-1 _ 99" \—1 _ -1 H™"qq" H _ Bqq” B
e D' =(H+ L~ =H =B+ L=
(H + qu) + (¢Tp)(1—qTH-1q/(q"p)) + qTp—qT Bq
° (D . prTH)q —pD-1_ D 'Hpp"HD ! —pD-1_ D '‘Hpp"HD?
pTHTp - pTHTp(1—pTHD~1Hp/(pT HTp)) — pTHp—pTHD~1Hp
1 _ qu BHp Bqq"p
e D'H BH B — L e
p=( p+ qTp— qTBq) (p—l— qTp— qTBq)
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Optimization Optimizers

T
_ k) Hyprepy Hi, T 1 LT AT
o Recall Hk:Jrl = Hk =+ T — pTHTpk a,nd (A —+ uv ) A m
4. Pk k
D
T —1_ T gr—1 T
e Dl = (H+ 9 \-1_ -1 H™"qq" H _ Bqq” B
(H + qu) + (¢Tp)(1—qTH-1q/(q"p)) B+ qTp—qT Bq
o (D— HppH)y-1_ p-1_ D' Hpp" HD _ p-1_ _D'Hpp"HD'
pTHTp pTHTp(1—pTHD~1Hp/(pT HTp)) — pTHp—pTHD~1Hp
e D-'Hp—= (B Bqq" BHp Bqq"p
p=(BHp+ 7 qTp— qTBq) (p—l— qTp— qTBq)
Hpp"H\—-1 _ -1 D '*Hpp"HD?!
o (D— =D 1 _
( pTHTp )" pTqqTp(¢Tp—qT Bq)
HppTH\—1 _ ( qu> ( pp Prdy qw PePL
o (D— =~ =(I-%2-)B|(I—- = B =(1- L) B (1 — k ek
( pTHTp) qTp + k+1 P a7 pr + ar pw
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Optimizers

Optimization

T
_ k) Hyprepy Hi, T 1 LT AT
Recall Hyy1 = Hy + Tor T HT and (A +uwT)~1 = A~ 1 T
D
T —1_ T g7— T
-1 _ 99" \—1 _ -1 H~ qq" H _ Bqq” B
D =(H+ qu) =H "+ (¢Tp)(1—qTH-1q/(qTp)) — B+ qTp—qT Bq
(D . prTH)f —pD-1_ D 'Hpp"HD ! —pD-1_ D '‘Hpp"HD?
pTHTp pTHTp(1—pTHD-1Hp/(pT HT p)) pTHp—pTHD~1Hp
1 _ Bqq"BHp Bqq"p
D™ Hp = (BHp + g qTp— qTBq) P+ g qTp— qTBq)
Hpp™H _ p-1_ D 'Hpp"HD™'
(D~ pTHTp ) =D pTqqTp(¢Tp—qT Bq)
_ Hpp"Hy—1 _ (7 _ i) ( ) pp _ ( _ pquT) ( _ qwk) PePL
(D pTHTp) (I aTp B\I- + = By = (1 P Bi (1 aoe) T al P

Bounty: 3% bonus to complete the algebra

Neural Networks
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Optimizers

Summary of BFGS

Initialize Initialize inverse Hessian approximation B < By. Can set B < I if no initial
estimate; k < 0; Pick a random starting point 6

Loop @ Get search direction dy = —BiV.J(6y)
@ Conduct line search to find optimum 611 = 0 + ad
Q pr + 0k+1 — 0; :C'rlk — VJ(@k_H)T— VJ(GI;);
— _ Pr4 _ 9kPg PPy,
By = (I q,{pk) By (I Q,fpk) T i Pk

Q k< k+1; Exitif |[VJ(O)| <e
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Golden-section search
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Optimization Optimizers

Golden-section search

o If we have fj,, minimum is in [x7,X4]

s, ob
|
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a b
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Optimization Optimizers

Golden-section search

o If we have fj,, minimum is in [x7,X4]

i
1
1
1
1
i
i . . ..
3 of; o If we have fy},, minimum is in [x2,x3]
i
i

fz [ ] :
1
6t
i
H

X X3 X, X;
-
C
a b
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Golden-section search

i

f, l i
i o If we have fj,, minimum is in [x7,X4]
1
i o s « .
3 ofs o If we have f4,, minimum is in [x2, x3]
I . .
! e To maximize expected search speed, set
1

f2‘ i X4 —X] =X3—Xg=>a+c=Db
1
6t
i
i
X X3 X, X;
-
C
a b
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Golden-section search

i

f 4 : N
i o If we have fj,, minimum is in [x7,X4]
1
i o s « .
3 ofs o If we have f4,, minimum is in [x2, x3]
1 . .
! e To maximize expected search speed, set

f2‘ i X4 —X] =X3—Xg=>a+c=Db
d:)f o Given x1,Xg,x3, we know how to pick x4
4b
i
H
X X, X4 X3
——i
C
a b
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Optimization Optimizers

