
Neural Networks

Samuel Cheng
Slide credits: Andrej Karpathy, Justin Johnson, Feifei Li

School of ECE
University of Oklahoma

Spring, 2023

S. Cheng (OU-ECE) Neural Networks Jan 2019 1 / 204

Table of Contents

1 Review

2 Introduction to neural networks

3 Back-propagation

4 Initialization

5 Regularization

6 Activation functions

7 Optimization

8 Conclusions
S. Cheng (OU-ECE) Neural Networks Jan 2019 2 / 204

Review

Review

In the last couple classes, we discussed
Basic concepts of regression and classification
Examples of regularization such as ridge (l2) regression and lasso (l1)
Linear classifiers including logistic regression and softmax classifier

We introduced loss functions and the concept of training a classifier through minimizing
the loss function
We described stochastic gradient descent and momentum trick for classification

S. Cheng (OU-ECE) Neural Networks Jan 2019 3 / 204

Review

Review

In the last couple classes, we discussed
Basic concepts of regression and classification
Examples of regularization such as ridge (l2) regression and lasso (l1)
Linear classifiers including logistic regression and softmax classifier

We introduced loss functions and the concept of training a classifier through minimizing
the loss function

We described stochastic gradient descent and momentum trick for classification

S. Cheng (OU-ECE) Neural Networks Jan 2019 3 / 204

Review

Review

In the last couple classes, we discussed
Basic concepts of regression and classification
Examples of regularization such as ridge (l2) regression and lasso (l1)
Linear classifiers including logistic regression and softmax classifier

We introduced loss functions and the concept of training a classifier through minimizing
the loss function
We described stochastic gradient descent and momentum trick for classification

S. Cheng (OU-ECE) Neural Networks Jan 2019 3 / 204

Introduction to neural networks Network architectures

Nomenclature of basic network architectures

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201677

Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

S. Cheng (OU-ECE) Neural Networks Jan 2019 4 / 204

Introduction to neural networks Network architectures

Caveat: don’t go too far for the brain analogy

Biological neurons:
Many different types
Dendrite can perform complex non-linear
operations
Synapses are not a single weight but a complex
non-linear dynamical system
Rate code model may not be adequate

Also see London 2005 (Slide credit: CS231n)

S. Cheng (OU-ECE) Neural Networks Jan 2019 5 / 204

http://www.indiana.edu/~p1013447/dictionary/neucode.htm
http://www.cogsci.ucsd.edu/~sereno/201/readings/02.08-DendriteComp.pdf

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system often boils down
to minimizing of loss function w.r.t. some parameters

For neural networks, it is thus necessary to find ∂L(w;x)
∂w for a weight in each layer

Back-propagation (BP) is an efficient way to find such derivation. Actually it is in
fact just another way of spelling out the chain rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph
Computational graph can be interpreted as generalization of a neural networks
Neuron no longer will be restricted to summation and activation function but can be any
computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-ECE) Neural Networks Jan 2019 6 / 204

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system often boils down
to minimizing of loss function w.r.t. some parameters
For neural networks, it is thus necessary to find ∂L(w;x)

∂w for a weight in each layer

Back-propagation (BP) is an efficient way to find such derivation. Actually it is in
fact just another way of spelling out the chain rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph
Computational graph can be interpreted as generalization of a neural networks
Neuron no longer will be restricted to summation and activation function but can be any
computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-ECE) Neural Networks Jan 2019 6 / 204

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system often boils down
to minimizing of loss function w.r.t. some parameters
For neural networks, it is thus necessary to find ∂L(w;x)

∂w for a weight in each layer
Back-propagation (BP) is an efficient way to find such derivation. Actually it is in
fact just another way of spelling out the chain rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph
Computational graph can be interpreted as generalization of a neural networks
Neuron no longer will be restricted to summation and activation function but can be any
computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-ECE) Neural Networks Jan 2019 6 / 204

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system often boils down
to minimizing of loss function w.r.t. some parameters
For neural networks, it is thus necessary to find ∂L(w;x)

∂w for a weight in each layer
Back-propagation (BP) is an efficient way to find such derivation. Actually it is in
fact just another way of spelling out the chain rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph

Computational graph can be interpreted as generalization of a neural networks
Neuron no longer will be restricted to summation and activation function but can be any
computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-ECE) Neural Networks Jan 2019 6 / 204

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system often boils down
to minimizing of loss function w.r.t. some parameters
For neural networks, it is thus necessary to find ∂L(w;x)

∂w for a weight in each layer
Back-propagation (BP) is an efficient way to find such derivation. Actually it is in
fact just another way of spelling out the chain rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph
Computational graph can be interpreted as generalization of a neural networks
Neuron no longer will be restricted to summation and activation function but can be any
computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-ECE) Neural Networks Jan 2019 6 / 204

Back-propagation

Back-propagation and computational graph

As described in last lecture, training in supervised learning system often boils down
to minimizing of loss function w.r.t. some parameters
For neural networks, it is thus necessary to find ∂L(w;x)

∂w for a weight in each layer
Back-propagation (BP) is an efficient way to find such derivation. Actually it is in
fact just another way of spelling out the chain rule ∂L

∂x = ∂L
∂y

∂y
∂x in calculus

It is often easier to explain BP in terms of computational graph
Computational graph can be interpreted as generalization of a neural networks
Neuron no longer will be restricted to summation and activation function but can be any
computation as well (e.g., max)

Let me try to explain through an example

S. Cheng (OU-ECE) Neural Networks Jan 2019 6 / 204

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201622

f

activations

S. Cheng (OU-ECE) Neural Networks Jan 2019 7 / 204

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201623

f

activations

“local gradient”

S. Cheng (OU-ECE) Neural Networks Jan 2019 8 / 204

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201624

f

activations

“local gradient”

gradients

S. Cheng (OU-ECE) Neural Networks Jan 2019 9 / 204

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201625

f

activations

gradients

“local gradient”

S. Cheng (OU-ECE) Neural Networks Jan 2019 10 / 204

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201626

f

activations

gradients

“local gradient”

S. Cheng (OU-ECE) Neural Networks Jan 2019 11 / 204

Back-propagation

BP at one node

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201627

f

activations

gradients

“local gradient”

S. Cheng (OU-ECE) Neural Networks Jan 2019 12 / 204

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201610

e.g. x = -2, y = 5, z = -4

S. Cheng (OU-ECE) Neural Networks Jan 2019 13 / 204

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201611

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 14 / 204

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201612

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 15 / 204

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201613

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 16 / 204

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201614

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 17 / 204

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201615

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 18 / 204

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201616

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 19 / 204

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201617

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 20 / 204

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201618

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 21 / 204

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201619

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

S. Cheng (OU-ECE) Neural Networks Jan 2019 22 / 204

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201620

e.g. x = -2, y = 5, z = -4

Want:

S. Cheng (OU-ECE) Neural Networks Jan 2019 23 / 204

Back-propagation

A simple BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201621

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

S. Cheng (OU-ECE) Neural Networks Jan 2019 24 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201628

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 25 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201629

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 26 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201630

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 27 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201631

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 28 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201632

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 29 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201633

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 30 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201634

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 31 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201635

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 32 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201636

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 33 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201637

Another example:

(-1) * (-0.20) = 0.20

S. Cheng (OU-ECE) Neural Networks Jan 2019 34 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201638

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 35 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201639

Another example:

[local gradient] x [its gradient]
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2 (both inputs!)

S. Cheng (OU-ECE) Neural Networks Jan 2019 36 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201640

Another example:

S. Cheng (OU-ECE) Neural Networks Jan 2019 37 / 204

Back-propagation

Yet another BP example

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201641

Another example:

[local gradient] x [its gradient]
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2

S. Cheng (OU-ECE) Neural Networks Jan 2019 38 / 204

Back-propagation

Breaking down at different granularities

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201642

sigmoid function

sigmoid gate

S. Cheng (OU-ECE) Neural Networks Jan 2019 39 / 204

Back-propagation

Breaking down at different granularities

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201643

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2

S. Cheng (OU-ECE) Neural Networks Jan 2019 40 / 204

Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201746

add gate: gradient distributor

Patterns in backward flow

S. Cheng (OU-ECE) Neural Networks Jan 2019 41 / 204

Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201747

add gate: gradient distributor

Patterns in backward flow

Q: What is a max gate?

S. Cheng (OU-ECE) Neural Networks Jan 2019 42 / 204

Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201748

add gate: gradient distributor

Patterns in backward flow

max gate: gradient router

S. Cheng (OU-ECE) Neural Networks Jan 2019 43 / 204

Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201749

add gate: gradient distributor

Patterns in backward flow

max gate: gradient router

Q: What is a mul gate?

