
Regression and Classification

Samuel Cheng

School of ECE
University of Oklahoma

Spring, 2020

S. Cheng (OU-ECE) Regression and Classification Jan 2017 1 / 81



Table of Contents
1 Math review
2 ML basic

Empirical risk minimization
3 Regression

Loss function
Linear regression
Example: mass estimation
Example: curve fitting
Bias-variance trade-off

4 Lesson learned
Regularization

5 Classification
Binary classification
Multi-class classification

6 Optimization
7 Support vector machine
8 Kernel PCA

S. Cheng (OU-ECE) Regression and Classification Jan 2017 2 / 81



Math review

Some notations and simple linear algebra

A scalar s is lower-case and normal font
A vector v is lower-case and bold

By convention, we always stick with column vectors
A matrix M is upper-case
MT is the transpose of the matrix M

If B = AT , bij = aji

Quiz: for a n-dim vector v,
What is the dimension of vTv?

1× 1 (inner product)
What is the dimension of vvT ?

n× n (outer product)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 3 / 81



Math review

Some notations and simple linear algebra

A scalar s is lower-case and normal font
A vector v is lower-case and bold

By convention, we always stick with column vectors
A matrix M is upper-case
MT is the transpose of the matrix M

If B = AT , bij = aji

Quiz: for a n-dim vector v,
What is the dimension of vTv?

1× 1 (inner product)
What is the dimension of vvT ?

n× n (outer product)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 3 / 81



Math review

Some notations and simple linear algebra

A scalar s is lower-case and normal font
A vector v is lower-case and bold

By convention, we always stick with column vectors
A matrix M is upper-case
MT is the transpose of the matrix M

If B = AT , bij = aji

Quiz: for a n-dim vector v,
What is the dimension of vTv?

1× 1 (inner product)
What is the dimension of vvT ?

n× n (outer product)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 3 / 81



Math review

Some notations and simple linear algebra

A scalar s is lower-case and normal font
A vector v is lower-case and bold

By convention, we always stick with column vectors
A matrix M is upper-case
MT is the transpose of the matrix M

If B = AT , bij = aji

Quiz: for a n-dim vector v,
What is the dimension of vTv?

1× 1 (inner product)
What is the dimension of vvT ?

n× n (outer product)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 3 / 81



Math review

Some notations and simple linear algebra

A scalar s is lower-case and normal font
A vector v is lower-case and bold

By convention, we always stick with column vectors
A matrix M is upper-case
MT is the transpose of the matrix M

If B = AT , bij = aji

Quiz: for a n-dim vector v,
What is the dimension of vTv?

1× 1 (inner product)
What is the dimension of vvT ?

n× n (outer product)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 3 / 81



Math review

A quick review of gradient
For a vector x = (x1, x2, · · · , xn)T , the gradient of a scalar multivariate function f(x) is
denoted by ∇f(x)

Note that ∇f(x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)
∇f(x) is a vector pointing to the steepest (ascending) direction
The magnitude ‖∇f(x)‖ is the slope along that steepest direction

E.g., f((x1, x2, x3)) = (x1 + 2)x22x3

∇f(x) =

 x22x3
2(x1 + 2)x2x3
(x1 + 2)x22


and ∇f(x)|(0,1,0)?

∇f(x)|(0,1,0) = (0, 0, 2)T

S. Cheng (OU-ECE) Regression and Classification Jan 2017 4 / 81



Math review

A quick review of gradient
For a vector x = (x1, x2, · · · , xn)T , the gradient of a scalar multivariate function f(x) is
denoted by ∇f(x)

Note that ∇f(x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)

∇f(x) is a vector pointing to the steepest (ascending) direction
The magnitude ‖∇f(x)‖ is the slope along that steepest direction

E.g., f((x1, x2, x3)) = (x1 + 2)x22x3

∇f(x) =

 x22x3
2(x1 + 2)x2x3
(x1 + 2)x22


and ∇f(x)|(0,1,0)?

∇f(x)|(0,1,0) = (0, 0, 2)T

S. Cheng (OU-ECE) Regression and Classification Jan 2017 4 / 81



Math review

A quick review of gradient
For a vector x = (x1, x2, · · · , xn)T , the gradient of a scalar multivariate function f(x) is
denoted by ∇f(x)

Note that ∇f(x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)
∇f(x) is a vector pointing to the steepest (ascending) direction
The magnitude ‖∇f(x)‖ is the slope along that steepest direction

E.g., f((x1, x2, x3)) = (x1 + 2)x22x3

∇f(x) =

 x22x3
2(x1 + 2)x2x3
(x1 + 2)x22


and ∇f(x)|(0,1,0)?

∇f(x)|(0,1,0) = (0, 0, 2)T

S. Cheng (OU-ECE) Regression and Classification Jan 2017 4 / 81



Math review

A quick review of gradient
For a vector x = (x1, x2, · · · , xn)T , the gradient of a scalar multivariate function f(x) is
denoted by ∇f(x)

Note that ∇f(x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)
∇f(x) is a vector pointing to the steepest (ascending) direction
The magnitude ‖∇f(x)‖ is the slope along that steepest direction

E.g., f((x1, x2, x3)) = (x1 + 2)x22x3

∇f(x) =

 x22x3
2(x1 + 2)x2x3
(x1 + 2)x22


and ∇f(x)|(0,1,0)?

∇f(x)|(0,1,0) = (0, 0, 2)T

S. Cheng (OU-ECE) Regression and Classification Jan 2017 4 / 81



Math review

A quick review of gradient
For a vector x = (x1, x2, · · · , xn)T , the gradient of a scalar multivariate function f(x) is
denoted by ∇f(x)

Note that ∇f(x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)
∇f(x) is a vector pointing to the steepest (ascending) direction
The magnitude ‖∇f(x)‖ is the slope along that steepest direction

E.g., f((x1, x2, x3)) = (x1 + 2)x22x3

∇f(x) =

 x22x3
2(x1 + 2)x2x3
(x1 + 2)x22


and ∇f(x)|(0,1,0)?

∇f(x)|(0,1,0) = (0, 0, 2)T

S. Cheng (OU-ECE) Regression and Classification Jan 2017 4 / 81



Math review

A quick review of gradient
For a vector x = (x1, x2, · · · , xn)T , the gradient of a scalar multivariate function f(x) is
denoted by ∇f(x)

Note that ∇f(x) =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)
∇f(x) is a vector pointing to the steepest (ascending) direction
The magnitude ‖∇f(x)‖ is the slope along that steepest direction

E.g., f((x1, x2, x3)) = (x1 + 2)x22x3

∇f(x) =

 x22x3
2(x1 + 2)x2x3
(x1 + 2)x22


and ∇f(x)|(0,1,0)?

∇f(x)|(0,1,0) = (0, 0, 2)T

S. Cheng (OU-ECE) Regression and Classification Jan 2017 4 / 81



ML basic Empirical risk minimization

Empirical risk minimization

The goal of supervised learning is to minimize generalization error
If we know the data distribution pdata, we can train and select the optimal model
parameter θ̂ by simply minimizing a risk (cost)

E(x,y)∼pdata [L(f(x; θ), y)]

Note that however we don’t know pdata in general, instead we typically are only given
some training data (x(1), y(1)), (x(2), y(2)), · · · , (x(N), y(N)). So instead, we may
minimize the empirical risk

1

N

N∑
i=1

L(f(x(i); θ), y(i))

S. Cheng (OU-ECE) Regression and Classification Jan 2017 5 / 81



Regression Loss function

Loss function for regression

Let us start with the regression problem. Recall from previously that
We are trying to learn a function f(x;W ) such that for training input xi and desired
output yi, f(xi;W ) ∼ yi

We can define a loss (aka cost, objective, risk) function L(·, ·) to measure the discrepancy
between the desired output and the actual output

During training, a reasonable goal will simply be to

min
W

∑
i

L(f(xi;W ), yi),

where in the objective function, we are summing the corresponding loss over all pair
of training data
For regression, it is common to use mean square error for loss function, i.e.,
l(f(xi;W ), yi) = (f(xi;W )− yi)

2

S. Cheng (OU-ECE) Regression and Classification Jan 2017 6 / 81



Regression Loss function

Loss function for regression

Let us start with the regression problem. Recall from previously that
We are trying to learn a function f(x;W ) such that for training input xi and desired
output yi, f(xi;W ) ∼ yi

We can define a loss (aka cost, objective, risk) function L(·, ·) to measure the discrepancy
between the desired output and the actual output

During training, a reasonable goal will simply be to

min
W

∑
i

L(f(xi;W ), yi),

where in the objective function, we are summing the corresponding loss over all pair
of training data

For regression, it is common to use mean square error for loss function, i.e.,
l(f(xi;W ), yi) = (f(xi;W )− yi)

2

S. Cheng (OU-ECE) Regression and Classification Jan 2017 6 / 81



Regression Loss function

Loss function for regression

Let us start with the regression problem. Recall from previously that
We are trying to learn a function f(x;W ) such that for training input xi and desired
output yi, f(xi;W ) ∼ yi

We can define a loss (aka cost, objective, risk) function L(·, ·) to measure the discrepancy
between the desired output and the actual output

During training, a reasonable goal will simply be to

min
W

∑
i

L(f(xi;W ), yi),

where in the objective function, we are summing the corresponding loss over all pair
of training data
For regression, it is common to use mean square error for loss function, i.e.,
l(f(xi;W ), yi) = (f(xi;W )− yi)

2

S. Cheng (OU-ECE) Regression and Classification Jan 2017 6 / 81



Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his height, bmi, and his
age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?