Golden-section search

i

f, l i
i o If we have fj,, minimum is in [x7,X4]
é.fh of; o If we have fy},, minimum is in [x2,x3]
i e To maximize expected search speed, set

f, i X4 —X]=X3—Xg=>a+c=Db
6f4b o Given x; ) X2,X3, We know how to pick x4
; e How to pick x5 given x; and x37
H
X X, X4 X3
C
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Optimization Optimizers

Golden-section search

o If we have fj,, minimum is in [x7,X4]

f,, of; o If we have fy},, minimum is in [x2,x3]

X4 —X]=X3—Xg=>a+c=Db
£ o Given x1,Xg,x3, we know how to pick x4

i

1

1

1

1

1

1

1

¢

! e To maximize expected search speed, set
|

1

1

? e How to pick x5 given x; and x37
1

1

1

e Golden-section search simply assume the
X X2 X4 X3 “spacing” of each iteration is proportional
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Optimization Optimizers

Golden-section search

o If we have fj,, minimum is in [x7,X4]

f,, of; o If we have fy},, minimum is in [x2,x3]

X4 —X]=X3—Xg=>a+c=Db
£ o Given x1,Xg,x3, we know how to pick x4

i

1

1

1

1

1

1

1

¢

! e To maximize expected search speed, set
|

1

1

? e How to pick x5 given x; and x37
1

1

1

e Golden-section search simply assume the
X X2 X4 X3 “spacing” of each iteration is proportional
C a

- o Thatis, 7 = ¢
C a
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Optimization Optimizers

Golden-section search

eat+c=band ;=¢
f4a ‘fS

fz [ ]
f4b
X X, X4 X1
-

Neural Networks Jan 2019 170 /203



Optimization Optimizers

Golden-section search

Neural Networks Jan 2019 170 /203



Optimization Optimizers

Golden-section search

Neural Networks Jan 2019 170 /203



Optimization Optimizers

Golden-section search

S. Cheng J Neural Networks Jan 2019 170 /203



Optimization Optimizers

Golden-section search

[ 4 ’
. i eatc=band <=1
é‘f;;- ‘f3 :%:%
P da —~b_1_-1
i a ) b/a
! b b _
f, ¢ ! :(5) —a 10
?fdb
! b 1 5
, b_1HVE_Gis0sa. 2 o
X, s X4 X3 a 2 0
golden
ratio
- P ¢ -
a b
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Optimization Optimizers

Inverse Hessian update for BFGS

e Like rank-1 update, we can also rearrange the variables to obtain an update rule for
B=H"!
o Instead of Hyy1pr = qr, we want Bri1qx = k.
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Optimization Optimizers

Inverse Hessian update for BFGS

e Like rank-1 update, we can also rearrange the variables to obtain an update rule for
B=H"!
o Instead of Hyy1pr = qr, we want Byi1qx = pr. Thus we have
Pt Brarqi By

Byt1 = By + -
pra,  ¢I'Blg

e Note that this update rule of B is different from before. Actually this is the update
rule of DFP. An older approach that is considered worse compared with BFGS
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Optimization Optimizers

Some theoretical notes

e A prettier but more technical explanation of BEFEGS/DFP involves weighted matrix
norm
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Optimization Optimizers

Some theoretical notes

e A prettier but more technical explanation of BEFEGS/DFP involves weighted matrix
norm
e Comparing with rank-1 update, we have more degree of freedom and thus can impose
more requirement. Besides
@ Bii1qr = pr (secant equation)
© Biy1 > 0 (symmetric and positive definite),
we also require each update to be small.
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Some theoretical notes

e A prettier but more technical explanation of BEFEGS/DFP involves weighted matrix
norm

e Comparing with rank-1 update, we have more degree of freedom and thus can impose
more requirement. Besides

@ Bii1qr = pr (secant equation)
© Biy1 > 0 (symmetric and positive definite),

we also require each update to be small. Namely,
| Bi+1 — Billw — min,

where ||Allw = |[WY/2AWY2||p is the weighted Frobenius norm
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Optimization Optimizers

Some theoretical notes

e A prettier but more technical explanation of BEFEGS/DFP involves weighted matrix
norm

e Comparing with rank-1 update, we have more degree of freedom and thus can impose
more requirement. Besides

@ Bii1qr = pr (secant equation)
© Biy1 > 0 (symmetric and positive definite),

we also require each update to be small. Namely,
| Bi+1 — Billw — min,

where ||Allw = |[WY/2AWY2||p is the weighted Frobenius norm

BFGS W =H
o —
DFP W=H"1
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Optimization Optimizers

o BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
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o BFGS requires us to store the complete estimate of the Hessian or inverse Hessian

e The matrix is too big to be stored in deep learning setting (millions of variables)
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o BFGS requires us to store the complete estimate of the Hessian or inverse Hessian

e The matrix is too big to be stored in deep learning setting (millions of variables)