S. Cheng (OU-ECE) Neural Networks Jan 2019 44 / 204

Back-propagation

Think, pair, share

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201750

add gate: gradient distributor

Patterns in backward flow

max gate: gradient router

mul gate: gradient switcher

S. Cheng (OU-ECE) Neural Networks Jan 2019 45 / 204

Back-propagation

More examples: RELU

Consider a “half-linear” function with negative side chopped off. That is,

f(x) =

{
x x ≥ 0

0 otherwise

This is known to be the rectified linear unit (RELU)
How should the gradient be propagated back?

x y

S. Cheng (OU-ECE) Neural Networks Jan 2019 46 / 204

Back-propagation

Merging gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 2017

y

51

+
x

y

1

2

∂L(y1(x), y2(x))

∂x
=

∂L

∂y1

∂y1
∂x1

+
∂L

∂y2

∂y2
∂x1

S. Cheng (OU-ECE) Neural Networks Jan 2019 47 / 204

Back-propagation

Merging gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 2017

y

51

+
x

y

1

2

∂L(y1(x), y2(x))

∂x
=

∂L

∂y1

∂y1
∂x1

+
∂L

∂y2

∂y2
∂x1

S. Cheng (OU-ECE) Neural Networks Jan 2019 47 / 204

Back-propagation

Handling vector variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201752

f

“local gradient”

This is now the
Jacobian matrix
(derivative of each
element of z w.r.t. each
element of x)

(x,y,z are
now vectors)

gradients

Gradients for vectorized code

S. Cheng (OU-ECE) Neural Networks Jan 2019 48 / 204

Back-propagation

Handling vector variables
A vectorized example: L = ‖q − q̃‖2 = ‖Wx− q̃‖2

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

L(q) = ‖q − q̃‖2

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 204

Back-propagation

Handling vector variables
A vectorized example: L = ‖q − q̃‖2 = ‖Wx− q̃‖2

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

L(q) = ‖q − q̃‖2

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 204

Back-propagation

Handling vector variables
A vectorized example: L = ‖q − q̃‖2 = ‖Wx− q̃‖2

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

L(q) = ‖q − q̃‖2

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 204

Back-propagation

Handling vector variables
A vectorized example: L = ‖q − q̃‖2 = ‖Wx− q̃‖2

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)

(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

L(q) = ‖q − q̃‖2

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 204

Back-propagation

Handling vector variables
A vectorized example: L = ‖q − q̃‖2 = ‖Wx− q̃‖2

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)

(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

L(q) = ‖q − q̃‖2

∂qk
∂Wi,j

= δi,kxj

∂qk
∂xi

= Wk,i

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 204

Back-propagation

Handling vector variables
A vectorized example: L = ‖q − q̃‖2 = ‖Wx− q̃‖2

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

L(q) = ‖q − q̃‖2

∂qk
∂Wi,j

= δi,kxj

∂qk
∂xi

= Wk,i

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 204

Back-propagation

Handling vector variables
A vectorized example: L = ‖q − q̃‖2 = ‖Wx− q̃‖2

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

L(q) = ‖q − q̃‖2

∂L

∂qi
= 2(qi − q̃i)

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 204

Back-propagation

Handling vector variables
A vectorized example: L = ‖q − q̃‖2 = ‖Wx− q̃‖2

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)

1.00
(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

L(q) = ‖q − q̃‖2

∂L

∂qi
= 2(qi − q̃i)

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 204

Back-propagation

Handling vector variables
A vectorized example: L = ‖q − q̃‖2 = ‖Wx− q̃‖2

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

L(q) = ‖q − q̃‖2

∂L

∂qi
= 1.00 · ∂L

∂qi

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 204

Back-propagation

Handling vector variables
A vectorized example: L = ‖q − q̃‖2 = ‖Wx− q̃‖2

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)

(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

L(q) = ‖q − q̃‖2

∂L

∂qi
= 1.00 · ∂L

∂qi

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 204

Back-propagation

Handling vector variables
A vectorized example: L = ‖q − q̃‖2 = ‖Wx− q̃‖2

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

L(q) = ‖q − q̃‖2

∂L

∂Wi,j
=

∂L

∂q1

∂q1
∂Wi,j

+
∂L

∂q2

∂q2
∂Wi,j

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 204

Back-propagation

Handling vector variables
A vectorized example: L = ‖q − q̃‖2 = ‖Wx− q̃‖2

L2∗

W

x

q

(
0.1 0.5
−0.3 0.8

)

(
0.2
0.4

)
(
0.22
0.26

)
(
0.2 0.4
0 0

)
,

(
0 0
0.2 0.4

)

(
0.1
0.5

)
,

(
−0.3
0.8

)

0.116

(
0.44
0.52

)
1.00

(
0.44
0.52

)
(
0.088 0.176
0.104 0.208

)

(
−0.112
0.636

)

q = Wx =

W1,1x1 + · · ·+W1,nxn
...

Wn,1x1 + · · ·+Wn,nxn

L(q) = ‖q − q̃‖2

∂L

∂xi
=

∂L

∂q1

∂q1
∂xi

+
∂L

∂q2

∂q2
∂xi

S. Cheng (OU-ECE) Neural Networks Jan 2019 49 / 204

Back-propagation

Example: Softmax

σl(o) =
exp(ol)∑
k exp(ok)

∂σi(o)
∂oj

= − exp(oi)(∑
k exp(ok)

)2 exp(oj) = −σi(o)σj(o)
∂σi(o)
∂oi

= exp(oi)∑
k exp(ok)

− exp(oi)(∑
k exp(ok)

)2 exp(oj) = σi(o)(1− σj(o))

S. Cheng (OU-ECE) Neural Networks Jan 2019 50 / 204

Back-propagation

Example: Softmax + Cross-entropy

L = −
∑

l ql log σl(o)
∂L
∂σl

= − ql
σl

∂L
∂oi

=
∑

l−
ql
σl

∂σl
∂oi

=
∑

l 6=i
ql
σl
σi(o)σl(o)− qi

σi
σi(o)(1− σi(o))

= σi(1− qi)− qi(1− σi) = σi − qi

Makes lot of sense!

S. Cheng (OU-ECE) Neural Networks Jan 2019 51 / 204

Back-propagation

Example: IoU (reference)

Interception over union is commonly used to quantify segmentation quality for image
segmentation
For pixel v, Xv is the estimated mask and Yv ∈ {0, 1} is the ground truth

IoU(X) = I(X)
U(X) , where I(X) ≈

∑
v XvYv and U(X) ≈

∑
v(Xv + Yv −XvYv)

∂IoU(X)
∂Xv

=
U(X)

∂I(X)
∂Xv

−I(X)
∂U(X)
∂Xv

U2(X)
= U(X)Yv−I(X)(1−Yv)

U(X)2
⇒ ∂IoU(X)

∂Xv
=

{
1

U(X) Yv = 1

− I(X)
U(X)2

Yv = 0

S. Cheng (OU-ECE) Neural Networks Jan 2019 52 / 204

https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf

Back-propagation

Example: IoU (reference)

Interception over union is commonly used to quantify segmentation quality for image
segmentation
For pixel v, Xv is the estimated mask and Yv ∈ {0, 1} is the ground truth
IoU(X) = I(X)

U(X) , where I(X) ≈
∑

v XvYv and U(X) ≈
∑

v(Xv + Yv −XvYv)

∂IoU(X)
∂Xv

=
U(X)

∂I(X)
∂Xv

−I(X)
∂U(X)
∂Xv

U2(X)
= U(X)Yv−I(X)(1−Yv)

U(X)2
⇒ ∂IoU(X)

∂Xv
=

{
1

U(X) Yv = 1

− I(X)
U(X)2

Yv = 0

S. Cheng (OU-ECE) Neural Networks Jan 2019 52 / 204

https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf

Back-propagation

Example: IoU (reference)

Interception over union is commonly used to quantify segmentation quality for image
segmentation
For pixel v, Xv is the estimated mask and Yv ∈ {0, 1} is the ground truth
IoU(X) = I(X)

U(X) , where I(X) ≈
∑

v XvYv and U(X) ≈
∑

v(Xv + Yv −XvYv)

∂IoU(X)
∂Xv

=
U(X)

∂I(X)
∂Xv

−I(X)
∂U(X)
∂Xv

U2(X)

= U(X)Yv−I(X)(1−Yv)
U(X)2

⇒ ∂IoU(X)
∂Xv

=

{
1

U(X) Yv = 1

− I(X)
U(X)2

Yv = 0

S. Cheng (OU-ECE) Neural Networks Jan 2019 52 / 204

https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf

Back-propagation

Example: IoU (reference)

Interception over union is commonly used to quantify segmentation quality for image
segmentation
For pixel v, Xv is the estimated mask and Yv ∈ {0, 1} is the ground truth
IoU(X) = I(X)