For linear regression, we assume y ∼ xTw
x = (1.8, 23, 29, 1)T

w = (w1, w2, w3, b)
T is an unknown weight vector

N.B. we append the feature vector by 1 to make the expression more compact. b is a bias
weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T , y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T , y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T , yN = 112.33

Write Xtrain =
(
x1,x2, · · · ,xN

)
and ytrain = (y1, y2, · · · , yN )T , we want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 7 / 81



Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his height, bmi, and his
age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?
For linear regression, we assume y ∼ xTw

x = (1.8, 23, 29, 1)T

w = (w1, w2, w3, b)
T is an unknown weight vector

N.B. we append the feature vector by 1 to make the expression more compact. b is a bias
weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T , y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T , y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T , yN = 112.33

Write Xtrain =
(
x1,x2, · · · ,xN

)
and ytrain = (y1, y2, · · · , yN )T , we want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 7 / 81



Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his height, bmi, and his
age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?
For linear regression, we assume y ∼ xTw

x = (1.8, 23, 29, 1)T

w = (w1, w2, w3, b)
T is an unknown weight vector

N.B. we append the feature vector by 1 to make the expression more compact. b is a bias
weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T , y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T , y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T , yN = 112.33

Write Xtrain =
(
x1,x2, · · · ,xN

)
and ytrain = (y1, y2, · · · , yN )T , we want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 7 / 81



Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his height, bmi, and his
age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?
For linear regression, we assume y ∼ xTw

x = (1.8, 23, 29, 1)T

w = (w1, w2, w3, b)
T is an unknown weight vector

N.B. we append the feature vector by 1 to make the expression more compact. b is a bias
weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T , y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T , y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T , yN = 112.33

Write Xtrain =
(
x1,x2, · · · ,xN

)
and ytrain = (y1, y2, · · · , yN )T , we want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 7 / 81



Regression Linear regression

Linear regression – analytical solution
Assume that the mean square loss is used. We want to minimize

L(w)

=
1

2
(ytrain −XT

trainw)T (ytrain −XT
trainw)

=
1

2

(
yT
trainytrain −wTXtrainytrain − yT

trainX
T
trainw +wTXtrainX

T
trainw

)

Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain +XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 8 / 81



Regression Linear regression

Linear regression – analytical solution
Assume that the mean square loss is used. We want to minimize

L(w)

=
1

2
(ytrain −XT

trainw)T (ytrain −XT
trainw)

=
1

2

(
yT
trainytrain −wTXtrainytrain − yT

trainX
T
trainw +wTXtrainX

T
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain +XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 8 / 81



Regression Linear regression

Linear regression – analytical solution
Assume that the mean square loss is used. We want to minimize

L(w)

=
1

2
(ytrain −XT

trainw)T (ytrain −XT
trainw)

=
1

2

(
yT
trainytrain −wTXtrainytrain − yT

trainX
T
trainw +wTXtrainX

T
trainw

)

Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain +XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 8 / 81



Regression Linear regression

Linear regression – analytical solution
Assume that the mean square loss is used. We want to minimize

L(w)

=
1

2
(ytrain −XT

trainw)T (ytrain −XT
trainw)

=
1

2

(
yT
trainytrain −wTXtrainytrain − yT

trainX
T
trainw +wTXtrainX

T
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain +XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 8 / 81



Regression Linear regression

Linear regression – analytical solution
Assume that the mean square loss is used. We want to minimize

L(w)

=
1

2
(ytrain −XT

trainw)T (ytrain −XT
trainw)

=
1

2

(
yT
trainytrain −wTXtrainytrain − yT

trainX
T
trainw +wTXtrainX

T
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain +XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 8 / 81



Regression Linear regression

Linear regression – analytical solution
Assume that the mean square loss is used. We want to minimize

L(w)

=
1

2
(ytrain −XT

trainw)T (ytrain −XT
trainw)

=
1

2

(
yT
trainytrain −wTXtrainytrain − yT

trainX
T
trainw +wTXtrainX

T
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain +XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸
(XT

train)
†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 8 / 81



Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his height, bmi, and his
age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?

For linear regression, we assume y ∼ xTw
x = (1.8, 23, 29, 1)T

w = (w1, w2, w3, b)
T is an unknown weight vector

N.B. we append the feature vector by 1 to make the expression more compact. b is a bias
weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T , y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T , y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T , yN = 112.33

Write Xtrain =
(
x1,x2, · · · ,xN

)
and ytrain = (y1, y2, · · · , yN )T , we want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 9 / 81



Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his height, bmi, and his
age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?
For linear regression, we assume y ∼ xTw

x = (1.8, 23, 29, 1)T

w = (w1, w2, w3, b)
T is an unknown weight vector

N.B. we append the feature vector by 1 to make the expression more compact. b is a bias
weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T , y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T , y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T , yN = 112.33

Write Xtrain =
(
x1,x2, · · · ,xN

)
and ytrain = (y1, y2, · · · , yN )T , we want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 9 / 81



Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his height, bmi, and his
age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?
For linear regression, we assume y ∼ xTw

x = (1.8, 23, 29, 1)T

w = (w1, w2, w3, b)
T is an unknown weight vector

N.B. we append the feature vector by 1 to make the expression more compact. b is a bias
weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T , y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T , y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T , yN = 112.33

Write Xtrain =
(
x1,x2, · · · ,xN

)
and ytrain = (y1, y2, · · · , yN )T , we want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 9 / 81



Regression Linear regression

Linear regression
For example, try to predict the mass (weight) of a man based on his height, bmi, and his
age (assuming we don’t know what bmi is here)

E.g., height = 1.8 m, bmi = 23, age = 29, what is his mass?
For linear regression, we assume y ∼ xTw

x = (1.8, 23, 29, 1)T

w = (w1, w2, w3, b)
T is an unknown weight vector

N.B. we append the feature vector by 1 to make the expression more compact. b is a bias
weight

Given training data, we need to find w
x1 = (1.68, 31.80, 43.34, 1)T , y1 = 87.50
x2 = (1.80, 33.11, 16.69, 1)T , y2 = 110.06
· · ·
xN = (1.83, 33.79, 43.30, 1)T , yN = 112.33

Write Xtrain =
(
x1,x2, · · · ,xN

)
and ytrain = (y1, y2, · · · , yN )T , we want

ytrain ∼ XT
trainw

S. Cheng (OU-ECE) Regression and Classification Jan 2017 9 / 81



Regression Linear regression

Linear regression – analytical solution
Assume that mean square loss is used, we want to minimize

L(w)

=
1

2
(ytrain −XT

trainw)T (ytrain −XT
trainw)

=
1

2

(
yT
trainytrain −wTXtrainytrain − yT

trainX
T
trainw +wTXtrainX

T
trainw

)

Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain +XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 10 / 81



Regression Linear regression

Linear regression – analytical solution
Assume that mean square loss is used, we want to minimize

L(w)

=
1

2
(ytrain −XT

trainw)T (ytrain −XT
trainw)

=
1

2

(
yT
trainytrain −wTXtrainytrain − yT

trainX
T
trainw +wTXtrainX

T
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain +XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 10 / 81



Regression Linear regression

Linear regression – analytical solution
Assume that mean square loss is used, we want to minimize

L(w)

=
1

2
(ytrain −XT

trainw)T (ytrain −XT
trainw)

=
1

2

(
yT
trainytrain −wTXtrainytrain − yT

trainX
T
trainw +wTXtrainX

T
trainw

)

Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain +XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 10 / 81



Regression Linear regression

Linear regression – analytical solution
Assume that mean square loss is used, we want to minimize

L(w)

=
1

2
(ytrain −XT

trainw)T (ytrain −XT
trainw)

=
1

2

(
yT
trainytrain −wTXtrainytrain − yT

trainX
T
trainw +wTXtrainX

T
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain +XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 10 / 81



Regression Linear regression

Linear regression – analytical solution
Assume that mean square loss is used, we want to minimize

L(w)

=
1

2
(ytrain −XT

trainw)T (ytrain −XT
trainw)

=
1

2

(
yT
trainytrain −wTXtrainytrain − yT

trainX
T
trainw +wTXtrainX

T
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain +XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸

(XT
train)

†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 10 / 81



Regression Linear regression

Linear regression – analytical solution
Assume that mean square loss is used, we want to minimize

L(w)

=
1

2
(ytrain −XT

trainw)T (ytrain −XT
trainw)

=
1

2

(
yT
trainytrain −wTXtrainytrain − yT

trainX
T
trainw +wTXtrainX

T
trainw

)
Let’s compute the gradient (try it out at home),

∇wL(w) = −Xtrainytrain +XtrainX
T
trainw

At the optimum, we expect ∇wL(w) = 0. Thus

w = (XtrainX
T
train)

−1Xtrain︸ ︷︷ ︸
(XT

train)
†

ytrain

S. Cheng (OU-ECE) Regression and Classification Jan 2017 10 / 81



Regression Example: mass estimation

Experiment

mass = bmi × height2

We generated 30 training data points and wiggled the masses with Gaussian noises of
a standard deviation of 3 kg
Trained weights: (1.17e+02, 3.11, 8.97e-03, -2.05e+02) # (height,bmi,age,1)
The weights are quite reasonable

mass should not really depend on age
height should have a stronger effect to mass than bmi

MSE: 6.63. It is a bit high, let’s try to reduce it

S. Cheng (OU-ECE) Regression and Classification Jan 2017 11 / 81



Regression Example: mass estimation

Experiment

mass = bmi × height2

We generated 30 training data points and wiggled the masses with Gaussian noises of
a standard deviation of 3 kg

Trained weights: (1.17e+02, 3.11, 8.97e-03, -2.05e+02) # (height,bmi,age,1)
The weights are quite reasonable

mass should not really depend on age
height should have a stronger effect to mass than bmi

MSE: 6.63. It is a bit high, let’s try to reduce it

S. Cheng (OU-ECE) Regression and Classification Jan 2017 11 / 81



Regression Example: mass estimation

Experiment

mass = bmi × height2

We generated 30 training data points and wiggled the masses with Gaussian noises of
a standard deviation of 3 kg
Trained weights: (1.17e+02, 3.11, 8.97e-03, -2.05e+02) # (height,bmi,age,1)

The weights are quite reasonable
mass should not really depend on age
height should have a stronger effect to mass than bmi

MSE: 6.63. It is a bit high, let’s try to reduce it

S. Cheng (OU-ECE) Regression and Classification Jan 2017 11 / 81



Regression Example: mass estimation

Experiment

mass = bmi × height2

We generated 30 training data points and wiggled the masses with Gaussian noises of
a standard deviation of 3 kg
Trained weights: (1.17e+02, 3.11, 8.97e-03, -2.05e+02) # (height,bmi,age,1)
The weights are quite reasonable

mass should not really depend on age
height should have a stronger effect to mass than bmi

MSE: 6.63. It is a bit high, let’s try to reduce it

S. Cheng (OU-ECE) Regression and Classification Jan 2017 11 / 81



Regression Example: mass estimation

Experiment

mass = bmi × height2

We generated 30 training data points and wiggled the masses with Gaussian noises of
a standard deviation of 3 kg
Trained weights: (1.17e+02, 3.11, 8.97e-03, -2.05e+02) # (height,bmi,age,1)
The weights are quite reasonable

mass should not really depend on age
height should have a stronger effect to mass than bmi

MSE: 6.63. It is a bit high, let’s try to reduce it

S. Cheng (OU-ECE) Regression and Classification Jan 2017 11 / 81



Regression Example: mass estimation

Expanding features...

Let’s include some higher “order” features. For the raw feature x1, x2, x3, we can also
include products of them as a feature. So a new feature vector becomes

(1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3)

We can do linear regression just as before, just the number of weights increases from
4 to 10
MSE: 1.01. Nice!

S. Cheng (OU-ECE) Regression and Classification Jan 2017 12 / 81



Regression Example: mass estimation

Expanding features...

Let’s include some higher “order” features. For the raw feature x1, x2, x3, we can also
include products of them as a feature. So a new feature vector becomes

(1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3)

We can do linear regression just as before, just the number of weights increases from
4 to 10

MSE: 1.01. Nice!

S. Cheng (OU-ECE) Regression and Classification Jan 2017 12 / 81



Regression Example: mass estimation

Expanding features...

Let’s include some higher “order” features. For the raw feature x1, x2, x3, we can also
include products of them as a feature. So a new feature vector becomes

(1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3)

We can do linear regression just as before, just the number of weights increases from
4 to 10
MSE: 1.01. Nice!