T T T
@ Recall that By = (I — Dhi ) By, (I — IDy ) + PP size of py, and g are much

ok ok o’

smaller
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BFGS requires us to store the complete estimate of the Hessian or inverse Hessian

e The matrix is too big to be stored in deep learning setting (millions of variables)

T T T
Recall that Biy1 = (I — DRy ) By, (I — IDy ) + PP size of py, and g are much

ok ok o’

smaller

Instead of storing By, we can store the previous last several p and ¢ to estimate By
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Optimization Optimizers

BFGS requires us to store the complete estimate of the Hessian or inverse Hessian

e The matrix is too big to be stored in deep learning setting (millions of variables)

e Recall that By, 1 = (I - pkq%) B (I - qkpg) + PRPE Gize of py, and g are much
k+1 aoe) F 4. Pk alpr’ P Uk
smaller
e Instead of storing By, we can store the previous last several p and ¢ to estimate By

o Let say we store the last r pairs, we need to iterate r times (instead of just once) and the
estimate is less accurate
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BFGS requires us to store the complete estimate of the Hessian or inverse Hessian

e The matrix is too big to be stored in deep learning setting (millions of variables)

e Recall that By, 1 = (I - pkq%) B (I - qkpg) + PRPE Gize of py, and g are much
k+1 aoe) F 4. Pk alpr’ P Uk
smaller
e Instead of storing By, we can store the previous last several p and ¢ to estimate By

o Let say we store the last r pairs, we need to iterate r times (instead of just once) and the
estimate is less accurate
e Storage requirement decreases drastically
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BFGS requires us to store the complete estimate of the Hessian or inverse Hessian

e The matrix is too big to be stored in deep learning setting (millions of variables)

e Recall that By, 1 = (I - pkq%) B (I - qkpg) + PRPE Gize of py, and g are much
k+1 aoe) F 4. Pk alpr’ P Uk
smaller
e Instead of storing By, we can store the previous last several p and ¢ to estimate By

o Let say we store the last r pairs, we need to iterate r times (instead of just once) and the
estimate is less accurate
e Storage requirement decreases drastically

o LBFGS works very well in full batch, function is more or less deterministic
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Optimization Optimizers

BFGS requires us to store the complete estimate of the Hessian or inverse Hessian

e The matrix is too big to be stored in deep learning setting (millions of variables)

e Recall that By, 1 = (I - pkq%) B (I - qkpg) + PRPE Gize of py, and g are much
k+1 aoe) F 4. Pk alpr’ P Uk
smaller
e Instead of storing By, we can store the previous last several p and ¢ to estimate By

o Let say we store the last r pairs, we need to iterate r times (instead of just once) and the
estimate is less accurate
e Storage requirement decreases drastically
o LBFGS works very well in full batch, function is more or less deterministic
e But does not seem to work very well to mini-batch setting
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Optimization Optimizers

Summary

o ADAM is a good default choice in most cases
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Summary

o ADAM is a good default choice in most cases

e Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)
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Optimization Optimizers

Summary

o ADAM is a good default choice in most cases
e Some reported that Momentum SGD works better for ResNet, where some contested

that they can have sharp minimum (see this)
e If you worry about stucking in local minimum, you may set amsgrad to True, that try to

prevent ADAM from getting stuck (see this)

Jan 2019 174 /203

S. Cheng (OU-ECE) Neural Networks


https://arxiv.org/abs/1609.04836
https://openreview.net/forum?id=ryQu7f-RZ

Optimization Optimizers

Summary

o ADAM is a good default choice in most cases

e Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)

e If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

e Learning rate depends on implementations. One has to be careful to transfer that
from one package to another
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Optimization Optimizers

Summary

o ADAM is a good default choice in most cases

e Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)

e If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

e Learning rate depends on implementations. One has to be careful to transfer that
from one package to another
e LR for SGD with momentum for PyTorch is effectively ﬁ more than original
Sutskever’s or SGD implementation
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Optimization Optimizers

Summary

o ADAM is a good default choice in most cases

e Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)

e If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

e Learning rate depends on implementations. One has to be careful to transfer that
from one package to another
e LR for SGD with momentum for PyTorch is effectively ﬁ more than original
Sutskever’s or SGD implementation
o E.g., if SGD works well with LR 1, you may want to change LR to 0.1 if a momentum
©=0.9 is applied
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Optimization Optimizers