U(X) , where I(X) ≈
∑

v XvYv and U(X) ≈
∑

v(Xv + Yv −XvYv)

∂IoU(X)
∂Xv

=
U(X)

∂I(X)
∂Xv

−I(X)
∂U(X)
∂Xv

U2(X)
= U(X)Yv−I(X)(1−Yv)

U(X)2

⇒ ∂IoU(X)
∂Xv

=

{
1

U(X) Yv = 1

− I(X)
U(X)2

Yv = 0

S. Cheng (OU-ECE) Neural Networks Jan 2019 52 / 204

https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf

Back-propagation

Example: IoU (reference)

Interception over union is commonly used to quantify segmentation quality for image
segmentation
For pixel v, Xv is the estimated mask and Yv ∈ {0, 1} is the ground truth
IoU(X) = I(X)

U(X) , where I(X) ≈
∑

v XvYv and U(X) ≈
∑

v(Xv + Yv −XvYv)

∂IoU(X)
∂Xv

=
U(X)

∂I(X)
∂Xv

−I(X)
∂U(X)
∂Xv

U2(X)
= U(X)Yv−I(X)(1−Yv)

U(X)2
⇒ ∂IoU(X)

∂Xv
=

{
1

U(X) Yv = 1

− I(X)
U(X)2

Yv = 0

S. Cheng (OU-ECE) Neural Networks Jan 2019 52 / 204

https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf

Back-propagation

Implementation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201775

Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

S. Cheng (OU-ECE) Neural Networks Jan 2019 53 / 204

Back-propagation

Implementation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201776

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

S. Cheng (OU-ECE) Neural Networks Jan 2019 54 / 204

Back-propagation

Implementation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 201777

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

S. Cheng (OU-ECE) Neural Networks Jan 2019 55 / 204

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the output and also the
corresponding local derivatives of the output w.r.t. the inputs

During the backward pass, the local derivatives and the evaluated outputs will be
“consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory consumption during the
forward pass

Note that BP only computes the gradients. It does not perform the optimization.
Sometimes you may hear people said that they trained their networks with BP. What
they said was not literally right. We will discuss more on optimizer later today
With BP in place, why we still can’t train deep networks?

S. Cheng (OU-ECE) Neural Networks Jan 2019 56 / 204

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the output and also the
corresponding local derivatives of the output w.r.t. the inputs
During the backward pass, the local derivatives and the evaluated outputs will be
“consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory consumption during the
forward pass

Note that BP only computes the gradients. It does not perform the optimization.
Sometimes you may hear people said that they trained their networks with BP. What
they said was not literally right. We will discuss more on optimizer later today
With BP in place, why we still can’t train deep networks?

S. Cheng (OU-ECE) Neural Networks Jan 2019 56 / 204

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the output and also the
corresponding local derivatives of the output w.r.t. the inputs
During the backward pass, the local derivatives and the evaluated outputs will be
“consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory consumption during the
forward pass

Note that BP only computes the gradients. It does not perform the optimization.
Sometimes you may hear people said that they trained their networks with BP. What
they said was not literally right. We will discuss more on optimizer later today
With BP in place, why we still can’t train deep networks?

S. Cheng (OU-ECE) Neural Networks Jan 2019 56 / 204

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the output and also the
corresponding local derivatives of the output w.r.t. the inputs
During the backward pass, the local derivatives and the evaluated outputs will be
“consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory consumption during the
forward pass

Note that BP only computes the gradients. It does not perform the optimization.
Sometimes you may hear people said that they trained their networks with BP. What
they said was not literally right. We will discuss more on optimizer later today

With BP in place, why we still can’t train deep networks?

S. Cheng (OU-ECE) Neural Networks Jan 2019 56 / 204

Back-propagation

Remark of BP

During the forward pass, each computing unit will evaluate the output and also the
corresponding local derivatives of the output w.r.t. the inputs
During the backward pass, the local derivatives and the evaluated outputs will be
“consumed” to compute the overall derivatives

For a large network, there can be a large spike of memory consumption during the
forward pass

Note that BP only computes the gradients. It does not perform the optimization.
Sometimes you may hear people said that they trained their networks with BP. What
they said was not literally right. We will discuss more on optimizer later today
With BP in place, why we still can’t train deep networks?

S. Cheng (OU-ECE) Neural Networks Jan 2019 56 / 204

Back-propagation

Gradient vanishing and exploding problems

As each training step is nothing more than going approximately downhill along the
negative gradient

Gradient vanishing: no training can continue as gradient goes to zero
Gradient exploding: training dies as gradients goes overflow and usually resulting in NaN

As layers stack up, these problems become more and more likely to happen
These make training deep ANN challenging

S. Cheng (OU-ECE) Neural Networks Jan 2019 57 / 204

Back-propagation

Gradient vanishing and exploding problems

As each training step is nothing more than going approximately downhill along the
negative gradient

Gradient vanishing: no training can continue as gradient goes to zero

Gradient exploding: training dies as gradients goes overflow and usually resulting in NaN
As layers stack up, these problems become more and more likely to happen

These make training deep ANN challenging

S. Cheng (OU-ECE) Neural Networks Jan 2019 57 / 204

Back-propagation

Gradient vanishing and exploding problems

As each training step is nothing more than going approximately downhill along the
negative gradient

Gradient vanishing: no training can continue as gradient goes to zero
Gradient exploding: training dies as gradients goes overflow and usually resulting in NaN

As layers stack up, these problems become more and more likely to happen
These make training deep ANN challenging

S. Cheng (OU-ECE) Neural Networks Jan 2019 57 / 204

Back-propagation

Gradient vanishing and exploding problems

As each training step is nothing more than going approximately downhill along the
negative gradient

Gradient vanishing: no training can continue as gradient goes to zero
Gradient exploding: training dies as gradients goes overflow and usually resulting in NaN

As layers stack up, these problems become more and more likely to happen
These make training deep ANN challenging

S. Cheng (OU-ECE) Neural Networks Jan 2019 57 / 204

Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201649

Step 1: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

S. Cheng (OU-ECE) Neural Networks Jan 2019 58 / 204

Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201650

Step 1: Preprocess the data

In practice, you may also see PCA and Whitening of the data

(data has diagonal
covariance matrix)

(covariance matrix is the
identity matrix)

S. Cheng (OU-ECE) Neural Networks Jan 2019 59 / 204

Initialization Input preprocessing

Input preprocessing

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201651

TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize
variance, to do PCA or
whitening

S. Cheng (OU-ECE) Neural Networks Jan 2019 60 / 204

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201653

- Q: what happens when W=0 init is used?

S. Cheng (OU-ECE) Neural Networks Jan 2019 61 / 204

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201654

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

S. Cheng (OU-ECE) Neural Networks Jan 2019 62 / 204

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201655

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

S. Cheng (OU-ECE) Neural Networks Jan 2019 63 / 204

Initialization Weight initialization

Weight initialization

Let’s look at some activation statistics
10 layers
500 neurons per layer
tanh(·) for activation
W = 0.01 ∗ np.random.randn(fan_in, fan_out) as described in the last slide

S. Cheng (OU-ECE) Neural Networks Jan 2019 64 / 204

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201657
S. Cheng (OU-ECE) Neural Networks Jan 2019 65 / 204

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201658

All activations
become zero!

Q: think about the
backward pass.
What do the
gradients look like?

Hint: think about backward
pass for a W*X gate.

S. Cheng (OU-ECE) Neural Networks Jan 2019 66 / 204

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201659

Almost all neurons
completely
saturated, either -1
and 1. Gradients
will be all zero.