S. Cheng (OU-ECE) Regression and Classification Jan 2017 12 / 81



Regression Example: mass estimation

Expanding features (con’t)...

Let’s go even higher order and also include products like x1x2x3 and x21x2. So the
new feature vector now becomes

(1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3, x

3
1, x

3
2, x

3
3, x

2
1x2, · · · )

Again we will do linear regression as before, the number of weights now increases
from to 25
MSE: 0.32...

S. Cheng (OU-ECE) Regression and Classification Jan 2017 13 / 81



Regression Example: mass estimation

Expanding features (con’t)...

Let’s go even higher order and also include products like x1x2x3 and x21x2. So the
new feature vector now becomes

(1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3, x

3
1, x

3
2, x

3
3, x

2
1x2, · · · )

Again we will do linear regression as before, the number of weights now increases
from to 25

MSE: 0.32...

S. Cheng (OU-ECE) Regression and Classification Jan 2017 13 / 81



Regression Example: mass estimation

Expanding features (con’t)...

Let’s go even higher order and also include products like x1x2x3 and x21x2. So the
new feature vector now becomes

(1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3, x

3
1, x

3
2, x

3
3, x

2
1x2, · · · )

Again we will do linear regression as before, the number of weights now increases
from to 25
MSE: 0.32...

S. Cheng (OU-ECE) Regression and Classification Jan 2017 13 / 81



Regression Example: mass estimation

Expanding features (con’t)...

We can go further to the 4-th order and the number of weights now increases to 70
MSE: 1.13e-12. Wow!

S. Cheng (OU-ECE) Regression and Classification Jan 2017 14 / 81



Regression Example: mass estimation

Wait, how about testing error?

1.0 1.5 2.0 2.5 3.0
Maximum degree of features

0

1

2

3

4

5

6

7

8

9

M
SE

Training error
Testing error

S. Cheng (OU-ECE) Regression and Classification Jan 2017 15 / 81



Regression Example: mass estimation

Wait, how about testing error...? Oops

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Maximum degree of features

0

10000

20000

30000

40000

50000

60000

M
SE

Training error
Testing error

S. Cheng (OU-ECE) Regression and Classification Jan 2017 16 / 81



Regression Example: curve fitting

Curve fitting
Why is it so bad for testing? Let’s visit another even simpler example

Let’s try to fit a quadratic curve y = (x− 3)2 with linear regression. And again our
training data will be wiggled a little bit by a Gaussian noise

0 2 4 6 8 10
10

0

10

20

30

40

50
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 17 / 81



Regression Example: curve fitting

Curve fitting (2nd order)

Let’s include higher order feature just as before. Take (1, x, x2) as feature by including x2

0 2 4 6 8 10
10

0

10

20

30

40

50

60
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 18 / 81



Regression Example: curve fitting

Curve fitting (3rd order)

(1, x, x2, x3)

0 2 4 6 8 10
10

0

10

20

30

40

50

60
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 19 / 81



Regression Example: curve fitting

Curve fitting (4th order)

(1, x, x2, x3, x4)

0 2 4 6 8 10
10

0

10

20

30

40

50

60
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 20 / 81



Regression Example: curve fitting

Curve fitting (5th order)

(1, x, x2, x3, x4, x5)

0 2 4 6 8 10

0

20

40

60

80 Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 21 / 81



Regression Example: curve fitting

Curve fitting (6rd order)

(1, x, x2, x3, x4, x5, x6)

0 2 4 6 8 10
20

0

20

40

60

80

100

120

140
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 22 / 81



Regression Example: curve fitting

Curve fitting (7rd order)

(1, x, x2, x3, x4, x5, x6, x7)

0 2 4 6 8 10
20

0

20

40

60

80

100

120

140
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 23 / 81



Regression Example: curve fitting

Curve fitting (8th order)

(1, x, x2, x3, x4, x5, x6, x7, x8)

0 2 4 6 8 10
50

0

50

100

150

200

250
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 24 / 81



Regression Example: curve fitting

Curve fitting (9th order)

(1, x, x2, x3, x4, x5, x6, x7, x8, x9)

0 2 4 6 8 10
200

0

200

400

600

800

1000

1200

1400

1600
Estimated curve
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 25 / 81



Regression Bias-variance trade-off

Overfitting vs underfitting

1 2 3 4 5 6
Max degree

0

2

4

6

8

10

M
SE

Training error
Testing error

S. Cheng (OU-ECE) Regression and Classification Jan 2017 26 / 81



Lesson learned

Lesson learned

Given sufficiently complex model, we can learn “anything”, but ...
Machine learning is all about generalization
It is testing error but not training error that actually counts

Machine learning is very similar to optimization, we just try to find our best model
by minimizing a loss function, but...

Unlike optimization, we don’t actually know the true objective function
Loss function is just an approximated goal

Should try to avoid neither overfitting nor underfitting
Everything should be made as simple as possible, but not simpler – Albert Einstein
Occam’s razor: overly complex model is not a good thing (if you don’t have sufficient
data to fit the model)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 27 / 81



Lesson learned

Lesson learned

Given sufficiently complex model, we can learn “anything”, but ...
Machine learning is all about generalization
It is testing error but not training error that actually counts

Machine learning is very similar to optimization, we just try to find our best model
by minimizing a loss function, but...

Unlike optimization, we don’t actually know the true objective function
Loss function is just an approximated goal

Should try to avoid neither overfitting nor underfitting
Everything should be made as simple as possible, but not simpler – Albert Einstein
Occam’s razor: overly complex model is not a good thing (if you don’t have sufficient
data to fit the model)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 27 / 81



Lesson learned

Lesson learned

Given sufficiently complex model, we can learn “anything”, but ...
Machine learning is all about generalization
It is testing error but not training error that actually counts

Machine learning is very similar to optimization, we just try to find our best model
by minimizing a loss function, but...

Unlike optimization, we don’t actually know the true objective function
Loss function is just an approximated goal

Should try to avoid neither overfitting nor underfitting
Everything should be made as simple as possible, but not simpler – Albert Einstein
Occam’s razor: overly complex model is not a good thing (if you don’t have sufficient
data to fit the model)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 27 / 81



Lesson learned

Lesson learned

Given sufficiently complex model, we can learn “anything”, but ...
Machine learning is all about generalization
It is testing error but not training error that actually counts

Machine learning is very similar to optimization, we just try to find our best model
by minimizing a loss function, but...

Unlike optimization, we don’t actually know the true objective function
Loss function is just an approximated goal

Should try to avoid neither overfitting nor underfitting

Everything should be made as simple as possible, but not simpler – Albert Einstein
Occam’s razor: overly complex model is not a good thing (if you don’t have sufficient
data to fit the model)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 27 / 81



Lesson learned

Lesson learned

Given sufficiently complex model, we can learn “anything”, but ...
Machine learning is all about generalization
It is testing error but not training error that actually counts

Machine learning is very similar to optimization, we just try to find our best model
by minimizing a loss function, but...

Unlike optimization, we don’t actually know the true objective function
Loss function is just an approximated goal

Should try to avoid neither overfitting nor underfitting
Everything should be made as simple as possible, but not simpler – Albert Einstein
Occam’s razor: overly complex model is not a good thing (if you don’t have sufficient
data to fit the model)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 27 / 81



Lesson learned

High-bias vs high-variance

Sometimes we also refer to overfitting and un-
derfitting roughly as high-variance and high-
bias

High-bias: model is too rigid to learn
(thus biased) and it cannot adapt to the
data
High-variance: model is too elastic and
can fit any arbitrary data. When fitted
with different training data, the weights
just converge to totally different values
(thus high variance)

� � � � � �

����������

�

�

�

�

�

��

�
�
�

��������������

�������������

9RHIV¾X 3ZIV¾X

S. Cheng (OU-ECE) Regression and Classification Jan 2017 28 / 81



Lesson learned

High-bias vs high-variance

Sometimes we also refer to overfitting and un-
derfitting roughly as high-variance and high-
bias

High-bias: model is too rigid to learn
(thus biased) and it cannot adapt to the
data

High-variance: model is too elastic and
can fit any arbitrary data. When fitted
with different training data, the weights
just converge to totally different values
(thus high variance)

� � � � � �

����������

�

�

�

�

�

��

�
�
�

��������������

�������������

9RHIV¾X 3ZIV¾X

S. Cheng (OU-ECE) Regression and Classification Jan 2017 28 / 81



Lesson learned

High-bias vs high-variance

Sometimes we also refer to overfitting and un-
derfitting roughly as high-variance and high-
bias

High-bias: model is too rigid to learn
(thus biased) and it cannot adapt to the
data
High-variance: model is too elastic and
can fit any arbitrary data. When fitted
with different training data, the weights
just converge to totally different values
(thus high variance)

� � � � � �

����������

�

�

�

�

�

��

�
�
�

��������������

�������������

9RHIV¾X 3ZIV¾X

S. Cheng (OU-ECE) Regression and Classification Jan 2017 28 / 81



Lesson learned

More on overfitting (high-variance)

In the high-variance domain,
the model is essentially
learning the training data
noise. That’s why weights
converge to different values for
different training data
Model complexity is relative. If
more training data are
available, the model used to be
overfitted may not be
overfitted anymore. So should
we change a model every time
we added new data?!

� � � � � �

����������

�

�

�

�

�

��

�
�
�

��������������

�������������

9RHIV¾X 3ZIV¾X

S. Cheng (OU-ECE) Regression and Classification Jan 2017 29 / 81



Lesson learned Regularization

Regularization

Rather than using a simple model, we could restrain a more complex model from running
wild with additional constraints. This process is commonly known as regularization

As regularization can mitigate the overfitting problem, we can use a more expressive
model even when we have only few data. And the same model can be used as data
size increases
A regularized complex model often outperforms an unregularized simple model

S. Cheng (OU-ECE) Regression and Classification Jan 2017 30 / 81



Lesson learned Regularization

Ridge regression
A most common type of regularization is by restraining the magnitudes of the weights

For example, in ridge regression, we try to achieve this by simply including 1
2λw

Tw
in the loss objective function. Thus

L(w) =
1

2
(y −XTw)T (y −XTw) +

1

2
λwTw

=
1

2

(
yTy −wTXy − yTXTw +wT [XXT + λI]w

)

And the gradient is
∇wL(w) = −Xy + [XXT + λI] w

As before, if we set ∇wL(w) = 0, we have

w = [XXT + λI]−1Xy

S. Cheng (OU-ECE) Regression and Classification Jan 2017 31 / 81



Lesson learned Regularization

Ridge regression
A most common type of regularization is by restraining the magnitudes of the weights

For example, in ridge regression, we try to achieve this by simply including 1
2λw

Tw
in the loss objective function. Thus

L(w) =
1

2
(y −XTw)T (y −XTw) +

1

2
λwTw

=
1

2

(
yTy −wTXy − yTXTw +wT [XXT + λI]w

)
And the gradient is

∇wL(w) = −Xy + [XXT + λI] w

As before, if we set ∇wL(w) = 0, we have

w = [XXT + λI]−1Xy

S. Cheng (OU-ECE) Regression and Classification Jan 2017 31 / 81



Lesson learned Regularization

Ridge regression
A most common type of regularization is by restraining the magnitudes of the weights