Summary

o ADAM is a good default choice in most cases

e Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)

e If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

e Learning rate depends on implementations. One has to be careful to transfer that
from one package to another

e LR for SGD with momentum for PyTorch is effectively ﬁ more than original
Sutskever’s or SGD implementation

o E.g., if SGD works well with LR 1, you may want to change LR to 0.1 if a momentum
©=0.9 is applied

e Many more parameters besides LR, e.g., weight decay (L2 penalty). Check doc
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Optimization Optimizers

Summary

o ADAM is a good default choice in most cases

e Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)

e If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

e Learning rate depends on implementations. One has to be careful to transfer that
from one package to another

e LR for SGD with momentum for PyTorch is effectively ﬁ more than original
Sutskever’s or SGD implementation

o E.g., if SGD works well with LR 1, you may want to change LR to 0.1 if a momentum
©=0.9 is applied

e Many more parameters besides LR, e.g., weight decay (L2 penalty). Check doc

e For nearly deterministic objective function (full-batch), one may try to use LBFGS as
well. But it probably needs too much computational resources in most applications (a
few exception can be style transfer)

S. Cheng (OU-ECE) Neural Networks Jan 2019 174 /203


https://arxiv.org/abs/1609.04836
https://openreview.net/forum?id=ryQu7f-RZ

Optimization Babysitting learning p

Babysitting learning process

Step 1: Preprocess the data

original data

zero-centered data

normalized data

- e
——
5 -5 -5
s 5 g 2, = B 1Y g =3 10
X -= np.mean(X, axis = 0). X /= np.std(X, axis

(Assume X [NxD] is data matrix,
each example in a row)

S. Cheng

Neural Networks
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Optimization Babysitting learning process

Babysitting learning process

Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

50 hidden

\
neurons
output layer 10 output
CIFAR-10 input neurons, one
images, 3072 layer hidden layer per class
numbers
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Optimization Babysitting learning process

Babysitting learning process

Double check that the loss is reasonable:

def init two layer model(input size, hidden size, output size):

model = {}

model['W1'] = 0.0001 * np.random.randn(input size, hidden size)
model[’ = np.zeros(hidden size)

model[ " 0.0001 * np.random.randn(hidden size, output size)
model['b np.zeros (output size)

model = init_two_layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes

:;giz{ %;2: = two_layer net(X train, model, yftraln disable regularization

2.30261216167 \ IOSS ~2;\
“correct “ for returns the loss and the
10 classes gradient for all parameters

S. Cheng (OU-ECE) Neural Networks Jan 2019



Optimization Babysitting learning process

Debugging optimizer

Double check that the loss is reasonable:

def init two layer model(input size, hidden size, output size):

model = {}

model['W1'] = 0.0001 * np.random.randn(input size, hidden size)
model[’ = np.zeros(hidden size)

model[ " 0.0001 * np.random.randn(hidden size, output size)
model['b np.zeros (output size)

model = init two layer model(32%32+%3, 50, 10) # M, hidden size, number of classes
le3

loss, grad = two layer net(X train, model, y train crank up regularization
print loss

3.06859716482 \
loss went up, good. (sanity check)

S. Cheng (OU-ECE) Neural Networks Jan 2019



Debugging optimizer

Optimization Babysitting learning process

Lets try to train now...

Tip: Make sure that
you can overfit very
small portion of the
training data

S. Cheng (OU-ECE)

model = init_two_layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
X_tiny = X train[:20] # take 20 examples
y tiny = y train[:20]
best_model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num_epochs=200, reg=0.0,
update='sgd', learning rate decay=1,
sample_batches = False,
learning_rate=le-3, verbose=True)

The above code:
- take the first 20 examples from
CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

Neural Networks Jan 2019 179 /203



Optimization Ba

model = init_two_layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes

Lets t to train nOW trainer = ClassifierTrainer()
ry " X_tiny = X train[:20] # take 20 examples
y tiny = y train[:20]
best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num_epochs=200, reg=0.0,

Tip: Make sure that Lo Rl
. learning_rate=le-3, verbose=True)
you can overfit very Finished spoch

Finished epoch

.302603, train:
.302258, train:
.301849, train:
.301196, train:
.300044, train:
.297864, train:
.293595, train:
.285096, train:
.268094, train:

.400000, val
.450000, val
.600000, val
650000, val
650000, val
550000, val
.600000, val
550000, val
550000, val

400000, lr 1.000000e-03
450000, lr 1.000000e-03
600000, lr 1.000000e-03
650000, lr 1.000000e-03
650000, lr 1.000000e-03
550000, lr 1.000000e-03
600000, lr 1.000000e-03
550000, lr 1.000000e-63
550000, lr 1.000000e-03

. Finished epoch
small portion of the  _ risres epacn
Finished epoch

t . . d t Flnishes epoch
Finished epoch

ralnlng a a Finished epoch
Finished epoch

VONOU S WN -
N N

0
0
0
0
2]
0.
]
0.
0.