*1.0 instead of *0.01

S. Cheng (OU-ECE) Neural Networks Jan 2019 67 / 204

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n.
Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

S. Cheng (OU-ECE) Neural Networks Jan 2019 68 / 204

Initialization Weight initialization

V ar(XY) = E[X]2V ar(Y) + E[Y]2V ar(X) + V ar(X)V ar(Y)

V ar(XY) = E[(XY)2]− E[XY]2

= E[X2]E[Y 2]− E[X]2E[Y]2

V ar(X)V ar(Y)

= (E[X2]− E[X]2)(E[Y 2]− E[Y]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y]2 + E[X]2E[Y]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y]2)

E[Y]2(E[X2]− E[X]2)− E[X]2E[Y]2

= V ar(XY)− E[X]2V ar(Y)− E[Y]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2019 69 / 204

Initialization Weight initialization

V ar(XY) = E[X]2V ar(Y) + E[Y]2V ar(X) + V ar(X)V ar(Y)

V ar(XY) = E[(XY)2]− E[XY]2

= E[X2]E[Y 2]− E[X]2E[Y]2

V ar(X)V ar(Y)

= (E[X2]− E[X]2)(E[Y 2]− E[Y]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y]2 + E[X]2E[Y]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y]2)

E[Y]2(E[X2]− E[X]2)− E[X]2E[Y]2

= V ar(XY)− E[X]2V ar(Y)− E[Y]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2019 69 / 204

Initialization Weight initialization

V ar(XY) = E[X]2V ar(Y) + E[Y]2V ar(X) + V ar(X)V ar(Y)

V ar(XY) = E[(XY)2]− E[XY]2

= E[X2]E[Y 2]− E[X]2E[Y]2

V ar(X)V ar(Y)

= (E[X2]− E[X]2)(E[Y 2]− E[Y]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y]2 + E[X]2E[Y]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y]2)

E[Y]2(E[X2]− E[X]2)− E[X]2E[Y]2

= V ar(XY)− E[X]2V ar(Y)− E[Y]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2019 69 / 204

Initialization Weight initialization

V ar(XY) = E[X]2V ar(Y) + E[Y]2V ar(X) + V ar(X)V ar(Y)

V ar(XY) = E[(XY)2]− E[XY]2

= E[X2]E[Y 2]− E[X]2E[Y]2

V ar(X)V ar(Y)

= (E[X2]− E[X]2)(E[Y 2]− E[Y]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y]2 + E[X]2E[Y]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y]2)

E[Y]2(E[X2]− E[X]2)− E[X]2E[Y]2

= V ar(XY)− E[X]2V ar(Y)− E[Y]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2019 69 / 204

Initialization Weight initialization

V ar(XY) = E[X]2V ar(Y) + E[Y]2V ar(X) + V ar(X)V ar(Y)

V ar(XY) = E[(XY)2]− E[XY]2

= E[X2]E[Y 2]− E[X]2E[Y]2

V ar(X)V ar(Y)

= (E[X2]− E[X]2)(E[Y 2]− E[Y]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y]2 + E[X]2E[Y]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y]2)

E[Y]2(E[X2]− E[X]2)− E[X]2E[Y]2

= V ar(XY)− E[X]2V ar(Y)− E[Y]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2019 69 / 204

Initialization Weight initialization

V ar(XY) = E[X]2V ar(Y) + E[Y]2V ar(X) + V ar(X)V ar(Y)

V ar(XY) = E[(XY)2]− E[XY]2

= E[X2]E[Y 2]− E[X]2E[Y]2

V ar(X)V ar(Y)

= (E[X2]− E[X]2)(E[Y 2]− E[Y]2)

= E[X2]E[Y 2]− E[X]2E[Y 2]− E[X2]E[Y]2 + E[X]2E[Y]2

= E[X2]E[Y 2]− E[X]2(E[Y 2]− E[Y]2)

E[Y]2(E[X2]− E[X]2)− E[X]2E[Y]2

= V ar(XY)− E[X]2V ar(Y)− E[Y]2V ar(X)

S. Cheng (OU-ECE) Neural Networks Jan 2019 69 / 204

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n.
Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=

n∑
i

E[wi]
2Var(xi) + E[xi]

2Var(wi) + Var(xi)Var(wi)

=
n∑
i

Var(xi)Var(wi)

= (nVar(w))Var(x)

Thus, output will have same variance as input if nVar(w) = 1

S. Cheng (OU-ECE) Neural Networks Jan 2019 70 / 204

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n.
Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=

n∑
i

E[wi]
2Var(xi) + E[xi]

2Var(wi) + Var(xi)Var(wi)

=

n∑
i

Var(xi)Var(wi)

= (nVar(w))Var(x)

Thus, output will have same variance as input if nVar(w) = 1

S. Cheng (OU-ECE) Neural Networks Jan 2019 70 / 204

Initialization Weight initialization

Variance calibration for linear layer

Assume linear activation and zero-mean weights and inputs. And number of inputs is n.
Then,

Var(y) = Var

(
n∑
i

wixi

)
=

n∑
i

Var(wixi)

=

n∑
i

E[wi]
2Var(xi) + E[xi]

2Var(wi) + Var(xi)Var(wi)

=

n∑
i

Var(xi)Var(wi)

= (nVar(w))Var(x)

Thus, output will have same variance as input if nVar(w) = 1

S. Cheng (OU-ECE) Neural Networks Jan 2019 70 / 204

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201660

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

S. Cheng (OU-ECE) Neural Networks Jan 2019 71 / 204

Initialization Weight initialization

Xavier weight initialization

By the same argument, if we want the variance of the backprop gradient does not
change, we want mV ar(w) = 1, where m is the number of outputs
To account for both directions, one may initialize the weight with variance 2

n+m

This is known as Xavier weight initialization
torch.nn.init.xavier_uniform_/torch.nn.init.xavier_normal_

layer=torch.nn.Linear(10,20)
nn.init.xavier_normal_(layer.weight)

w=torch.empty(10,20) # tensor without initialization
nn.init.xavier_normal_(w)

S. Cheng (OU-ECE) Neural Networks Jan 2019 72 / 204

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201661

but when using the ReLU
nonlinearity it breaks.

S. Cheng (OU-ECE) Neural Networks Jan 2019 73 / 204

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)

=
n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation function.
S. Cheng (OU-ECE) Neural Networks Jan 2019 74 / 204

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation function.
S. Cheng (OU-ECE) Neural Networks Jan 2019 74 / 204

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation function.
S. Cheng (OU-ECE) Neural Networks Jan 2019 74 / 204

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation function.
S. Cheng (OU-ECE) Neural Networks Jan 2019 74 / 204

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation function.
S. Cheng (OU-ECE) Neural Networks Jan 2019 74 / 204

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation function.
S. Cheng (OU-ECE) Neural Networks Jan 2019 74 / 204

Initialization Weight initialization

Variance calibration for ReLU

· · · x(l−1)
∑

y(l−1) x(l)
∑

y(l) · · ·

Note that it doesn’t work when the activation layer is ReLU. But...1

Var(y(l)) = Var

(
n∑
i

w
(l)
i x

(l)
i

)
=

n∑
i

Var(w(l)
i x

(l)
i) = nVar(w(l)x(l))

= nE[w(l)]2Var(x(l)) + nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[x(l)]2Var(w(l)) + nVar(x(l))Var(w(l))

= nE[(x(l))2]Var(w(l))

= n(Var(y(l−1))/2)Var(w(l)) =
(n
2

Var(w(l))
)

Var(y(l−1))

Variance of y conserved across a layer if n
2Var(w) = 1

1Note that y(l) now denotes the sum of input before going through the activation function.
S. Cheng (OU-ECE) Neural Networks Jan 2019 74 / 204

Initialization Weight initialization

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201663
S. Cheng (OU-ECE) Neural Networks Jan 2019 75 / 204

Initialization Weight initialization

Kaiming weight initialization

The ReLU adjustment was first proposed by Kaiming He and his coauthors in an
ICCV 2015 paper. The initialization method is adopted and popularized by ResNet

This is known as Kaiming weight initialization
Unlike Xavier initialization, only fan-in is considered ⇒ V ar(w) = 2

n
torch.nn.init.kaiming_uniform_/torch.nn.init.kaiming_normal_

layer=torch.nn.Linear(10,20)
nn.init.kaiming_normal_(layer.weight)

S. Cheng (OU-ECE) Neural Networks Jan 2019 76 / 204

https://arxiv.org/abs/1502.01852
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201665

Batch Normalization

“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

this is a vanilla
differentiable function...

S. Cheng (OU-ECE) Neural Networks Jan 2019 77 / 204

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201666

Batch Normalization

“you want unit gaussian activations?
just make them so.”

[Ioffe and Szegedy, 2015]

XN

D

1. compute the empirical mean and
variance independently for each
dimension.

2. Normalize

S. Cheng (OU-ECE) Neural Networks Jan 2019 78 / 204

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201667

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully
Connected / (or Convolutional, as
we’ll see soon) layers, and before
nonlinearity.

Problem: do we
necessarily want a unit
gaussian input to a
tanh layer?

S. Cheng (OU-ECE) Neural Networks Jan 2019 79 / 204

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201668

Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash
the range if it wants to:

Note, the network can learn:

to recover the identity
mapping.

Normalize:

S. Cheng (OU-ECE) Neural Networks Jan 2019 80 / 204

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201669

Batch Normalization [Ioffe and Szegedy, 2015]

- Improves gradient flow through
the network

- Allows higher learning rates
- Reduces the strong dependence

on initialization
- Acts as a form of regularization

in a funny way, and slightly
reduces the need for dropout,
maybe

S. Cheng (OU-ECE) Neural Networks Jan 2019 81 / 204

Regularization Batch normalization

Batch normalization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201670

Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g. can be estimated during training
with running averages)

S. Cheng (OU-ECE) Neural Networks Jan 2019 82 / 204

Regularization Batch normalization

Other normalization techniques

S. Cheng (OU-ECE) Neural Networks Jan 2019 83 / 204

Regularization Dropout

Reducing testing error

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201758

How to improve single-model performance?