For example, in ridge regression, we try to achieve this by simply including 1
2λw

Tw
in the loss objective function. Thus

L(w) =
1

2
(y −XTw)T (y −XTw) +

1

2
λwTw

=
1

2

(
yTy −wTXy − yTXTw +wT [XXT + λI]w

)
And the gradient is

∇wL(w) = −Xy + [XXT + λI] w

As before, if we set ∇wL(w) = 0, we have

w = [XXT + λI]−1Xy

S. Cheng (OU-ECE) Regression and Classification Jan 2017 31 / 81



Lesson learned Regularization

Ridge regression
A most common type of regularization is by restraining the magnitudes of the weights

For example, in ridge regression, we try to achieve this by simply including 1
2λw

Tw
in the loss objective function. Thus

L(w) =
1

2
(y −XTw)T (y −XTw) +

1

2
λwTw

=
1

2

(
yTy −wTXy − yTXTw +wT [XXT + λI]w

)
And the gradient is

∇wL(w) = −Xy + [XXT + λI] w

As before, if we set ∇wL(w) = 0, we have

w = [XXT + λI]−1Xy

S. Cheng (OU-ECE) Regression and Classification Jan 2017 31 / 81



Lesson learned Regularization

Lasso

Another common regularization is lasso. Instead of λwTw, the scaled l1-norm of w,
λ‖w‖1 is added to the loss objective function Thus, we want to

min
w

1

2
(y −XTw)T (y −XTw) + λ‖w‖1,

where ‖w‖1 = |w1|+ |w2|+ · · ·+ |wD|

Unlike ridge regression, one cannot write the close form solution directly though
But a local optimum can be found with iterative soft-thresholding
For the next several slides, I just used sciki-learn libraryin Python

Lasso tends to enforce a sparse weight solution. It was popular several years ago
because of compressed sensing

S. Cheng (OU-ECE) Regression and Classification Jan 2017 32 / 81

https://www.kaggle.com/residentmario/soft-thresholding-with-lasso-regression


Lesson learned Regularization

Lasso

Another common regularization is lasso. Instead of λwTw, the scaled l1-norm of w,
λ‖w‖1 is added to the loss objective function Thus, we want to

min
w

1

2
(y −XTw)T (y −XTw) + λ‖w‖1,

where ‖w‖1 = |w1|+ |w2|+ · · ·+ |wD|
Unlike ridge regression, one cannot write the close form solution directly though

But a local optimum can be found with iterative soft-thresholding
For the next several slides, I just used sciki-learn libraryin Python

Lasso tends to enforce a sparse weight solution. It was popular several years ago
because of compressed sensing

S. Cheng (OU-ECE) Regression and Classification Jan 2017 32 / 81

https://www.kaggle.com/residentmario/soft-thresholding-with-lasso-regression


Lesson learned Regularization

Lasso

Another common regularization is lasso. Instead of λwTw, the scaled l1-norm of w,
λ‖w‖1 is added to the loss objective function Thus, we want to

min
w

1

2
(y −XTw)T (y −XTw) + λ‖w‖1,

where ‖w‖1 = |w1|+ |w2|+ · · ·+ |wD|
Unlike ridge regression, one cannot write the close form solution directly though

But a local optimum can be found with iterative soft-thresholding
For the next several slides, I just used sciki-learn libraryin Python

Lasso tends to enforce a sparse weight solution. It was popular several years ago
because of compressed sensing

S. Cheng (OU-ECE) Regression and Classification Jan 2017 32 / 81

https://www.kaggle.com/residentmario/soft-thresholding-with-lasso-regression


Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−50

0

50

100

150

200

250
λ = 0.15

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 33 / 81



Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−50

0

50

100

150

200

250
λ = 0.3

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 34 / 81



Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−50

0

50

100

150

200
λ = 0.5

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 35 / 81



Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−20

0

20

40

60

80

100

120

140

160
λ = 1

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 36 / 81



Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−20

0

20

40

60

80

100

120
λ = 2

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 37 / 81



Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−10

0

10

20

30

40

50

60

70

80
λ = 4

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 38 / 81



Lesson learned Regularization

Curve fitting with Lasso and ridge regression (degree=9)

0 2 4 6 8 10
−10

0

10

20

30

40

50

60

70

80
λ = 8

Lasso
Ridge regression
Original curve

S. Cheng (OU-ECE) Regression and Classification Jan 2017 39 / 81



Lesson learned Regularization

Conclusion

Machine learning is all about generalization (from data)
One can decrease the training error to arbitrarily small (by increasing model
complexity)
On the other hand, we really only care about test error, which is composed of

Bias: High bias when model is too rigid (model complexity is too low) to adapt to the
training data
Variance: High variance when model is too flexible (model complexity is too high) that
different sets of training data will converge to completely different weight parameters

Occam’s razor: a good explanation should be minimal

S. Cheng (OU-ECE) Regression and Classification Jan 2017 40 / 81



Lesson learned Regularization

Conclusion

For supervised learning systems (both classification and regression), we can typically
reduce it to an optimization problem of minimizing a loss function (instead of
training error) w.r.t. some weights
Regularization terms can typically be incorporated in the loss function to keep the
weights from running wild
It is almost always better to use a more complex but regularized model than a simple
model when one has sufficient training data

Provided that one regularized wisely
That is why deep neural networks typically work better

Actually with sufficient data, we don’t need to worry about overfitting
Furthermore, sometimes you may even want to overfit a small training set (attain 0
training error but large testing error) just to make sure your model is correct

S. Cheng (OU-ECE) Regression and Classification Jan 2017 41 / 81



Lesson learned Regularization

Conclusion

For supervised learning systems (both classification and regression), we can typically
reduce it to an optimization problem of minimizing a loss function (instead of
training error) w.r.t. some weights
Regularization terms can typically be incorporated in the loss function to keep the
weights from running wild
It is almost always better to use a more complex but regularized model than a simple
model when one has sufficient training data

Provided that one regularized wisely
That is why deep neural networks typically work better

Actually with sufficient data, we don’t need to worry about overfitting

Furthermore, sometimes you may even want to overfit a small training set (attain 0
training error but large testing error) just to make sure your model is correct

S. Cheng (OU-ECE) Regression and Classification Jan 2017 41 / 81



Lesson learned Regularization

Conclusion

For supervised learning systems (both classification and regression), we can typically
reduce it to an optimization problem of minimizing a loss function (instead of
training error) w.r.t. some weights
Regularization terms can typically be incorporated in the loss function to keep the
weights from running wild
It is almost always better to use a more complex but regularized model than a simple
model when one has sufficient training data

Provided that one regularized wisely
That is why deep neural networks typically work better

Actually with sufficient data, we don’t need to worry about overfitting
Furthermore, sometimes you may even want to overfit a small training set (attain 0
training error but large testing error) just to make sure your model is correct

S. Cheng (OU-ECE) Regression and Classification Jan 2017 41 / 81



Lesson learned Regularization

New perspective?!

S. Cheng (OU-ECE) Regression and Classification Jan 2017 42 / 81

https://arxiv.org/pdf/1812.11118.pdf


Classification Binary classification

Linear classification

The same linear regression idea can be transferred to classification problems
Consider binary classification whether an image contains a cat or not

We can first vectorize the input image into a column vector x (with an extra 1 appended
to account for bias)

E.g., for a very small 2× 2 image patch
(
10 25
36 90

)
, it will be converted to

x = (10, 25, 36, 90, 1)T

We will decide if the image contains a cat of not by verifying if

xTw ≶ 0,

where we will need to obtain the weight w through training (more later)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 43 / 81



Classification Binary classification

Linear classification

The same linear regression idea can be transferred to classification problems
Consider binary classification whether an image contains a cat or not

We can first vectorize the input image into a column vector x (with an extra 1 appended
to account for bias)

E.g., for a very small 2× 2 image patch
(
10 25
36 90

)
, it will be converted to

x = (10, 25, 36, 90, 1)T

We will decide if the image contains a cat of not by verifying if

xTw ≶ 0,

where we will need to obtain the weight w through training (more later)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 43 / 81



Classification Binary classification

Linear classification

The same linear regression idea can be transferred to classification problems
Consider binary classification whether an image contains a cat or not

We can first vectorize the input image into a column vector x (with an extra 1 appended
to account for bias)

E.g., for a very small 2× 2 image patch
(
10 25
36 90

)
, it will be converted to

x = (10, 25, 36, 90, 1)T

We will decide if the image contains a cat of not by verifying if

xTw ≶ 0,

where we will need to obtain the weight w through training (more later)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 43 / 81



Classification Binary classification

Logistic regression

We can introduce a scoring function

f(x;w) = H(xTw),

where H(t) =

{
1, t ≥ 0

0, t < 0
is a step function and we have a cat if f(x;w) = 1 and no

cat if f(x;w) = 0

Note that f(x;w) essentially is a perceptron model and is difficult to train because of
the discontinuity of H(·). Instead, we could replace H(·) by the sigmoid (or logistic)
function S(t) = 1

1+e−t

Hence, known as logistic regression

S. Cheng (OU-ECE) Regression and Classification Jan 2017 44 / 81



Classification Binary classification

Logistic regression

We can introduce a scoring function

f(x;w) = H(xTw),

where H(t) =

{
1, t ≥ 0

0, t < 0
is a step function and we have a cat if f(x;w) = 1 and no

cat if f(x;w) = 0

Note that f(x;w) essentially is a perceptron model and is difficult to train because of
the discontinuity of H(·). Instead, we could replace H(·) by the sigmoid (or logistic)
function S(t) = 1

1+e−t

Hence, known as logistic regression

S. Cheng (OU-ECE) Regression and Classification Jan 2017 44 / 81



Classification Binary classification

Loss function of logistic regression

Another advantage of using S(·) is that we can interpret the output as probability and
then the loss function can be specified by a “cross-entropy loss” as follows (will explain
next)

L(w;x) =

{
− log f(x;w), if the image is a cat
− log(1− f(x;w)), otherwise

S. Cheng (OU-ECE) Regression and Classification Jan 2017 45 / 81



Classification Multi-class classification

Softmax classifier

For multiclass problem, we can extend the logistic scoring function to

fi(x;W ) = σi(Wx),

where σi(y) =
exp(yi)∑
j exp(yj)

is known as a softmax function and is really just a
normalized exponential function

Again, we can interpret fi(x;W ) as the estimated probability of x belong to class i

E.g., p(cat;x,W ) = fcat(x;W )

S. Cheng (OU-ECE) Regression and Classification Jan 2017 46 / 81



Classification Multi-class classification

Softmax classifier

For multiclass problem, we can extend the logistic scoring function to

fi(x;W ) = σi(Wx),

where σi(y) =
exp(yi)∑
j exp(yj)

is known as a softmax function and is really just a
normalized exponential function
Again, we can interpret fi(x;W ) as the estimated probability of x belong to class i