Lo RN -oN-N-NoN-N-oN-

Finished epoch 10 2.234787, train: ©.500000, val 0.500000, lr 1.000000e-03
Finished epoch 11 2.173187, train .500000, val 0.500000, lr 1.000000e-03
Finished epoch 12 2.076862, train: ©.500000, val 0.500000, 1r 1.000000e-03
Finished epoch 13 1.97409@, train: ©.400000, val 0.400000, lr 1.000000e-03
Finished epoch 14 1.895885, .400000, val 0.400000, lr 1.060008e-83
Finished epoch 15 1.820876, .450000, val 0.450000, lr 1.060008e-63
Finished epoch 16 1.737430, .450000, val 0.450000, lr 1.000000e-03
Finished epoch 17 1.642356, .500000, val 0.500000, lr 1.000000e-03
Ver Sma” IOSS Finished epoch 18 1.535239, .600000, val 0.600000, lr 1.000000e-03
y ] F].n.lshed epoch 19 1.421527, .600000, val 0.600000, lr 1.000000e-03 o
...... ki 2 mneaen zennnn’ a1 A csannn’ 1w 3 nannnc. A

traln accurac 1 00 Finished epoch 195 / 200: cost 0.062694, train: 1.000000, val 1.600000, Lr 1.000000e-03
. y Finished epoch 196 1002674, train: 1.000000, val 1.600000, Lr 1.000800e-03

/
% -]
Finished epoch 197 / 20@: cost 0.002655, train: 1.000000, val 1.000000, lr 1.000000e-03
_> ' (0]
I [:]
/
o

T,
. 1
' Finished epoch 198 .802635, train: 1.000000, val 1.000000, Lr 1.000000e-03
n|Ce. Finished epoch 199 .002617, train: 1.000000, val 1.000008, lr 1.600000e-03
Finished epoch 260 00: cost 0.002597, train: 1.000000, val 1.000008, Lr 1.080000e-03
finished optimization. best validation accuracy: 1.000000




Babys g learning pro

Debugging optimizer

model = init_two_layer_model(32+*32*3, 50, 10) # input size, hidden size, number of classes

Lets try to train nOW. . trainer = ClassifierTrainer() o ’ :

best_model, stats = trainer.train(X_train, y_train, X _val, y val,
model, two layer net,
num_epochs=16, reg=0.000001,
update='sgd', learning_rate_decay=1,

| like to start with small T e
regularization and find

learning rate that

makes the loss go

down.
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Optimization Babysitting learning prc

Debugging optimizer

. model = init_two_layer_model(32+*32*3, 50, 10) # input size, hidden size, number of classes
Lets try to traln nOW trainer = ClassifierTrainer()
e best_model, stats = trainer.train(X_train, y train, X_val, y val,
model, two layer net,
num_epochs=10, reg=e.000001,
update='sgd', learning_rate_decay=1,

I Iike tO Start With Sma” |learniﬁgirate— -6,|3érbose=True)

1 H H Finished epoch 1 / 10:|cost 2.302576, |trairl: 0.080000, 1 0.103000, lr 1.000000e-06
regU|arlzat|0n and flnd Finished epoch 2 / 10:|cost 2.302582, |trair: ©.121000, 1 ©.124000, lr 1.000000e-06
Finished epoch 3 / 10:|cost 2.302558, [trair: ©.119600, 1 ©.138000, lr 1.000000e-06
Iearnln rate that Finished epoch 4 / 10:|cost 2.302519, |trair: ©.127000, vl ©.151000, lr 1.000000e-06
g Finished epoch 5 / 10:|cost 2.302517, |trair]: 0.158000, 1 ©.171000, lr 1.000000e-06
Finished epoch 6 / 10:|cost 2.302518, |trair: 0.179000, 1 0.172000, 1r 1.000000e-06
makes the |OSS go Finished epoch 7 / 10:|cost 2.302466, [traif: ©.180600, val ©.176000, lr 1.000008e-06
Finished epoch 8 / 10:|cost 2.302452, |trair: ©.175000, vpl ©.185000, lr 1.000000e-06
Finished epoch 9 / 10:|cost 2.302459, |trair: 0.206000, 1 0.192000, lr 1.000000e-06

dOWn Finished epoch 1@ / 10} cost 2.302420| trajn: ©.196000, [val 0.192000, lr 1.000000e-06

" finished optimization.lhest validatiod accuracy: O.