Regularization
S. Cheng (OU-ECE) Neural Networks Jan 2019 84 / 204

Regularization Dropout

Ensemble trick

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201646

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

S. Cheng (OU-ECE) Neural Networks Jan 2019 85 / 204

Regularization Dropout

Ensemble trick

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 2016

Fun Tips/Tricks:

- can also get a small boost from averaging multiple
model checkpoints of a single model.

47
S. Cheng (OU-ECE) Neural Networks Jan 2019 86 / 204

Regularization Dropout

Ensemble trick

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201755

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple
snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

S. Cheng (OU-ECE) Neural Networks Jan 2019 87 / 204

Regularization Dropout

Ensemble trick

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201756

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple
snapshots of a single model during training!

Cyclic learning rate schedules can
make this work even better!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

S. Cheng (OU-ECE) Neural Networks Jan 2019 88 / 204

Regularization Dropout

Ensemble trick

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201757

Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.

S. Cheng (OU-ECE) Neural Networks Jan 2019 89 / 204

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201650

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]

S. Cheng (OU-ECE) Neural Networks Jan 2019 90 / 204

Regularization Dropout

Dropout

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201651

Example forward
pass with a 3-
layer network
using dropout

S. Cheng (OU-ECE) Neural Networks Jan 2019 91 / 204

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201762

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous
look

cat
score

X

X

X

S. Cheng (OU-ECE) Neural Networks Jan 2019 92 / 204

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201763

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...

S. Cheng (OU-ECE) Neural Networks Jan 2019 93 / 204

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201764

Dropout: Test time

Dropout makes our output random!

Output
(label)

Input
(image)

Random
mask

Want to “average out” the randomness at test-time

But this integral seems hard …

S. Cheng (OU-ECE) Neural Networks Jan 2019 94 / 204

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201765

Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

a

x y

w
1 w

2

S. Cheng (OU-ECE) Neural Networks Jan 2019 95 / 204

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201766

Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have:
a

x y

w
1 w

2

S. Cheng (OU-ECE) Neural Networks Jan 2019 96 / 204

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201767

Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have:
During training we have:

a

x y

w
1 w

2

S. Cheng (OU-ECE) Neural Networks Jan 2019 97 / 204

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201768

Dropout: Test time
Want to approximate
the integral

Consider a single neuron.

At test time we have:

During training we have:

a

x y

w1 w2

At test time, multiply
by probability p

S. Cheng (OU-ECE) Neural Networks Jan 2019 98 / 204

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201769

Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

S. Cheng (OU-ECE) Neural Networks Jan 2019 99 / 204

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201770

Dropout Summary

drop in forward pass

scale at test time

S. Cheng (OU-ECE) Neural Networks Jan 2019 100 / 204

Regularization Dropout

Dropout

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201771

More common: “Inverted dropout”

test time is unchanged!

S. Cheng (OU-ECE) Neural Networks Jan 2019 101 / 204

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201774

Load image
and label

“cat”

CNN

Compute
loss

Regularization: Data Augmentation

This image by Nikita is
licensed under CC-BY 2.0

S. Cheng (OU-ECE) Neural Networks Jan 2019 102 / 204

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201775

Regularization: Data Augmentation

Load image
and label

“cat”

CNN

Compute
loss

Transform image

S. Cheng (OU-ECE) Neural Networks Jan 2019 103 / 204

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201776

Data Augmentation
Horizontal Flips

S. Cheng (OU-ECE) Neural Networks Jan 2019 104 / 204

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201777

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

S. Cheng (OU-ECE) Neural Networks Jan 2019 105 / 204

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201778

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

S. Cheng (OU-ECE) Neural Networks Jan 2019 106 / 204

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201779

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

S. Cheng (OU-ECE) Neural Networks Jan 2019 107 / 204

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201780

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B]
pixels in training set

2. Sample a “color offset”
along principal component
directions

3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

S. Cheng (OU-ECE) Neural Networks Jan 2019 108 / 204

Regularization Dropout

Data augmentation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201781

Data Augmentation
Get creative for your problem!

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing,
- lens distortions, … (go crazy)

S. Cheng (OU-ECE) Neural Networks Jan 2019 109 / 204

Activation functions

Activation functions

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201628

Activation Functions

S. Cheng (OU-ECE) Neural Networks Jan 2019 110 / 204

Activation functions

Threshold-based activation
Step function: earliest, used in
perceptron

10 0 10
0.0

0.5

1.0

Sigmoid (logistic) function: 1
1+exp(−x)

10 0 10
0.0

0.5

1.0

Tanh: exp(x)−exp(−x)
exp(x)+exp(−x)

10 0 10
1

0

1

S. Cheng (OU-ECE) Neural Networks Jan 2019 111 / 204

Activation functions Threshold-based activation function

Threshold-based activation

Historically very popular since they model well a saturated neuron

However,
Saturated neurons lead to vanishing gradient
exp is a bit compute expensive
some concerns that sigmoid is not zero-centered (tanh solved the problem)

In most hidden layers, sigmoid and tanh should be avoided because of the gradient
vanishing problem

S. Cheng (OU-ECE) Neural Networks Jan 2019 112 / 204

Activation functions Threshold-based activation function

Threshold-based activation

Historically very popular since they model well a saturated neuron
However,

Saturated neurons lead to vanishing gradient
exp is a bit compute expensive
some concerns that sigmoid is not zero-centered (tanh solved the problem)

In most hidden layers, sigmoid and tanh should be avoided because of the gradient
vanishing problem

S. Cheng (OU-ECE) Neural Networks Jan 2019 112 / 204

Activation functions Threshold-based activation function

Threshold-based activation

Historically very popular since they model well a saturated neuron
However,

Saturated neurons lead to vanishing gradient
exp is a bit compute expensive
some concerns that sigmoid is not zero-centered (tanh solved the problem)

In most hidden layers, sigmoid and tanh should be avoided because of the gradient
vanishing problem

S. Cheng (OU-ECE) Neural Networks Jan 2019 112 / 204

Activation functions ReLU

ReLU

10 0 10
0

5

10

Rectified linear unit: f(x) = max(x, 0)

Introduced by Nair and Hinton in 2010 and
popularized by Alexnet in 2012

Pros
No gradient vanishing problem
Computationally efficient
Converges much faster than sigmoid/tanh

Cons
Not zero-centered and output always positive
Not differentiable at 0 (doesn’t seem to be a
problem in practice)

Bottom line, just use ReLU when in doubt

S. Cheng (OU-ECE) Neural Networks Jan 2019 113 / 204

Activation functions ReLU

ReLU

10 0 10
0

5

10

Rectified linear unit: f(x) = max(x, 0)

Introduced by Nair and Hinton in 2010 and
popularized by Alexnet in 2012
Pros

No gradient vanishing problem
Computationally efficient
Converges much faster than sigmoid/tanh

Cons
Not zero-centered and output always positive
Not differentiable at 0 (doesn’t seem to be a
problem in practice)

Bottom line, just use ReLU when in doubt

S. Cheng (OU-ECE) Neural Networks Jan 2019 113 / 204

Activation functions ReLU

ReLU

10 0 10
0

5

10

Rectified linear unit: f(x) = max(x, 0)

Introduced by Nair and Hinton in 2010 and
popularized by Alexnet in 2012
Pros

No gradient vanishing problem
Computationally efficient
Converges much faster than sigmoid/tanh

Cons
Not zero-centered and output always positive
Not differentiable at 0 (doesn’t seem to be a
problem in practice)

Bottom line, just use ReLU when in doubt

S. Cheng (OU-ECE) Neural Networks Jan 2019 113 / 204

Activation functions ReLU

ReLU

10 0 10
0

5

10

Rectified linear unit: f(x) = max(x, 0)

Introduced by Nair and Hinton in 2010 and
popularized by Alexnet in 2012
Pros

No gradient vanishing problem
Computationally efficient
Converges much faster than sigmoid/tanh

Cons
Not zero-centered and output always positive
Not differentiable at 0 (doesn’t seem to be a
problem in practice)

Bottom line, just use ReLU when in doubt

S. Cheng (OU-ECE) Neural Networks Jan 2019 113 / 204

Activation functions ReLU

“Softplus”

10 0 10
0

5

10 f(x) = 1
β log(1 + exp(βx))

Act as a smooth version of ReLU
In practice, it doesn’t seem to work so well
The use of softplus is generally discouraged. ... one might

expect it to have advantage over the rectifier due to being
differentiable everywhere or due to saturating less
completely, but empirically it does not –Deep Learning
book