E.g., p(cat;x,W ) = fcat(x;W )

S. Cheng (OU-ECE) Regression and Classification Jan 2017 46 / 81



Classification Multi-class classification

Surrogate loss function

Both classifiers below will result in zero prediction error if the ground truth is dog

p(cat) p(dog) p(ship)

Classifier A
p(cat) p(dog) p(ship)

Classifier B
However, Classifier B is apparently better than Classifier A. Using zero-one loss will
not be able to distinguish them though.
A surrogate loss function should be used instead. The most common one is the
cross-entropy loss function

S. Cheng (OU-ECE) Regression and Classification Jan 2017 47 / 81



Classification Multi-class classification

Cross entropy loss function

q(cat) q(pig)q(dog)

Actual

p(cat) p(dog) p(pig)

Estimate

Let say the image is actually a dog. We can express this as a distribution as shown on
the left

Ideally we would like the estimated probability distribution matches the actual one
We can measure the difference between two distributions with KL-divergence given by

KL(q‖p) =
∑
i

qi log
qi
pi

S. Cheng (OU-ECE) Regression and Classification Jan 2017 48 / 81



Classification Multi-class classification

Cross entropy loss function

q(cat) q(pig)q(dog)

Actual

p(cat) p(dog) p(pig)

Estimate

Let say the image is actually a dog. We can express this as a distribution as shown on
the left
Ideally we would like the estimated probability distribution matches the actual one

We can measure the difference between two distributions with KL-divergence given by

KL(q‖p) =
∑
i

qi log
qi
pi

S. Cheng (OU-ECE) Regression and Classification Jan 2017 48 / 81



Classification Multi-class classification

Cross entropy loss function

q(cat) q(pig)q(dog)

Actual

p(cat) p(dog) p(pig)

Estimate

Let say the image is actually a dog. We can express this as a distribution as shown on
the left
Ideally we would like the estimated probability distribution matches the actual one
We can measure the difference between two distributions with KL-divergence given by

KL(q‖p) =
∑
i

qi log
qi
pi

S. Cheng (OU-ECE) Regression and Classification Jan 2017 48 / 81



Classification Multi-class classification

KL-divergence is non-negative

KL(p‖q) =
∑
i

pi log2
pi
qi

= −
∑
i

pi log2
qi
pi

= −
∑
i

pi
ln 2

ln
qi
pi

≥ −
∑
i

pi
ln 2

(
qi
pi

− 1

)

=
1

ln 2

(∑
i

pi −
∑
i

qi

)
= 0

Fact
For any real x, ln(x) ≤ x− 1. Moreover, the equality only holds when x = 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 49 / 81

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1



Classification Multi-class classification

KL-divergence is non-negative

KL(p‖q) =
∑
i

pi log2
pi
qi

= −
∑
i

pi log2
qi
pi

= −
∑
i

pi
ln 2

ln
qi
pi

≥ −
∑
i

pi
ln 2

(
qi
pi

− 1

)

=
1

ln 2

(∑
i

pi −
∑
i

qi

)
= 0

Fact
For any real x, ln(x) ≤ x− 1. Moreover, the equality only holds when x = 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 49 / 81

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1



Classification Multi-class classification

KL-divergence is non-negative

KL(p‖q) =
∑
i

pi log2
pi
qi

= −
∑
i

pi log2
qi
pi

= −
∑
i

pi
ln 2

ln
qi
pi

≥ −
∑
i

pi
ln 2

(
qi
pi

− 1

)

=
1

ln 2

(∑
i

pi −
∑
i

qi

)
= 0

Fact
For any real x, ln(x) ≤ x− 1. Moreover, the equality only holds when x = 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 49 / 81

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1



Classification Multi-class classification

KL-divergence is non-negative

KL(p‖q) =
∑
i

pi log2
pi
qi

= −
∑
i

pi log2
qi
pi

= −
∑
i

pi
ln 2

ln
qi
pi

≥ −
∑
i

pi
ln 2

(
qi
pi

− 1

)

=
1

ln 2

(∑
i

pi −
∑
i

qi

)
= 0

Fact
For any real x, ln(x) ≤ x− 1. Moreover, the equality only holds when x = 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 49 / 81

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1



Classification Multi-class classification

KL-divergence is non-negative

KL(p‖q) =
∑
i

pi log2
pi
qi

= −
∑
i

pi log2
qi
pi

= −
∑
i

pi
ln 2

ln
qi
pi

≥ −
∑
i

pi
ln 2

(
qi
pi

− 1

)

=
1

ln 2

(∑
i

pi −
∑
i

qi

)
= 0

Fact
For any real x, ln(x) ≤ x− 1. Moreover, the equality only holds when x = 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 49 / 81

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1



Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two distribution
KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p

It is not an actual distant measure: KL(q||p) 6= KL(p||q)
We can pick KL(q‖p) as the loss function, then

L(W ;x) = KL(q‖p) =
∑
i

qi log
qi
pi

= −

[
−
∑
i

qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑
i

qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑
i

qi log pi = − log pj(x) = − log fj(x)(x;W ) = − log σj(x)(Wx),

where j(x) is the actual class index of x
The total loss is just sum over all training x: L(W ) =

∑
x L(W ;x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 50 / 81



Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two distribution
KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p
It is not an actual distant measure: KL(q||p) 6= KL(p||q)

We can pick KL(q‖p) as the loss function, then

L(W ;x) = KL(q‖p) =
∑
i

qi log
qi
pi

= −

[
−
∑
i

qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑
i

qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑
i

qi log pi = − log pj(x) = − log fj(x)(x;W ) = − log σj(x)(Wx),

where j(x) is the actual class index of x
The total loss is just sum over all training x: L(W ) =

∑
x L(W ;x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 50 / 81



Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two distribution
KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p
It is not an actual distant measure: KL(q||p) 6= KL(p||q)

We can pick KL(q‖p) as the loss function, then

L(W ;x) = KL(q‖p) =
∑
i

qi log
qi
pi

= −

[
−
∑
i

qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑
i

qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑
i

qi log pi

= − log pj(x) = − log fj(x)(x;W ) = − log σj(x)(Wx),

where j(x) is the actual class index of x
The total loss is just sum over all training x: L(W ) =

∑
x L(W ;x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 50 / 81



Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two distribution
KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p
It is not an actual distant measure: KL(q||p) 6= KL(p||q)

We can pick KL(q‖p) as the loss function, then

L(W ;x) = KL(q‖p) =
∑
i

qi log
qi
pi

= −

[
−
∑
i

qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑
i

qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑
i

qi log pi = − log pj(x)

= − log fj(x)(x;W ) = − log σj(x)(Wx),

where j(x) is the actual class index of x
The total loss is just sum over all training x: L(W ) =

∑
x L(W ;x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 50 / 81



Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two distribution
KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p
It is not an actual distant measure: KL(q||p) 6= KL(p||q)

We can pick KL(q‖p) as the loss function, then

L(W ;x) = KL(q‖p) =
∑
i

qi log
qi
pi

= −

[
−
∑
i

qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑
i

qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑
i

qi log pi = − log pj(x) = − log fj(x)(x;W ) = − log σj(x)(Wx),

where j(x) is the actual class index of x

The total loss is just sum over all training x: L(W ) =
∑

x L(W ;x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 50 / 81



Classification Multi-class classification

Cross entropy loss function (con’t)

KL-divergence is a way to estimate the difference between two distribution
KL(q‖p) ≥ 0 and KL(q||p) = 0 if and only if q ≡ p
It is not an actual distant measure: KL(q||p) 6= KL(p||q)

We can pick KL(q‖p) as the loss function, then

L(W ;x) = KL(q‖p) =
∑
i

qi log
qi
pi

= −

[
−
∑
i

qi log qi

]
︸ ︷︷ ︸

entropy

+

[
−
∑
i

qi log pi

]
︸ ︷︷ ︸

cross−entropy

=−
∑
i

qi log pi = − log pj(x) = − log fj(x)(x;W ) = − log σj(x)(Wx),

where j(x) is the actual class index of x
The total loss is just sum over all training x: L(W ) =

∑
x L(W ;x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 50 / 81



Optimization

Optimization

For linear regression and ridge regression, we have a close form solution for
minimizing the loss function but in most other models, we do not

In practice, to minimize the loss function w.r.t. the weight W , we can use simple
steepest descent. That is,

W = W −∆W with ∆W = ε∇WL(W ),

where ε is the learning rate and suppose to be small. It is often just set heuristically.
We may talk more about it later in this course
So to optimize, we need to find the gradient of L wrt W

S. Cheng (OU-ECE) Regression and Classification Jan 2017 51 / 81



Optimization

Optimization

For linear regression and ridge regression, we have a close form solution for
minimizing the loss function but in most other models, we do not
In practice, to minimize the loss function w.r.t. the weight W , we can use simple
steepest descent. That is,

W = W −∆W with ∆W = ε∇WL(W ),

where ε is the learning rate and suppose to be small. It is often just set heuristically.
We may talk more about it later in this course

So to optimize, we need to find the gradient of L wrt W

S. Cheng (OU-ECE) Regression and Classification Jan 2017 51 / 81



Optimization

Optimization

For linear regression and ridge regression, we have a close form solution for
minimizing the loss function but in most other models, we do not
In practice, to minimize the loss function w.r.t. the weight W , we can use simple
steepest descent. That is,

W = W −∆W with ∆W = ε∇WL(W ),

where ε is the learning rate and suppose to be small. It is often just set heuristically.
We may talk more about it later in this course
So to optimize, we need to find the gradient of L wrt W

S. Cheng (OU-ECE) Regression and Classification Jan 2017 51 / 81



Optimization

Derivative of softmax loss

Recall that L(W ) =
∑

x L(W ;x) = −
∑

x

∑
l q

(x)
l log σl(Wx), where q

(x)
j is non-zero

(= 1) only when j is the true label of x

∇L(W ) =
∑

x∇L(W ;x). Let’s focus on computing the individual gradient ∇L(W ;x)

Write L(W ;x) =
∑

l ql log σl(o), where o = Wx. And we drop the superscript (x) for
clarity

Using chain rule,

∂

∂wi,j
L(W ;x) =

∑
k

∂

∂ok
L(W ;x)

∂ok
∂wi,j

= xj
∂

∂oi
L(W ;x)

We need to find ∂
∂oi

L(W ;x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 52 / 81



Optimization

Derivative of softmax loss

Recall that L(W ) =
∑

x L(W ;x) = −
∑

x

∑
l q

(x)
l log σl(Wx), where q

(x)
j is non-zero

(= 1) only when j is the true label of x
∇L(W ) =

∑
x∇L(W ;x). Let’s focus on computing the individual gradient ∇L(W ;x)

Write L(W ;x) =
∑

l ql log σl(o), where o = Wx. And we drop the superscript (x) for
clarity

Using chain rule,

∂

∂wi,j
L(W ;x) =

∑
k

∂

∂ok
L(W ;x)

∂ok
∂wi,j

= xj
∂

∂oi
L(W ;x)