Loss barely changing




Optimization Ba ting learning pro

ugging optimizer

. model = init_two_layer_model(32+*32*3, 50, 10) # input size, hidden size, number of classes
Lets try to traln nOW trainer = ClassifierTrainer()
e best_model, stats = trainer.train(X_train, y train, X_val, y val,
model, two layer net,
num_epochs=18, reg=0.000001,
update='sgd', learning_rate_decay=1,

I Iike tO Start With Sma” |learn1ng rate=le-6, |verbose-True)

H H H Finished epoch 1 / 10:|cost 2.302576, : 9.080000, val 0.103000, lr 1.800000e-06
regularization and find  Fhishe e 2 7 10:[cost 2:302502. [craif: o/121900, Wbl /124000, 11 1. avonoce ce
Finished epoch 3 / 10:|cost 2.302558, : 8.119000, val 0.138000, Lr 1.8000080e-06
Iearnln rate that Finished epoch 4 / 10:|cost 2.302519, : 9.127000, val ©.151000, lr 1.000000e-06
g Finished epoch 5 / 10:|cost 2.302517, : 0.158000, val ©.171000, lr 1.000000e-06
Finished epoch 6 / 10:|cost 2.302518, 9.179000, val ©.172000, lr 1.8000080e-06
makes the |OSS go Finished epoch 7 / 10:|cost 2.302466, .180000, val 6.176000, Lr 1.000000e-06
Finished epoch 8 / 10:|cost 2.302452, : 8.175000, val ©.185000, lr 1.800000e-06
Finished epoch 9 / 10:|cost 2.302459, 9.206000, val ©.192000, lr 1.800000e-06

down Finished epoch 1@ / 10} cost 2.302420| tra n 0.190000, val ©.192000, lr 1.000000e-06

" finished optimization.lhest validatiod accuracy: O. <]

Loss barely changing: Learning rate is
loss not going down: probably too low

learning rate too low
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Debugging optimizer

Optimization Babysitting learning pro

Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

model = init_two_layer_model(32+*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best_model, stats = trainer.train(X_train, y_train, X _val, y val,

Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
finished

epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
optim

model, two layer net,
num_epochs=18, reg=0.000001,
update='sgd', learning_rate_decay=1,

|learn1ng rate=le-6, |verbose-True)

1/ 10:|cost 2.302576, |trair: ©.080000, 1 0.103000, lr 1.000000e-06
2 / 10:|cost 2.302582, |traif: ©.121000, 1 ©.124000, lr 1.000000e-06
3 / 10:|cost 2.302558, |[traiff: 0.119000, 1 ©.138000, lr 1.000000e-06
4 / 10:|cost 2.302519, |trair]: 0.127000, 1 0.151000, lr 1.000000e-06
5 / 10:|cost 2.302517, |traiff: 0.158000, 1 ©.171000, 1lr 1.000000¢-06
6 / 10:|cost 2.302518, |trair]: ©.179000, 1 0.172000, lr 1.000000e-06
7 / 10:|cost 2.302466, |trair: ©.180000, 1 ©.176000, lr 1.000000¢-06
8 / 10:|cost 2.302452, |trair]: 0.175000, 1 0.185000, lr 1.000000e-06
9 / 10:|cost 2.302459, |trai .206000, 1 0.192000, lr 1.000000e-06
10 / 10} cost 2.302420| tra n 0.190000, val ©.192000, lr 1.000000e-06
ization.lhest validation accuracy: 9. 0

Loss barely changing: Learning rate is
probably too low

Notice train/val accuracy goes to 20%
though, what’s up with that? (remember
this is softmax)
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Debugging optimizer

Optimization Babysitting learning process

Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

S. Cheng (OU-ECE)

model = init_two layer model(32%32+%3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best_model, stats = trainer.train(X_train, y_train, X val, y val,

model, two_layer_net,

num_epochs=10, reg=e.086001,

update='sgd', learning rate decay=1,

sample batches = True,

learning rate=le6, verbose=True)

\

Okay now lets try learning rate 1e6. What could
possibly go wrong?
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Optimization Babysitting learning process

Debugging optimizer

model = init_two layer model(32%32+%3, 50, 10) # input size, hidden size, number of classes

Lets try to train nOW_ . trainer = ClassifierTrainer()

best_model, stats = trainer.train(X_train, y_train, X val, y val,
model, two_layer_net,
num_epochs=10, reg=e.086001,
update='sgd', learning rate decay=1,
sample batches = True,

I Iike to Start With Sma” learning rate=1eé, verbose=True)

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:56: RuntimeWarning: divide by zero en

reQU|arlzatlon and flnd cosz::iigsin:?ﬁp.sum(np‘log(prubs[range(N), yl)) / N

/home/karpathy/cs231n/code/cs231n/classifiers/neural _net.py:48: Runtimewarning: invalid value enc

1 d in sub

Iearnlng rate that ou:ﬁs;ﬁ =1:p4s:x|t)r(.:;res - np.max(scores, axis=1, keepdims=True))

k h | Finished epoch 1 / 10: cost nan, train: ©.091000, val 0.087000, lr 1.000000e+06

Finished h 2/ 10: t . 1 9.095000, 1 0.087000, lr 1.000000e+06

ma eS t e OSS go Fizizhzd :;gih 3 ; 10: Zgzt :::, E::igt 0.100000, ::l 0.087000, 1:: 1‘696090::06
down.
cost: NaN almost
always means high

learning rate...