S. Cheng (OU-ECE) Neural Networks Jan 2019 114 / 204

Activation functions ReLU

ReLU

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201640

ReLU
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

S. Cheng (OU-ECE) Neural Networks Jan 2019 115 / 204

Activation functions ReLU

Dead ReLU neurons

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201641

DATA CLOUD
active ReLU

dead ReLU
will never activate
=> never update

S. Cheng (OU-ECE) Neural Networks Jan 2019 116 / 204

Activation functions ReLU

Dead ReLU neurons

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201642

DATA CLOUD
active ReLU

dead ReLU
will never activate
=> never update

=> people like to initialize
ReLU neurons with slightly
positive biases (e.g. 0.01)

S. Cheng (OU-ECE) Neural Networks Jan 2019 117 / 204

Activation functions ReLU

Sparsity of ReLU

Theoretically ReLU promotes
sparsity

many zeros in trained model
But it is controversial if that is a
dominant factor

S. Cheng (OU-ECE) Neural Networks Jan 2019 118 / 204

Activation functions ReLU

Leaky ReLU

10 0 10
0

5

10 leaky-relu: max(x, 0.01x)
relu: max(x, 0)

f(x) = max(x, 0.01x)

Does not saturate
Computationally efficient
Seem to work better than ReLU (see
experiments here and here)
Generalize to Parametric Rectifier (PReLU)

Replace 0.01 with a learnable α. i.e.,
f(x) = max(x, αx)

S. Cheng (OU-ECE) Neural Networks Jan 2019 119 / 204

https://towardsdatascience.com/leaky-relu-vs-relu-activation-functions-which-is-better-1a1533d0a89f
https://medium.com/@chinesh4/why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-and-relu-6-969359e48310

Activation functions ReLU

Leaky ReLU

10 0 10
0

5

10 leaky-relu: max(x, 0.01x)
relu: max(x, 0)

f(x) = max(x, 0.01x)

Does not saturate

Computationally efficient
Seem to work better than ReLU (see
experiments here and here)
Generalize to Parametric Rectifier (PReLU)

Replace 0.01 with a learnable α. i.e.,
f(x) = max(x, αx)

S. Cheng (OU-ECE) Neural Networks Jan 2019 119 / 204

https://towardsdatascience.com/leaky-relu-vs-relu-activation-functions-which-is-better-1a1533d0a89f
https://medium.com/@chinesh4/why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-and-relu-6-969359e48310

Activation functions ReLU

Leaky ReLU

10 0 10
0

5

10 leaky-relu: max(x, 0.01x)
relu: max(x, 0)

f(x) = max(x, 0.01x)

Does not saturate
Computationally efficient

Seem to work better than ReLU (see
experiments here and here)
Generalize to Parametric Rectifier (PReLU)

Replace 0.01 with a learnable α. i.e.,
f(x) = max(x, αx)

S. Cheng (OU-ECE) Neural Networks Jan 2019 119 / 204

https://towardsdatascience.com/leaky-relu-vs-relu-activation-functions-which-is-better-1a1533d0a89f
https://medium.com/@chinesh4/why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-and-relu-6-969359e48310

Activation functions ReLU

Leaky ReLU

10 0 10
0

5

10 leaky-relu: max(x, 0.01x)
relu: max(x, 0)

f(x) = max(x, 0.01x)

Does not saturate
Computationally efficient
Seem to work better than ReLU (see
experiments here and here)

Generalize to Parametric Rectifier (PReLU)
Replace 0.01 with a learnable α. i.e.,
f(x) = max(x, αx)

S. Cheng (OU-ECE) Neural Networks Jan 2019 119 / 204

https://towardsdatascience.com/leaky-relu-vs-relu-activation-functions-which-is-better-1a1533d0a89f
https://medium.com/@chinesh4/why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-and-relu-6-969359e48310

Activation functions ReLU

Leaky ReLU

10 0 10
0

5

10 leaky-relu: max(x, 0.01x)
relu: max(x, 0)

f(x) = max(x, 0.01x)

Does not saturate
Computationally efficient
Seem to work better than ReLU (see
experiments here and here)
Generalize to Parametric Rectifier (PReLU)

Replace 0.01 with a learnable α. i.e.,
f(x) = max(x, αx)

S. Cheng (OU-ECE) Neural Networks Jan 2019 119 / 204

https://towardsdatascience.com/leaky-relu-vs-relu-activation-functions-which-is-better-1a1533d0a89f
https://medium.com/@chinesh4/why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-and-relu-6-969359e48310

Activation functions ReLU

Maxout [Goodfellow et al., 2013]

Try to generalize ReLU and leaky ReLU
max(wT

1 x+ b1,w
T
2 x+ b2)

Pros
Linear regime
Does not saturate
Does not die

Cons
Double amount of parameters

S. Cheng (OU-ECE) Neural Networks Jan 2019 120 / 204

Activation functions ReLU

Maxout [Goodfellow et al., 2013]

Try to generalize ReLU and leaky ReLU
max(wT

1 x+ b1,w
T
2 x+ b2)

Pros
Linear regime
Does not saturate
Does not die

Cons
Double amount of parameters

S. Cheng (OU-ECE) Neural Networks Jan 2019 120 / 204

Activation functions ReLU

Maxout [Goodfellow et al., 2013]

Try to generalize ReLU and leaky ReLU
max(wT

1 x+ b1,w
T
2 x+ b2)

Pros
Linear regime
Does not saturate
Does not die

Cons
Double amount of parameters

S. Cheng (OU-ECE) Neural Networks Jan 2019 120 / 204

Activation functions ELU

ELU

10 5 0 5 10
2

0

2

4

6

8

10
relu: max(x, 0)
elu: max(x, 0) + min((ex 1), 0)
celu: max(x, 0) + min((ex 1), 0)
selu: scale(max(x, 0) + min((ex 1), 0))

Exponential linear unit:

ELU(x, α) =

{
x if x > 0

α(ex − 1) otherwise

Closer to zero mean
Work better than ReLU according to this

CELU: f(x) =

{
x if x > 0

α(ex/α − 1) otherwise
x→ x/α to make function differentiable at 0

SELU: Adjust α and add scale to make function
self-normalize (zero-mean, unit variance input⇒
zero-mean, unit variance output)

SELU(x) = λELU(x, α))
λ ≈ 1.0507, α ≈ 1.6733

S. Cheng (OU-ECE) Neural Networks Jan 2019 121 / 204

https://tungmphung.com/elu-activation-a-comprehensive-analysis/
https://arxiv.org/pdf/1704.07483.pdf
https://arxiv.org/pdf/1706.02515v5.pdf

Activation functions ELU

ELU

10 5 0 5 10
2

0

2

4

6

8

10
relu: max(x, 0)
elu: max(x, 0) + min((ex 1), 0)
celu: max(x, 0) + min((ex 1), 0)
selu: scale(max(x, 0) + min((ex 1), 0))

Exponential linear unit:

ELU(x, α) =

{
x if x > 0

α(ex − 1) otherwise
Closer to zero mean

Work better than ReLU according to this

CELU: f(x) =

{
x if x > 0

α(ex/α − 1) otherwise
x→ x/α to make function differentiable at 0

SELU: Adjust α and add scale to make function
self-normalize (zero-mean, unit variance input⇒
zero-mean, unit variance output)

SELU(x) = λELU(x, α))
λ ≈ 1.0507, α ≈ 1.6733

S. Cheng (OU-ECE) Neural Networks Jan 2019 121 / 204

https://tungmphung.com/elu-activation-a-comprehensive-analysis/
https://arxiv.org/pdf/1704.07483.pdf
https://arxiv.org/pdf/1706.02515v5.pdf

Activation functions ELU

ELU

10 5 0 5 10
2

0

2

4

6

8

10
relu: max(x, 0)
elu: max(x, 0) + min((ex 1), 0)
celu: max(x, 0) + min((ex 1), 0)
selu: scale(max(x, 0) + min((ex 1), 0))

Exponential linear unit:

ELU(x, α) =

{
x if x > 0

α(ex − 1) otherwise
Closer to zero mean
Work better than ReLU according to this

CELU: f(x) =

{
x if x > 0

α(ex/α − 1) otherwise
x→ x/α to make function differentiable at 0

SELU: Adjust α and add scale to make function
self-normalize (zero-mean, unit variance input⇒
zero-mean, unit variance output)

SELU(x) = λELU(x, α))
λ ≈ 1.0507, α ≈ 1.6733

S. Cheng (OU-ECE) Neural Networks Jan 2019 121 / 204

https://tungmphung.com/elu-activation-a-comprehensive-analysis/
https://arxiv.org/pdf/1704.07483.pdf
https://arxiv.org/pdf/1706.02515v5.pdf