We need to find ∂
∂oi

L(W ;x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 52 / 81



Optimization

Derivative of softmax loss

Recall that L(W ) =
∑

x L(W ;x) = −
∑

x

∑
l q

(x)
l log σl(Wx), where q

(x)
j is non-zero

(= 1) only when j is the true label of x
∇L(W ) =

∑
x∇L(W ;x). Let’s focus on computing the individual gradient ∇L(W ;x)

Write L(W ;x) =
∑

l ql log σl(o), where o = Wx. And we drop the superscript (x) for
clarity

Using chain rule,

∂

∂wi,j
L(W ;x) =

∑
k

∂

∂ok
L(W ;x)

∂ok
∂wi,j

= xj
∂

∂oi
L(W ;x)

We need to find ∂
∂oi

L(W ;x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 52 / 81



Optimization

Derivative of softmax loss

Recall that L(W ) =
∑

x L(W ;x) = −
∑

x

∑
l q

(x)
l log σl(Wx), where q

(x)
j is non-zero

(= 1) only when j is the true label of x
∇L(W ) =

∑
x∇L(W ;x). Let’s focus on computing the individual gradient ∇L(W ;x)

Write L(W ;x) =
∑

l ql log σl(o), where o = Wx. And we drop the superscript (x) for
clarity

Using chain rule,

∂

∂wi,j
L(W ;x) =

∑
k

∂

∂ok
L(W ;x)

∂ok
∂wi,j

= xj
∂

∂oi
L(W ;x)

We need to find ∂
∂oi

L(W ;x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 52 / 81



Optimization

Derivative of softmax loss

Recall that L(W ) =
∑

x L(W ;x) = −
∑

x

∑
l q

(x)
l log σl(Wx), where q

(x)
j is non-zero

(= 1) only when j is the true label of x
∇L(W ) =

∑
x∇L(W ;x). Let’s focus on computing the individual gradient ∇L(W ;x)

Write L(W ;x) =
∑

l ql log σl(o), where o = Wx. And we drop the superscript (x) for
clarity

Using chain rule,

∂

∂wi,j
L(W ;x) =

∑
k

∂

∂ok
L(W ;x)

∂ok
∂wi,j

= xj
∂

∂oi
L(W ;x)

We need to find ∂
∂oi

L(W ;x)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 52 / 81



Optimization

∂
∂oi

L(W ;x)

Recall L(W ;x) =
∑

l ql log σl(o) and1 σl(o) =
exp(ol)∑
k exp(ok)

. It is easy to verify that
∂
∂oi

σj(o) = −σi(o)σj(o) and ∂
∂oi

σi(o) = σi(o)(1− σi(o)).

Thus,

∂

∂oi
L(W ;x) = − ∂

∂oi

∑
l

ql log σl(o)

=
qi
σi
(σi)(1− σi)−

∑
l 6=i

ql
σl
σiσl = qi −

∑
l

qlσi

= qi − σi

Using chain rule
∂

∂wi,j
L(W ;x) =

∑
k

∂

∂ok
L(W ;x)

∂ok
∂wi,j

=
∂

∂oi
L(W ;x)xj = (qi − σi)xj

1o = Wx
S. Cheng (OU-ECE) Regression and Classification Jan 2017 53 / 81



Optimization

∂
∂oi

L(W ;x)

Recall L(W ;x) =
∑

l ql log σl(o) and1 σl(o) =
exp(ol)∑
k exp(ok)

. It is easy to verify that
∂
∂oi

σj(o) = −σi(o)σj(o) and ∂
∂oi

σi(o) = σi(o)(1− σi(o)). Thus,

∂

∂oi
L(W ;x) = − ∂

∂oi

∑
l

ql log σl(o)

=
qi
σi
(σi)(1− σi)−

∑
l 6=i

ql
σl
σiσl = qi −

∑
l

qlσi

= qi − σi

Using chain rule
∂

∂wi,j
L(W ;x) =

∑
k

∂

∂ok
L(W ;x)

∂ok
∂wi,j

=
∂

∂oi
L(W ;x)xj = (qi − σi)xj

1o = Wx
S. Cheng (OU-ECE) Regression and Classification Jan 2017 53 / 81



Optimization

∂
∂oi

L(W ;x)

Recall L(W ;x) =
∑

l ql log σl(o) and1 σl(o) =
exp(ol)∑
k exp(ok)

. It is easy to verify that
∂
∂oi

σj(o) = −σi(o)σj(o) and ∂
∂oi

σi(o) = σi(o)(1− σi(o)). Thus,

∂

∂oi
L(W ;x) = − ∂

∂oi

∑
l

ql log σl(o)

=
qi
σi
(σi)(1− σi)−

∑
l 6=i

ql
σl
σiσl = qi −

∑
l

qlσi

= qi − σi

Using chain rule
∂

∂wi,j
L(W ;x) =

∑
k

∂

∂ok
L(W ;x)

∂ok
∂wi,j

=
∂

∂oi
L(W ;x)xj = (qi − σi)xj

1o = Wx
S. Cheng (OU-ECE) Regression and Classification Jan 2017 53 / 81



Optimization

Stochastic gradient descent

An immediate issue that one will come across is that the original “full-batch”
gradient descent is too slow

Recall that L(W ) supposes to a sum over individual loss of all training data L(W ;x)
But L(W ) is really just an approximate as any training set is stochastic in natural in any
case. Why not just approximate L(W ) not as refined with few data? That is, just pick a
subset Xi from the training set and use

Li(W ) =
∑
x∈Xi

L(W ;x)

instead. And this is known as the mini-batch gradient descent
One may go to the extreme and only pick one x to estimate the gradient. This
formally is known as the stochastic gradient descent. But in practice, no one uses it.
But people often say stochastic gradient descent when they actually mean mini-batch
gradient descent

S. Cheng (OU-ECE) Regression and Classification Jan 2017 54 / 81



Optimization

Stochastic gradient descent

An immediate issue that one will come across is that the original “full-batch”
gradient descent is too slow

Recall that L(W ) supposes to a sum over individual loss of all training data L(W ;x)

But L(W ) is really just an approximate as any training set is stochastic in natural in any
case. Why not just approximate L(W ) not as refined with few data? That is, just pick a
subset Xi from the training set and use

Li(W ) =
∑
x∈Xi

L(W ;x)

instead. And this is known as the mini-batch gradient descent
One may go to the extreme and only pick one x to estimate the gradient. This
formally is known as the stochastic gradient descent. But in practice, no one uses it.
But people often say stochastic gradient descent when they actually mean mini-batch
gradient descent

S. Cheng (OU-ECE) Regression and Classification Jan 2017 54 / 81



Optimization

Stochastic gradient descent

An immediate issue that one will come across is that the original “full-batch”
gradient descent is too slow

Recall that L(W ) supposes to a sum over individual loss of all training data L(W ;x)
But L(W ) is really just an approximate as any training set is stochastic in natural in any
case. Why not just approximate L(W ) not as refined with few data? That is, just pick a
subset Xi from the training set and use

Li(W ) =
∑
x∈Xi

L(W ;x)

instead. And this is known as the mini-batch gradient descent

One may go to the extreme and only pick one x to estimate the gradient. This
formally is known as the stochastic gradient descent. But in practice, no one uses it.
But people often say stochastic gradient descent when they actually mean mini-batch
gradient descent

S. Cheng (OU-ECE) Regression and Classification Jan 2017 54 / 81



Optimization

Stochastic gradient descent

An immediate issue that one will come across is that the original “full-batch”
gradient descent is too slow

Recall that L(W ) supposes to a sum over individual loss of all training data L(W ;x)
But L(W ) is really just an approximate as any training set is stochastic in natural in any
case. Why not just approximate L(W ) not as refined with few data? That is, just pick a
subset Xi from the training set and use

Li(W ) =
∑
x∈Xi

L(W ;x)

instead. And this is known as the mini-batch gradient descent
One may go to the extreme and only pick one x to estimate the gradient. This
formally is known as the stochastic gradient descent. But in practice, no one uses it.
But people often say stochastic gradient descent when they actually mean mini-batch
gradient descent

S. Cheng (OU-ECE) Regression and Classification Jan 2017 54 / 81



Optimization

Gradient descent with moment

Going downhill reduces the error, but the
direction of steepest descent does not point at
the minimum unless the ellipse is a circle

The gradient is big in the direction in which we
only want to travel a small distance
The gradient is small in the direction in which
we want to travel a large distance

A simple solution is to introduce “momentum” to
the change of W . That is,
∆W = λ(ε∇WL(W )) + (1− λ)∆W (old)

Will talk more about optimization methods later.
So much for today

1Slide borrowed from Hinton’s coursera course
S. Cheng (OU-ECE) Regression and Classification Jan 2017 55 / 81



Optimization

Gradient descent with moment

Going downhill reduces the error, but the
direction of steepest descent does not point at
the minimum unless the ellipse is a circle

The gradient is big in the direction in which we
only want to travel a small distance
The gradient is small in the direction in which
we want to travel a large distance

A simple solution is to introduce “momentum” to
the change of W . That is,
∆W = λ(ε∇WL(W )) + (1− λ)∆W (old)

Will talk more about optimization methods later.
So much for today

1Slide borrowed from Hinton’s coursera course
S. Cheng (OU-ECE) Regression and Classification Jan 2017 55 / 81



Optimization

Gradient descent with moment

Going downhill reduces the error, but the
direction of steepest descent does not point at
the minimum unless the ellipse is a circle

The gradient is big in the direction in which we
only want to travel a small distance
The gradient is small in the direction in which
we want to travel a large distance

A simple solution is to introduce “momentum” to
the change of W . That is,
∆W = λ(ε∇WL(W )) + (1− λ)∆W (old)

Will talk more about optimization methods later.
So much for today

1Slide borrowed from Hinton’s coursera course
S. Cheng (OU-ECE) Regression and Classification Jan 2017 55 / 81



Optimization

Remark on computing gradient

For the previous discussion, we always assume that the gradient can be found
analytically. In practice, it may not be true also

But gradient of L(W ) can easily be computed numerically. For example, say

W =

(
4.1 3.3
−1.2 2.1

)
,

∂

∂W1,1
L(W ) ≈ 1

h

[
L

((
4.1 + h 3.3
−1.2 2.1

))
− L

((
4.1 3.3
−1.2 2.1

))]

Actually, the numerical gradient is useful even if an analytical gradient exists. It at
least provides a mean to debug your system

And luckily, for some packages such as Theano, they automatically find the analytical
gradient for you

S. Cheng (OU-ECE) Regression and Classification Jan 2017 56 / 81



Optimization

Remark on computing gradient

For the previous discussion, we always assume that the gradient can be found
analytically. In practice, it may not be true also
But gradient of L(W ) can easily be computed numerically. For example, say

W =

(
4.1 3.3
−1.2 2.1

)
,

∂

∂W1,1
L(W ) ≈ 1

h

[
L

((
4.1 + h 3.3
−1.2 2.1

))
− L

((
4.1 3.3
−1.2 2.1

))]

Actually, the numerical gradient is useful even if an analytical gradient exists. It at
least provides a mean to debug your system