loss not going down:
learning rate too low
loss exploding:
learning rate too high
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Babys g learning pro

Debugging optimizer

model = init_two_layer_model(32%32%3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()

Lets try to train nOW_ .. best_model, stats = trainer.train(X train, y train, X val, y val,

model, two_layer_ net,
num_epochs=18, reg=0.000001,
update='sgd', learning rate decay=1,
sample_batches = True,

I Iike to Start With Sma” learning rate=3e-3, verbose=True)

Finished epoch 10: cost 2.186654, train: 0.308000, val 0.306000, lr 3.000000e-03

1 1 H Finished h 10: t 2.176230, train: 0.330000, 1 ©.350000, lr 3.000000e-03
regularization and find s s - ; :

1

2.

3 / 10: cost 1.942257, train: ©.376000, val ©.352000, lr 3.000000e-03
Finished epoch 4 / 10: cost 1.827868, train: ©.329000, val ©.310000, lr 3.000000e-03

5/

6/

1 F hed h 10: T Inf: & : 0.128000, 1 0.128000, lr 3.000000e-03
learning rate that e N S I L el T e
makes the loss go

down. 3e-3 s still too high. Cost explodes. ..

loss not going down: _
| . te t | => Rough range for learning rate we
earning rate 100 low should be cross-validating is

loss exploding: somewhere [1e-3 ... 1e-5]
learning rate too high
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Optimization Hyperparameter optimization

Hyperparameter optimization

Hyperparameter Optimization
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Optimization Hyperparameter optimization

Hyperparameter optimization

Random Search vs. Grid Search

Grid Layout Random Layout
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Important parameter Important parameter

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012
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Optimization Hyperparameter optimization

Hyperparameter optimization

Cross-validation strategy

| like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early
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Optimization Hyperparameter optimizatio

Hyperparameter optimization

For example: run coarse search for 5 epochs

max_count = 100 gy . .
for count in xrange(max_count): note it's best to optimize
reg = 1@**uniform(-5, 5)

lr = 10**uniform(-3, -6) in Iog Space'

trainer = ClassifierTrainer()

model = init_two_layer model(32%32%3, 50, 10) # input size, hidden size

trainer = ClassifierTrainer()

best_model local, stats = trainer.train(X_ train, y train, X _val, y_val,

model, two_layer_net,
num_epochs=5, reg=reg,

number of classes

update="momentum', learning_rate_decay=0.9

sample_batches =
learning rate=lr, verbose=False)

True, batch_size = 100,

[val acc: 0.412000, 1lr: 1.405206e-04, reg: 4.793564e-01, (1 / 100) |
val_acc: 0.214000, lr: 7.231888e-06, reg: 2.321281e-04, (2 / 100)
val_acc: ©.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)
val_acc: 0.196000, Llr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)
val acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
val acc: 0.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)
. [val acc: ©.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100) |
nice val acc: 0.241000, (r: 6.749231e-05, reqg: 4.226413e+01, (8 / 100)
[ val acc: 0.482000, Llr: 4.296863e-04, reg: 6.642555e-01, (9 / 100) |
val acc: 0.079000, (r: 5.401602e-66, reg: 1.599828e+04, (10 / 100)
val_acc: ©.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)

Neural Net




Hyperparameter optimiz

Optimization

Hyperparameter

optimization

Now run finer search...

max_count = 100
for count in xrange(max_count):
reg = 10**uniform(-5, 5)

adjust range

\/

max_count = 100
for count in xrange(max_count):

L reg = 10**uniform(-4, 0)
lr = 1e**uniform(-3, -6) lr = 10**uniform(-3, -4)

| val acc: ©.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100) |
val acc: U.492000, Lr: Z.27/9484e-U4, reg: 9.991345e-04, (I 7 100)
val_acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val_acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val _acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100) 0, :
val acc: 0.498000, Lr: 9.477776e-04, reg: 2.001293e-63, (5 / 100) 53% - relatively good
val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) for a 2-|ayer neural net
val_acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) . T
al_acc: 0 : 5.868183¢-04 . 8 8 / 16 with 50 hidden neurons.
val_acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
val acc: 0.490000, lr: 2.036031e-84, reg: 2.406271e-03, (10 / 180)
val acc: 0.475000, lr: 2.021162e-84, reg: 2.287807e-01, (11 / 100)
val_acc: 0.460000, lr: 1.135527e-84, reg: 3.965040e-02, (12 / 160)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)