Activation functions ELU

ELU

10 5 0 5 10
2

0

2

4

6

8

10
relu: max(x, 0)
elu: max(x, 0) + min((ex 1), 0)
celu: max(x, 0) + min((ex 1), 0)
selu: scale(max(x, 0) + min((ex 1), 0))

Exponential linear unit:

ELU(x, α) =

{
x if x > 0

α(ex − 1) otherwise
Closer to zero mean
Work better than ReLU according to this

CELU: f(x) =

{
x if x > 0

α(ex/α − 1) otherwise
x→ x/α to make function differentiable at 0

SELU: Adjust α and add scale to make function
self-normalize (zero-mean, unit variance input⇒
zero-mean, unit variance output)

SELU(x) = λELU(x, α))
λ ≈ 1.0507, α ≈ 1.6733

S. Cheng (OU-ECE) Neural Networks Jan 2019 121 / 204

https://tungmphung.com/elu-activation-a-comprehensive-analysis/
https://arxiv.org/pdf/1704.07483.pdf
https://arxiv.org/pdf/1706.02515v5.pdf

Activation functions ELU

ELU

10 5 0 5 10
2

0

2

4

6

8

10
relu: max(x, 0)
elu: max(x, 0) + min((ex 1), 0)
celu: max(x, 0) + min((ex 1), 0)
selu: scale(max(x, 0) + min((ex 1), 0))

Exponential linear unit:

ELU(x, α) =

{
x if x > 0

α(ex − 1) otherwise
Closer to zero mean
Work better than ReLU according to this

CELU: f(x) =

{
x if x > 0

α(ex/α − 1) otherwise
x→ x/α to make function differentiable at 0

SELU: Adjust α and add scale to make function
self-normalize (zero-mean, unit variance input⇒
zero-mean, unit variance output)

SELU(x) = λELU(x, α))
λ ≈ 1.0507, α ≈ 1.6733

S. Cheng (OU-ECE) Neural Networks Jan 2019 121 / 204

https://tungmphung.com/elu-activation-a-comprehensive-analysis/
https://arxiv.org/pdf/1704.07483.pdf
https://arxiv.org/pdf/1706.02515v5.pdf

Activation functions Gated activation function

Gaussian ELU (often known as GeLU)

GeLU is motivated by dropout. The authors like to drop some of the node randomly
based on the input

Nodes are still randomly dropped if we consider input as stochastic
But the actual operation is deterministic w.r.t. the input
They choose an activation function GeLU(x) = xΦ(x) ≈ xσ(1.702x), where
Φ(x) = Pr(Z < x) for Z ∼ N(0, 1) is the cdf of Z
Quite widely adopted by OpenAI and used in Transformers

S. Cheng (OU-ECE) Neural Networks Jan 2019 122 / 204

https://arxiv.org/pdf/1606.08415.pdf

Activation functions Gated activation function

Gaussian ELU (often known as GeLU)

GeLU is motivated by dropout. The authors like to drop some of the node randomly
based on the input
Nodes are still randomly dropped if we consider input as stochastic
But the actual operation is deterministic w.r.t. the input

They choose an activation function GeLU(x) = xΦ(x) ≈ xσ(1.702x), where
Φ(x) = Pr(Z < x) for Z ∼ N(0, 1) is the cdf of Z
Quite widely adopted by OpenAI and used in Transformers

S. Cheng (OU-ECE) Neural Networks Jan 2019 122 / 204

https://arxiv.org/pdf/1606.08415.pdf

Activation functions Gated activation function

Gaussian ELU (often known as GeLU)

GeLU is motivated by dropout. The authors like to drop some of the node randomly
based on the input
Nodes are still randomly dropped if we consider input as stochastic
But the actual operation is deterministic w.r.t. the input
They choose an activation function GeLU(x) = xΦ(x) ≈ xσ(1.702x), where
Φ(x) = Pr(Z < x) for Z ∼ N(0, 1) is the cdf of Z

Quite widely adopted by OpenAI and used in Transformers

S. Cheng (OU-ECE) Neural Networks Jan 2019 122 / 204

https://arxiv.org/pdf/1606.08415.pdf

Activation functions Gated activation function

Gaussian ELU (often known as GeLU)

GeLU is motivated by dropout. The authors like to drop some of the node randomly
based on the input
Nodes are still randomly dropped if we consider input as stochastic
But the actual operation is deterministic w.r.t. the input
They choose an activation function GeLU(x) = xΦ(x) ≈ xσ(1.702x), where
Φ(x) = Pr(Z < x) for Z ∼ N(0, 1) is the cdf of Z
Quite widely adopted by OpenAI and used in Transformers

S. Cheng (OU-ECE) Neural Networks Jan 2019 122 / 204

https://arxiv.org/pdf/1606.08415.pdf

Activation functions Gated activation function

Swish and Hardswish

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

2

4

6

8

10 gelu: x (x)
silu (swish): x (x)
hardswish: max(min(x(x + 3)

6 , x), 0) + min(x(x + 3)
6 , 0) Swish: f(x) = xσ(βx)

β is a learnable parameter
When β is fixed to 1, it is equal to SiLU

Often SiLU rather than Swish is implemented
Converge to ReLU when β →∞

Hardswish: f(x) =

0 if x ≤ −3,
x if x ≥ +3,

x · (x+ 3)/6 otherwise
Piecewise approximation of Swish
Use in MobileNet V3

S. Cheng (OU-ECE) Neural Networks Jan 2019 123 / 204

https://arxiv.org/pdf/1710.05941v1.pdf

Activation functions Gated activation function

Swish and Hardswish

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

2

4

6

8

10 gelu: x (x)
silu (swish): x (x)
hardswish: max(min(x(x + 3)

6 , x), 0) + min(x(x + 3)
6 , 0) Swish: f(x) = xσ(βx)

β is a learnable parameter
When β is fixed to 1, it is equal to SiLU

Often SiLU rather than Swish is implemented
Converge to ReLU when β →∞

Hardswish: f(x) =

0 if x ≤ −3,
x if x ≥ +3,

x · (x+ 3)/6 otherwise
Piecewise approximation of Swish
Use in MobileNet V3

S. Cheng (OU-ECE) Neural Networks Jan 2019 123 / 204

https://arxiv.org/pdf/1710.05941v1.pdf

Activation functions Gated activation function

GLU and variants

Gated Linear Unit: GLU(x,W, V, b, c) = σ(xW + b)⊗ (xV + c)

Introduced by Dauphin et al. and inspired by a bilinear unit by Mnih and Hinton:
Bilinear(x,W.V.b.c) = (xW + b)⊗ (xV + c)

Other variants introduced in Shazeer

ReGLU(x,W, V, b, c) = max(0, xW + b)⊗ (xV + c)

GEGLU(x,W, V, b, c) = GELU(xW + b)⊗ (xV + c)

SwiGLU(x,W, V, b, c, β) = Swishβ(xW + b)⊗ (xV + c)

S. Cheng (OU-ECE) Neural Networks Jan 2019 124 / 204

https://arxiv.org/pdf/1612.08083.pdf
https://dl.acm.org/doi/10.1145/1273496.1273577
https://arxiv.org/pdf/2002.05202.pdf

Activation functions Gated activation function

GLU and variants

Gated Linear Unit: GLU(x,W, V, b, c) = σ(xW + b)⊗ (xV + c)

Introduced by Dauphin et al. and inspired by a bilinear unit by Mnih and Hinton:
Bilinear(x,W.V.b.c) = (xW + b)⊗ (xV + c)

Other variants introduced in Shazeer

ReGLU(x,W, V, b, c) = max(0, xW + b)⊗ (xV + c)

GEGLU(x,W, V, b, c) = GELU(xW + b)⊗ (xV + c)

SwiGLU(x,W, V, b, c, β) = Swishβ(xW + b)⊗ (xV + c)

S. Cheng (OU-ECE) Neural Networks Jan 2019 124 / 204

https://arxiv.org/pdf/1612.08083.pdf
https://dl.acm.org/doi/10.1145/1273496.1273577
https://arxiv.org/pdf/2002.05202.pdf

Activation functions Gated activation function

GLU and variants

Gated Linear Unit: GLU(x,W, V, b, c) = σ(xW + b)⊗ (xV + c)

Introduced by Dauphin et al. and inspired by a bilinear unit by Mnih and Hinton:
Bilinear(x,W.V.b.c) = (xW + b)⊗ (xV + c)

Other variants introduced in Shazeer

ReGLU(x,W, V, b, c) = max(0, xW + b)⊗ (xV + c)

GEGLU(x,W, V, b, c) = GELU(xW + b)⊗ (xV + c)

SwiGLU(x,W, V, b, c, β) = Swishβ(xW + b)⊗ (xV + c)

S. Cheng (OU-ECE) Neural Networks Jan 2019 124 / 204

https://arxiv.org/pdf/1612.08083.pdf
https://dl.acm.org/doi/10.1145/1273496.1273577
https://arxiv.org/pdf/2002.05202.pdf

Activation functions Lesson Learned

Trend (from paperswithcode)

S. Cheng (OU-ECE) Neural Networks Jan 2019 125 / 204

https://paperswithcode.com/method/relu

Activation functions Lesson Learned

Summary (IMHO)

Still a hot topic and nothing is final

Vanishing gradient seems to be a bigger problem than exploding gradient
ReLU > Sigmoid/tanh

Zero-mean is not essential. But all positive does hurt performance
ReLU/Softplus < ELU, Leaky-ReLU, etc.