And luckily, for some packages such as Theano, they automatically find the analytical
gradient for you

S. Cheng (OU-ECE) Regression and Classification Jan 2017 56 / 81



Optimization

Remark on computing gradient

For the previous discussion, we always assume that the gradient can be found
analytically. In practice, it may not be true also
But gradient of L(W ) can easily be computed numerically. For example, say

W =

(
4.1 3.3
−1.2 2.1

)
,

∂

∂W1,1
L(W ) ≈ 1

h

[
L

((
4.1 + h 3.3
−1.2 2.1

))
− L

((
4.1 3.3
−1.2 2.1

))]

Actually, the numerical gradient is useful even if an analytical gradient exists. It at
least provides a mean to debug your system

And luckily, for some packages such as Theano, they automatically find the analytical
gradient for you

S. Cheng (OU-ECE) Regression and Classification Jan 2017 56 / 81



Optimization

Conclusion

For classification, we can feed the output of a linear regressor to a logistic function or
softmax function to form a linear classifier

For only two classes, we have the logistic “regression” classifier
For multi-class cases, we have the softmax classifiers

For finding the optimal weights, we may not be able to get the solution right away
analytically (possible though for linear regression and ridge regression)

Can optimize iteratively with gradient descent
Can speed up gradient descent by using mini-batch instead of full batch
Momentum is a common trick to improve optimization efficiency also

S. Cheng (OU-ECE) Regression and Classification Jan 2017 57 / 81



Optimization

Conclusion

For classification, we can feed the output of a linear regressor to a logistic function or
softmax function to form a linear classifier

For only two classes, we have the logistic “regression” classifier
For multi-class cases, we have the softmax classifiers

For finding the optimal weights, we may not be able to get the solution right away
analytically (possible though for linear regression and ridge regression)

Can optimize iteratively with gradient descent
Can speed up gradient descent by using mini-batch instead of full batch
Momentum is a common trick to improve optimization efficiency also

S. Cheng (OU-ECE) Regression and Classification Jan 2017 57 / 81



Support vector machine

SVM

Denote ŵ = w
‖w‖ , ŵ · x1 (ŵ · x−1)

is the distance of the boundary
line of x1 (x−1) from the origin

Thus, the distance between the
two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all x(i)

max
2

‖w‖
s.t. yi(w · x(i) − b) ≥ 1

Equivalently,

min‖w‖2 s.t. yi(w · x(i) − b) ≥ 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 58 / 81



Support vector machine

SVM

Denote ŵ = w
‖w‖ , ŵ · x1 (ŵ · x−1)

is the distance of the boundary
line of x1 (x−1) from the origin
Thus, the distance between the
two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all x(i)

max
2

‖w‖
s.t. yi(w · x(i) − b) ≥ 1

Equivalently,

min‖w‖2 s.t. yi(w · x(i) − b) ≥ 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 58 / 81



Support vector machine

SVM

Denote ŵ = w
‖w‖ , ŵ · x1 (ŵ · x−1)

is the distance of the boundary
line of x1 (x−1) from the origin
Thus, the distance between the
two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all x(i)

max
2

‖w‖
s.t. yi(w · x(i) − b) ≥ 1

Equivalently,

min‖w‖2 s.t. yi(w · x(i) − b) ≥ 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 58 / 81



Support vector machine

SVM

Denote ŵ = w
‖w‖ , ŵ · x1 (ŵ · x−1)

is the distance of the boundary
line of x1 (x−1) from the origin
Thus, the distance between the
two boundary lines is
ŵ · (x1 − x−1) =

2
‖w‖

SVM: for all x(i)

max
2

‖w‖
s.t. yi(w · x(i) − b) ≥ 1

Equivalently,

min‖w‖2 s.t. yi(w · x(i) − b) ≥ 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 58 / 81



Support vector machine

KKT conditions

We can absorb the constraint using Lagrange multiplier and rewrite the optimization problem
(why?) as

min
w,b

max
αi≥0

1

2
‖w‖2 −

∑
i

αi(y
(i)(w · x(i) − b)− 1)

Consider a slightly modified problem

max
αi≥0

min
w,b

1

2
‖w‖2 −

∑
i

αi(y
(i)(w · x(i) − b)− 1)︸ ︷︷ ︸
L

Generally speaking, the solution of the dual problem will be smaller. However, when the two
solutions are the same the complementary slackness conditions α∗

i (y
(i)(w∗ · x(i) − b∗)− 1) = 0 have

to be satisfied. Together with y(i)(w · x(i) − b) ≥ 1, αi ≥ 0,∇wL = 0, these are known as the KKT
conditions, which are necessary condition for optimality

S. Cheng (OU-ECE) Regression and Classification Jan 2017 59 / 81



Support vector machine

Dual problem
Let’s try to minimize L w.r.t. w and b

∂L
∂w = 0 ⇒ w =

∑
i αiy

(i)x(i)

∂L
∂b = 0 ⇒

∑
i αiy

(i) = 0

Therefore the dual problem can now be rewritten as

max
αi≥0

∑
i

αi −
1

2

∑
i,j

αiαjy
(i)y(j)x(i) · x(j)

such that ∑
i

αiy
(i) = 0

Note that if we let all α fixed except two of them, the
above is just a quadratic function that can be solved
analytically

S. Cheng (OU-ECE) Regression and Classification Jan 2017 60 / 81



Support vector machine

Support vectors

Say after solving the dual problem, we have

w =
∑
i

α∗
i y

(i)x(i)

Evaluating a new input x is simply computing the sign
of

w · x+ b =
∑
i

α∗
i y

(i)x(i) · x+ b

Now, recall the complementary slackness condition
α∗
i (y

(i)(w∗ ·x(i)− b∗)−1) = 0, actually most α∗
i will be

equal to 0 except those with corresponding x(i) “touch-
ing” the boundary, which are the support vectors

S. Cheng (OU-ECE) Regression and Classification Jan 2017 61 / 81



Support vector machine

Soft-margin SVM and hinge loss

Hard-margin SVM

min‖w‖2 s.t. yi(w · x(i) − b) ≥ 1

Soft-margin SVM (allow constrain to be violate)

min
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi

such that y(i)(w · x(i) − b) ≥ 1− ξi, ξi ≥ 0

S. Cheng (OU-ECE) Regression and Classification Jan 2017 62 / 81



Support vector machine

Soft-margin SVM

minw,b,ξ
1
2‖w‖2 + C

∑
i ξi such that

y(i)(w · x(i) − b) ≥ 1− ξi, ξi ≥ 0
For the dual problem, write

L =
1

2
‖w‖2 + C

∑
i

ξi −
∑
i

αi[y
(i)(w · x(i) − b)− 1 + ξi]−

∑
i

riξi

We should minimize L w.r.t. w, b, and ξi. This gives us w =
∑

i αiy
(i)x(i),

∑
i αiy

(i) = 0 ,
and C − αi − ri = 0. So the dual problem can be rewritten as

max
α

∑
i

αi −
1

2

∑
i

y(i)y(j)αiαjx
(i) · x(j)

such that 0 ≤ αi ≤ C, and
∑

i αiy
(i) = 0

S. Cheng (OU-ECE) Regression and Classification Jan 2017 63 / 81



Support vector machine

Complimentary slackness conditions

Note that we have the conditions αi[y
(i)(w · x(i) − b)− 1 + ξi] = 0 and riξi = 0. Also

C − αi − ri = 0 as we shown earlier, therefore
If 0 < ri < C ⇒ 0 < αi < C, y(i)(w · x(i) − b)− 1 + ξi = 0 and since ξi = 0,

y(i)(w · x(i) − b) = 1

If ri = 0, αi = C, y(i)(w · x(i) − b)− 1 + ξi = 0 but ξi ≥ 0, therefore

y(i)(w · x(i) − b) ≤ 1

If ri = C, αi = 0, y(i)(w · x(i) − b)− 1 + ξi ≥ 0 and since ξi = 0,

y(i)(w · x(i) − b) ≥ 1

S. Cheng (OU-ECE) Regression and Classification Jan 2017 64 / 81



Support vector machine

Sequential minimal optimization

A major reason that SVM was so popular is that there are efficient methods in
solving the optimization problem for training
One popular method is SMO due to John Platt, the key idea is to select heuristically
two α at a time and fix the rest

Pick one of the α that violates the KKT conditions. Pick the second α that maximizes
the optimization step
The remaining problem will be a simple quadratic optimization problem with closed
form solution

S. Cheng (OU-ECE) Regression and Classification Jan 2017 65 / 81

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf


Support vector machine

Kernel trick
Note that during both evaluating and testing. We just need to manipulate the inner
products among training features x(i) and with a new input x

Potentially, we can increase the model complexity by evaluating these inner product
projected to a higher dimensional space (including higher order monomials) without
actually projection
E.g., x = [x1, x2], φ(x) = [x1x1, x1x2, x2x1, x2x2]

>, φ(x)>φ(z) = (x>z)2 , K(x, z)

More generally, K(x, z) = (x>z+ c)d corresponds to inner product of φ(x) including
all monomials up to order d

Generally, inner product can also be interpreted as the similarity between two
vectors. One may think a reasonable (so-called Gaussian) kernel will be

K(x, z) = exp

(
−‖x− z‖2

2σ2

)
,

which actually corresponds to features projected to infinite dimensional space
S. Cheng (OU-ECE) Regression and Classification Jan 2017 66 / 81



Support vector machine

Valid kernel (Mercer)

For any m vectors, x(1), · · · ,x(m), we can define a “kernel matrix” K with
Ki,j = K(x(i),x(j)). It is easy to verify that K is symmetric (trivial) and positive
semi-definite

for any z = [z1, · · · , zm]>, z>Kz =
∑

i,j ziφ(x
(i))>φ(x(j))zj =∑

i,j,k ziφk(x
(i))φk(x

(j))zj =
∑

k

(∑
i ziφk(x

(i))
)2 ≥ 0

S. Cheng (OU-ECE) Regression and Classification Jan 2017 67 / 81



Support vector machine

Kernel SVM

Note that for both solving the dual problem and evaluating a new input only involve
inner product of input and training vectors. So we can apply the kernel trick. The
dual problem will be modified as

max
α

∑
i

αi −
1

2

∑
i

y(i)y(j)αiαjK(x(i),x(j))

After solving for α, an input x can be evaluated with

φ(w) · φ(x) + b =
∑
i

α∗
i y

(i)K(x(i),x) + b

S. Cheng (OU-ECE) Regression and Classification Jan 2017 68 / 81



Support vector machine

Multi-class SVM

We can easily extend soft-margin SVM to multi-class case. Let sl(x) = wl
T

[
1
x

]
be

the score for class l.