[ val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100)
val acc: 0.509000, (r: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val acc: 0.514000, lr: 6.43834%e-04, reg: 3.03378le-01, (16 / 100)
val acc: 0.502000, lr: 3.921784e-84, reg: 2.767126e-04, (17 / 100)
val_acc: 0.509000, lr: 9.752279%-04, reg: 2.850865e-03, (18 / 100)
val_acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val acc: 0.516000, lr: 8.039527e-084, reg: 1.528291e-02, (21 / 100)




Optimi i Hyperparameter optimization

Hyperparameter optimization

Now run finer search...

max_count = 100 adjust range max_count = 100
for count in xrange(max_count): for count in xrange(max_count):
reg = 10**uniform(-5, 5) reg = 10**uniform(-4, 8)

\/

lr = 1e**uniform(-3, -6) lr = 10**uniform(-3, -4)
[ val acc: 0.527000, 1r: 5.340517e-04, reg: 4.097824e-01, (0 / 100) |
val acc: L4972000, Ur: 2.2793483e-04, req: 991335e-v4, (1 7 180])
val_acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val_acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val_acc: 0.460000, lr: 1.113730e-04, reg: 244309e-02, (4 / 100) o, :
val acc: ©.498000, lr: 9.477776e-04, reg: 2.001293e-63, (5 / 100) 53% - relatively good
val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 180) for a 2-|ayer neural net
5. 312685¢-04, (7 / 100)

val_acc: 522000, lr: 586261e-04, reg:

6 with 50 hidden neurons.
010889e-04, (9 / 100)

val_acc: 979168e-04, reg:

[oN-NoN-RoN-Nolf-ll-NoNoNo o) Nl oo NoNoNoNo Kol
HFRrANNWUNRFONNRON[BEN RS S

489000, Llr: 1.

val acc: 0.490000, lr: 2.036031e-84, reg: 2.406271e-03, (10 / 100)

val_acc: 8.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 108) But this best cross-

val_acc: 0.460000, lr: 1.135527e-84, reg: 3.905040e-02, (12 / 100) . . .
I val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100) validation result is

val _acc: 0.531000, Lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100) |<— ;

val acc: 0.509000, Ur: 3.140888e-04, reg: 2.857518e-01, (15 / 108) worrying. Why?

val acc: 8.514000, lr: 6.43834%9e-04, reg: 3.033781le-01, (16 / 108)

val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 180)

val_acc: 0.509000, lr: 9.752279e-04, reg: 2.850865¢-03, (18 / 108)

val_acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)

val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 108)

val acc: 0.516000, lr: 8.039527e-84, reg: 1.528291e-62, (21 / 108)




Hyperparameter optimization

Hyperparameters to play with:

- network architecture

- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function
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Optimization Hyperparameter optimization

Hyperparameter optimization

My cross-validation ‘ \
“command center” ‘
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Hyperparameter optimization

Optimization

Hyperparameter optimization

Monitor and visualize the loss curve

25

low learning rate

high learning rate

Loss

good learning rate

00
) 20 40 &0
Epoch £
Jan 2019 196 /203
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Optimization Hyperparameter optimization

Hyperparameter optimization

Loss

time
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Optimization Hyperparameter optimization

Hyperparameter optimization

Loss
Bad initialization
——— aprime suspect

time
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Optimization Hyperparameter optimization

Hyperparameter optimization

lossfunctions.tumblr.com Loss function specimen

valid
58 -
w Training Loss
| 070
] \ 3 |
0.65 }\-\
5.
| N 0.60 \ J
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Optimization Hyperparameter optimization

Hyperparameter optimization

lossfunctions.tumblr.com
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Optimization Hyperparameter optimization

Hyperparameter optimization

,Jr""“‘(!fl\”.\\”.“H, [

lossfunctions.tumblr.com
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Optimization Hyp rameter optimization

Hyperparameter optimization

Monitor and visualize the accuracy:

0.80
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by big gap = overfitting
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3 550 => increase regularization strength?
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T Ll Nno gap
05 => increase model capacity?
— Training accuracy
— Validation accuracy
040
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Optimization Hyperparameter optimization

Hyperparameter optimization

Track the ratio of weight updates / weight magnitudes:

# assume parameter vector W and its gradient vector dW
param_scale = np.linalg.norm(W.ravel())

update = -learning rate*dW # simple SGD update
update_scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update scale / param_scale # want ~le-3

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

S. Cheng (OU-ECE) Neural Networks Jan 2019
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usions

Conclusions

e BP is just chain rule in calculus

e Use ReLU. Never use Sigmoid (use Tanh instead)
o Input preprocessing is no longer very important

e Do subtract mean
e Whitening and normalizing are not much needed

e Weight initialization on the other hand is extremely important for deep networks
e Use batch normalization if you can
e Use dropout

e Use Adam (or maybe RMSprop) for optimizer. If you don’t have much data, can
consider LBFGS

@ Need to babysit your learning for real-world problems

@ Never use grid search for tuning your hyperparameters
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