
Misc tools and
hyperparameter tuning

Samuel Cheng

Some key components of training ML models

• Data preparation

• Model architecture and loss function design

• Optimization choice

• Training loop
• Iterating over training data, feeding it into model, calculating loss, and update

parameters by optimizers and hyperparameters through schedulers

• Evaluation

• Hyperparameter tuning

Overview of PyTorch Lightning

• The goal of PyTorch Lightning is to simplify and standardize the training process,
while still providing full access to the power and flexibility of PyTorch.

• Key features:
• Reproducibility: PyTorch Lightning provides a standardized training loop and a set of best

practices to ensure that models can be trained consistently across different machines and
environments.

• Code readability: PyTorch Lightning separates the boilerplate code for training and validation
from the model architecture, making the code more readable and easier to debug.

• Scalability: PyTorch Lightning provides a simple and efficient way to distribute training across
multiple GPUs or machines.

• Flexibility: PyTorch Lightning allows you to customize the training process to suit your needs,
while still providing a standardized interface for common tasks.

• Community-driven development: PyTorch Lightning is an open-source project that is actively
maintained and developed by a growing community of users and contributors.

Review of terminologies

• Dataset: training/validation/test (70/15/15)

• Dataloader: load a batch at a time

• Step vs epoch: each step load a new batch, each epoch go through all
training data

Torch.utils.data.Dataset

• Require functions:
• __init__(self,…)

• __len__(self)
• Return number of samples in dataset

• __getitem__(self, i)
• Return the the data and label of the

I-th sample

Torch.util.data.DataLoader

Let's use simple 1D regression problem as an example

Barebone lightning module

Barebone lightning module

Barebone lightning module

Barebone lightning module

Barebone lightning module

Barebone lightning module

Barebone lightning module

Adding validation and test steps

Log average validation error with tensorboard

Log average validation error with tensorboard

tensorboard --logdir tb_logs --port 6006

Turn off stuffs you don't need

Get a summary of a model with torchsummary

Get a summary of a model for tensorboard

tensorboard --logdir runs --port 6006

Some training advice from Andrej Karpathy

• Double check if loss is reasonable
• E.g., can crank up regularization and training loss should increase

• Double check if model is reasonable. With little or no regularization,
• Should be able to overfit a small training dataset . i.e., training error = 0

• Check learning rate is too small or too large
• Too small: barely learning anything

• Too large: NaNs

Never use grid search

• Hyperparameters: LR, # layers, # neurons in a layer, optimizers, etc.

• Avoid grid search in particular if you have many hyperparameters

https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Some advices from Andrej Karpathy (CS 231n)

• Coarse to fine tuning
• run a few epochs for rough search

• Longer run for finer search

• Break out early if cost > 3 * original cost

• Use log space instead of linear space for LR and reg (weight decay)

Some advices from Andrej Karpathy (CS 231n)

Some advices from Andrej Karpathy (CS 231n)

Weight and biases (W&B) with Lightning

Automatically log hyper parameter

Hyperparameter sweep

Hyperparameter sweep

Hyperparameter sweep

Warning!!!

• W&B sweep conflict with PyTorch Lightning's save_hyperparameters
method

• Do NOT use save_hyperparameters() with W&B
• Took me a week to figure it out. Didn't mention in the documentation

• The use of save_hyperparameters() in lightning is quite confusing to me,
maybe you guys can dig more. But it seems that if you are using W&B,
probably there is no need of save_hyperparameters()

https://github.com/Lightning-AI/lightning/issues/3981

Successive halving

Hyperband

• Given a fixed budget B, it is not
clear how many initial
configurations n should be used
for successive halving

• Consider several possible values
of n for a fixed B
• in essence performing a grid

search over feasible value of n

BOHB: Bayesian optimization and Hyperband

Use Bayesian optimization in later stage

AUTOML

The group (from the University of Freiburg) that invented BOHB along
group from the University of Hannover have created several open-
source tools for AutoML

• Several of the packages are for hyperparameter tuning
• Such as HpBandSter, which is used by Ray Tune

• The latest version is known as SMAC3

https://github.com/automl
https://github.com/automl/HpBandSter
https://docs.ray.io/en/latest/tune/index.html

Hyperparameter tuning with SMAC3

Warning!!!

If you use Ubuntu (20.04 or 22.04) and virtualenv, don't use --system-
site-packages

ConfigSpace appears to conflict with --system-site-packages

Jupyter-notebook tips and traps

• Useful hotkeys
• Esc a/b: insert cells before/after
• Esc m: change cell to markup
• Esc y: change cell to code
• Esc shift-m: merge with below
• Esc ctrl-shift-'-': split from here

• Jupyter-notebook is very convenient but ...
• Beware of unintended global variables

• Esc-00 is your friend

• When you are really stuck debugging, tidy things up and copy only necessary
code to new notebook
• Things usually will clear up

Summary

• Try out PyTorch lightning (especially if you just start from scratch)
• Easier to maintain along the way (if you didn't break anything)
• Some learning curve if you need detailed control (need callbacks)

• Try out W&B or other similar loggers
• W&B is free for academic use
• Don't mix pl.save_hyperparameters() with W&B
• Hyperparameter sweeping is convenient (even tho not the state of the art)

• Don't use grid search

• Try out AutoML SMAC3
• Not sure if it will work with loggers like W&B
• Don't use --system-site-packages if you use virtualenv in Ubuntu (20.04, 22.04)
• In theory, state-of-the-art hyperparameter tuning (didn't test enough personally)

• Recommend to start with PyTorch->lightning->W&B, each additional layer makes
it harder to debug. You may need to work on all different levels of abstraction

	Slide 1: Misc tools and hyperparameter tuning
	Slide 2: Some key components of training ML models
	Slide 3: Overview of PyTorch Lightning
	Slide 4: Review of terminologies
	Slide 5: Torch.utils.data.Dataset
	Slide 6: Torch.util.data.DataLoader
	Slide 7: Barebone lightning module
	Slide 8: Barebone lightning module
	Slide 9: Barebone lightning module
	Slide 10: Barebone lightning module
	Slide 11: Barebone lightning module
	Slide 12: Barebone lightning module
	Slide 13: Barebone lightning module
	Slide 14: Adding validation and test steps
	Slide 15: Log average validation error with tensorboard
	Slide 16: Log average validation error with tensorboard
	Slide 17: tensorboard --logdir tb_logs --port 6006
	Slide 18: Turn off stuffs you don't need
	Slide 19: Get a summary of a model with torchsummary
	Slide 20: Get a summary of a model for tensorboard
	Slide 21: tensorboard --logdir runs --port 6006
	Slide 22: Some training advice from Andrej Karpathy
	Slide 23: Never use grid search
	Slide 24: Some advices from Andrej Karpathy (CS 231n)
	Slide 25: Some advices from Andrej Karpathy (CS 231n)
	Slide 26: Some advices from Andrej Karpathy (CS 231n)
	Slide 27: Weight and biases (W&B) with Lightning
	Slide 28: Automatically log hyper parameter
	Slide 29: Hyperparameter sweep
	Slide 30: Hyperparameter sweep
	Slide 31: Hyperparameter sweep
	Slide 32: Warning!!!
	Slide 33: Successive halving
	Slide 34: Hyperband
	Slide 35: BOHB: Bayesian optimization and Hyperband
	Slide 36: AUTOML
	Slide 37: Hyperparameter tuning with SMAC3
	Slide 38: Warning!!!
	Slide 39: Jupyter-notebook tips and traps
	Slide 40: Summary