We can define the hinge loss for sample x as∑
l 6=j

h(sl(x)− sj(x) + ∆) =
∑
l 6=j

max(0, sl(x)− sj(x) + ∆),

where j is the true label of x and ∆ contributes a margin ensuring that the true label
score has to be at least ∆ more than the rest to be penalty free
Multi-class SVM:

min ‖w‖2 + C
∑
i

∑
l 6=j(xi)

h(sl(xi)− sj(xi)(xi) + ∆)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 69 / 81



Support vector machine

Multi-class SVM

We can easily extend soft-margin SVM to multi-class case. Let sl(x) = wl
T

[
1
x

]
be

the score for class l. We can define the hinge loss for sample x as∑
l 6=j

h(sl(x)− sj(x) + ∆) =
∑
l 6=j

max(0, sl(x)− sj(x) + ∆),

where j is the true label of x and ∆ contributes a margin ensuring that the true label
score has to be at least ∆ more than the rest to be penalty free

Multi-class SVM:

min ‖w‖2 + C
∑
i

∑
l 6=j(xi)

h(sl(xi)− sj(xi)(xi) + ∆)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 69 / 81



Support vector machine

Multi-class SVM

We can easily extend soft-margin SVM to multi-class case. Let sl(x) = wl
T

[
1
x

]
be

the score for class l. We can define the hinge loss for sample x as∑
l 6=j

h(sl(x)− sj(x) + ∆) =
∑
l 6=j

max(0, sl(x)− sj(x) + ∆),

where j is the true label of x and ∆ contributes a margin ensuring that the true label
score has to be at least ∆ more than the rest to be penalty free
Multi-class SVM:

min ‖w‖2 + C
∑
i

∑
l 6=j(xi)

h(sl(xi)− sj(xi)(xi) + ∆)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 69 / 81



Support vector machine

Support vector regression

Reference: A Tutorial on Support Vector Regression
Hard-margin

min
1

2
‖w‖2

s.t.

{
y(i) − 〈w,x(i)〉 − b ≤ ε

〈w,x(i)〉+ b− y(i) ≤ ε

Soft-margin
min

1

2
‖w‖2 + C

∑
i

(ξi + ξ∗i )

s.t.


y(i) − 〈w,x(i)〉 − b ≤ ε+ ξi

〈w,x(i)〉+ b− y(i) ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

S. Cheng (OU-ECE) Regression and Classification Jan 2017 70 / 81

https://alex.smola.org/papers/2003/SmoSch03b.pdf


Support vector machine

Dual problem of SVR

L ,
1

2
‖w‖2 + C

∑
i

(ξi + ξ∗i )−
∑
i

(ηiξi + η∗i ξ
∗
i )

−
∑
i

αi(ε+ ξi − y(i) + 〈w,x(i)〉+ b)

−
∑
i

α∗
i (ε+ ξ∗i + y(i) − 〈w,x(i)〉 − b)

We can reformulate the problem to minw,ξi,ξ∗i
maxαi,α∗

i ,ηi,η∗
i
L and this leads to

max

{
1
2

∑
i,j(αi − α∗

i )(αj − α∗
j )〈x(i),x(j)〉

−ε
∑

i(αi + α∗
i ) +

∑
i y

(i)(αi − α∗
i )

s.t.
∑

i(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C]

⇒ w =
∑
i

(αi − α∗
i )x

(i)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 71 / 81



Kernel PCA

Kernel PCA

Principal component analysis (PCA) is a very common technique for dimension
reduction. Consider data in high dimension, often data only vary along several
dimensions and so we can keep dimensions for data with the highest variations and
discard the rest
The problem of PCA is that the analysis is linear. So for data like below, they are
not separable

S. Cheng (OU-ECE) Regression and Classification Jan 2017 72 / 81



Kernel PCA

Kernel PCA

Consider the N d-dimensional data points as x(1), · · · , x(N). Assuming the project vectors
in high dimensional are zero-mean (will come back to that later), the covariance matrix C
at the high dimension can then be approximate by

C =
1

N

N∑
i=1

φ(x(i))φ(x(i))>

If we want to apply PCA at this high dimension, we need to eigen-decompose C. That is,
we want to find v such that Cv = λv. Amazingly, we have the following theorem regarding
v

S. Cheng (OU-ECE) Regression and Classification Jan 2017 73 / 81



Kernel PCA

Eigenvectors of projected space
Theorem (Eigenvectors)

Eigenvectors of C can be represented as weighted sum of φ(x(i)). That is,
v =

∑N
i=1 αiφ(x

(i))

Proof.
Assume that Cv = λv, thus

Cv =
1

N

N∑
i=1

φ
(
x(i)
)
φ
(
x(i)
)>

v = λv

⇒v =

N∑
i=1

φ
(
x(i)
)>

v

Nλ︸ ︷︷ ︸
αi

φ
(
x(i)
)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 74 / 81



Kernel PCA

Gram matrix
The previous theorem gives us some ideas what eigenvectors in the high dimensional space are like.
Let’s substitute v =

∑N
i=1 αiφ(x

(i)) into Cv = λv. We have,

λ

N∑
j=1

αjφ
(
x(j)

)
= λv = Cv =

1

N

N∑
i=1

φ
(
x(i)
)
φ
(
x(i)
)> N∑

j=1

αjφ
(
x(j)

)
=

1

N

N∑
i=1

φ
(
x(i)
) N∑

j=1

αjφ
(
x(i)
)>

φ
(
x(j)

)
Now let’s define the Gram matrix G with its i,j element given by

Gi,j = 〈φ
(
x(i)
)
, φ
(
x(j)

)
〉 = φ

(
x(i)
)>

φ
(
x(j)

)
, K(x(i), x(j)),

where K(·, ·) is the kernel function. For example, we can have the Gaussian kernel with
K(x, y) = exp(−‖x− y‖2/c)

S. Cheng (OU-ECE) Regression and Classification Jan 2017 75 / 81



Kernel PCA

Solving for v

λ

N∑
j=1

αjφ
(
x(k)

)>
φ
(
x(j)

)
=

1

N

N∑
i=1

φ
(
x(k)

)>
φ
(
x(i)
) N∑

j=1

αjφ
(
x(i)
)>

φ
(
x(j)

)

⇒λ

N∑
j=1

αjG(k, j) =
1

N

N∑
i=1

G(k, i)

N∑
j=1

αjG(i, j) ⇒ λ(Gα)k =
1

N

N∑
j=1

αj(G
2)k,j

⇒λ(Gα)k =
1

N
(G2α)k ⇒ λGα =

1

N
G2α ⇒ λNα = Gα

Thus, α is actually an eigenvector of G with eigenvalue λN

Similar to the original PCA, we can sort the eigenvalues. And given α, the eigenvector in
φ-space is v =

∑N
i=1 αiφ(x

(i))

When receive a new input x, we can project to v as
〈φ(x), v〉 =

∑N
i=1 αi〈φ(x), φ(x(i))〉 =

∑N
i=1 αiK(x, x(i))

S. Cheng (OU-ECE) Regression and Classification Jan 2017 76 / 81



Kernel PCA

Centering φ(x(i))

We mentioned earlier that we have assumed φ(x(i)) are zero-mean. In general, this is not true but
can be easily fixed below. If φ(x(i)) are not zero-mean, φ(x(i)) should be replaced by
φ(x(i))− 1

N

∑N
k=1 φ(x

(k)) instead. Thus we should have the correct Gram matrix

G̃

=

IN − 1

N

1 · · · 1
...

. . .
...

1 · · · 1




>φ(x(1))>

...
φ(x(N))>

 [φ(x(1)), · · · , φ(x(N))]

IN − 1

N

1 · · · 1
...

. . .
...

1 · · · 1




=

IN − 1

N

1 · · · 1
...

. . .
...

1 · · · 1




>

G

IN − 1

N

1 · · · 1
...

. . .
...

1 · · · 1




= G− 1

N
1NG− 1

N
G1N +

1

N2
1NG1N ,

where 1N is N ×N matrix with all ones

S. Cheng (OU-ECE) Regression and Classification Jan 2017 77 / 81



Kernel PCA

Summary of Kernel PCA

Decide a kernel and compute the normalized Gram matrix
Eigen-decompose the normalized Gram matrix
Sort the eigenvalues in the descending order. An eigenvector composes of the weights
α for constructing the corresponding principal component in the φ-space
Given an input x, the projection to a principal component with weight α is given by∑N

i=1 αiK(x, x(i))

S. Cheng (OU-ECE) Regression and Classification Jan 2017 78 / 81



Kernel PCA

Denoising with Kernel PCA
Now, consider K principal components v1, · · · , vK in (φ-space) with

vk =

N∑
i=1

α
(k)
i φ(x(i)) for k = 1, · · · ,K

We have a denoised version of x (let’s call z here) if we only keep projection of x onto the
K principal components in the φ-space. That is,

φ(z) =

K∑
k=1

〈φ(x), vk〉vk.

The problem is that it is not immediately clear how to find z to satisfy the above. So
instead, let’s try to minimize

L = ‖φ(z)−
K∑
k=1

〈φ(x), vk〉vk‖

S. Cheng (OU-ECE) Regression and Classification Jan 2017 79 / 81



Kernel PCA

Minimizing L

L = ‖φ(z)−
K∑

k=1

〈φ(x), vk〉vk‖

= 〈φ(z), φ(z)〉 − 2

K∑
k=1

〈φ(x), vk〉〈vk, φ(z)〉+Ω

= K(z, z)− 2

N∑
i=1

K∑
k=1

〈φ(x), vk〉α(k)
i 〈φ(x(i)), φ(z)〉+Ω

= K(z, z)− 2

N∑
i=1

K∑
k=1

〈φ(x), vk〉α(k)
i︸ ︷︷ ︸

γi

K(x(i), z) + Ω

= K(z, z)− 2

N∑
i=1

γiK(x(i), z) + Ω

Note that Ω does not depend on z and hence can be ignored.
S. Cheng (OU-ECE) Regression and Classification Jan 2017 80 / 81



Kernel PCA

Maximizing Λ

Now, if we focus on kernel with the form K(x, y) = K(‖x− y‖), the first term K(z, z) is a constant
and can be ignored as well. So minimizing L is the same as maximizing

Λ =

N∑
i=1

γiK(x(i), z)

Let’s maximize Λ by setting ∇zΛ to 0,

∇zΛ = 2

N∑
i=1

γiK
′(‖x(i) − z‖2)(x(i) − z) = 0

⇒z =

∑N
i=1 γiK

′(‖x(i) − z‖2)x(i)∑N
i=1 γiK

′(‖x(i) − z‖2)
=

∑N
i=1 γie

− ‖x(i)−z‖2
c x(i)∑N

i=1 γie
− ‖x(i)−z‖2

c

Thus, we can iteratively update

z(m) =

∑N
i=1 γie

− ‖x(i)−z(m−1)‖2
c x(i)∑N

i=1 γie
− ‖x(i)−z(m−1)‖2

c

S. Cheng (OU-ECE) Regression and Classification Jan 2017 81 / 81


	Math review
	ML basic
	Empirical risk minimization

	Regression
	Loss function
	Linear regression
	Example: mass estimation
	Example: curve fitting
	Bias-variance trade-off

	Lesson learned
	Regularization

	Classification
	Binary classification
	Multi-class classification

	Optimization
	Support vector machine
	Kernel PCA