Sparsity may have a role after all (just my guess)
Softplus < ReLU
ELU, Leaky-ReLU < Swish, GELU

When in doubt, just use ReLU and it is usually good enough
Can try out GeLU/Swish if complexity is not a huge concern

S. Cheng (OU-ECE) Neural Networks Jan 2019 126 / 204

https://arxiv.org/pdf/1710.05941.pdf

Activation functions Lesson Learned

Summary (IMHO)

Still a hot topic and nothing is final
Vanishing gradient seems to be a bigger problem than exploding gradient

ReLU > Sigmoid/tanh

Zero-mean is not essential. But all positive does hurt performance
ReLU/Softplus < ELU, Leaky-ReLU, etc.

Sparsity may have a role after all (just my guess)
Softplus < ReLU
ELU, Leaky-ReLU < Swish, GELU

When in doubt, just use ReLU and it is usually good enough
Can try out GeLU/Swish if complexity is not a huge concern

S. Cheng (OU-ECE) Neural Networks Jan 2019 126 / 204

https://arxiv.org/pdf/1710.05941.pdf

Activation functions Lesson Learned

Summary (IMHO)

Still a hot topic and nothing is final
Vanishing gradient seems to be a bigger problem than exploding gradient

ReLU > Sigmoid/tanh
Zero-mean is not essential. But all positive does hurt performance

ReLU/Softplus < ELU, Leaky-ReLU, etc.

Sparsity may have a role after all (just my guess)
Softplus < ReLU
ELU, Leaky-ReLU < Swish, GELU

When in doubt, just use ReLU and it is usually good enough
Can try out GeLU/Swish if complexity is not a huge concern

S. Cheng (OU-ECE) Neural Networks Jan 2019 126 / 204

https://arxiv.org/pdf/1710.05941.pdf

Activation functions Lesson Learned

Summary (IMHO)

Still a hot topic and nothing is final
Vanishing gradient seems to be a bigger problem than exploding gradient

ReLU > Sigmoid/tanh
Zero-mean is not essential. But all positive does hurt performance

ReLU/Softplus < ELU, Leaky-ReLU, etc.
Sparsity may have a role after all (just my guess)

Softplus < ReLU
ELU, Leaky-ReLU < Swish, GELU

When in doubt, just use ReLU and it is usually good enough
Can try out GeLU/Swish if complexity is not a huge concern

S. Cheng (OU-ECE) Neural Networks Jan 2019 126 / 204

https://arxiv.org/pdf/1710.05941.pdf

Activation functions Lesson Learned

Summary (IMHO)

Still a hot topic and nothing is final
Vanishing gradient seems to be a bigger problem than exploding gradient

ReLU > Sigmoid/tanh
Zero-mean is not essential. But all positive does hurt performance

ReLU/Softplus < ELU, Leaky-ReLU, etc.
Sparsity may have a role after all (just my guess)

Softplus < ReLU
ELU, Leaky-ReLU < Swish, GELU

When in doubt, just use ReLU and it is usually good enough
Can try out GeLU/Swish if complexity is not a huge concern

S. Cheng (OU-ECE) Neural Networks Jan 2019 126 / 204

https://arxiv.org/pdf/1710.05941.pdf

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201714

Optimization

W_1

W_2

S. Cheng (OU-ECE) Neural Networks Jan 2019 127 / 204

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201715

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

S. Cheng (OU-ECE) Neural Networks Jan 2019 128 / 204

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201716

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

S. Cheng (OU-ECE) Neural Networks Jan 2019 129 / 204

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201717

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

S. Cheng (OU-ECE) Neural Networks Jan 2019 130 / 204

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201718

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck

S. Cheng (OU-ECE) Neural Networks Jan 2019 131 / 204

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201719

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

S. Cheng (OU-ECE) Neural Networks Jan 2019 132 / 204

Optimization Optimizers

Optimizers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201720

Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

S. Cheng (OU-ECE) Neural Networks Jan 2019 133 / 204

Optimization Optimizers

Exponential moving average

St =

{
Y1, t = 1

α · Yt + (1− α) · St−1, t > 1

St = α
[
Yt + (1− α)Yt−1 + (1− α)2Yt−2 + · · ·

]
= Yt+(1−α)Yt−1+(1−α)2Yt−2+···

1+(1−α)+(1−α)2+···

S. Cheng (OU-ECE) Neural Networks Jan 2019 134 / 204

Optimization Optimizers

Exponential moving average

St =

{
Y1, t = 1

α · Yt + (1− α) · St−1, t > 1

St = α
[
Yt + (1− α)Yt−1 + (1− α)2Yt−2 + · · ·

]

= Yt+(1−α)Yt−1+(1−α)2Yt−2+···
1+(1−α)+(1−α)2+···

S. Cheng (OU-ECE) Neural Networks Jan 2019 134 / 204

Optimization Optimizers

Exponential moving average

St =

{
Y1, t = 1

α · Yt + (1− α) · St−1, t > 1

St = α
[
Yt + (1− α)Yt−1 + (1− α)2Yt−2 + · · ·

]
= Yt+(1−α)Yt−1+(1−α)2Yt−2+···

1+(1−α)+(1−α)2+···

S. Cheng (OU-ECE) Neural Networks Jan 2019 134 / 204

Optimization Optimizers

Momentum update

Sutskever et al.:

∆x← µ∆x− lr(1− µ)∇xL

x← x+∆x

µ ∈ [0, 1), µ = 0⇒ No momentum

Alternative:

∇̂ ← µ∇̂+ (1− µ)∇xL

x← x− lr · ∇̂

µ ∈ [0, 1), µ = 0⇒ No momentum
µ often takes values such as 0.5, 0.9, and 0.99. And can annealed over time as well
Allows “velocity” to build up along shallow directions
Velocity becomes damped in steep valley with rapid change of gradient sign

Remark: In PyTorch, ∇̂ ← µ∇̂+∇xL is implemented instead of the one shown on the
right. It saves one mulitiplication operation, but note that lr is effectively 1

1−µ times larger

S. Cheng (OU-ECE) Neural Networks Jan 2019 135 / 204

Optimization Optimizers

Momentum update vs SGD

10 5 0 5
10

5

0

5

number of steps=10

sgd
momentum

S. Cheng (OU-ECE) Neural Networks Jan 2019 136 / 204

Optimization Optimizers

NAG

Reference:
https://stats.stackexchange.com/questions/179915/whats-the-difference-between-momentum-based-gradient-descent-and-nesterovs-acc

S. Cheng (OU-ECE) Neural Networks Jan 2019 137 / 204

https://stats.stackexchange.com/questions/179915/whats-the-difference-between-momentum-based-gradient-descent-and-nesterovs-acc

Optimization Optimizers

NAG

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201622

Nesterov Momentum update

gradient
step

momentum
step

actual step

momentum
step

“lookahead” gradient
step (bit different than
original)

actual step

Momentum update Nesterov momentum update

Nesterov: the only difference...

vt = µvt−1 − (1− µ)lr︸ ︷︷ ︸
ε

∇f(xt−1+µvt−1)

xt = xt−1 + vt

We want to deal with ∇f(xt−1) instead

S. Cheng (OU-ECE) Neural Networks Jan 2019 138 / 204

Optimization Optimizers

NAG

In many cases such as backprop, we only have gradient for the current x. However, NAG
can be “fixed” as follows

vt = µvt−1 − ε∇f(xt−1+µvt−1)

xt = xt−1 + vt

Pick x̃t = xt + µvt,

vt = µvt−1 − ε∇f(x̃t−1)

x̃t = xt + µvt = xt−1 + vt + µvt

= x̃t−1 − µvt−1 + vt + µvt

= x̃t−1 + vt + µ(vt − vt−1)

S. Cheng (OU-ECE) Neural Networks Jan 2019 139 / 204

Optimization Optimizers

NAG

In many cases such as backprop, we only have gradient for the current x. However, NAG
can be “fixed” as follows

vt = µvt−1 − ε∇f(xt−1+µvt−1)

xt = xt−1 + vt

Pick x̃t = xt + µvt,

vt = µvt−1 − ε∇f(x̃t−1)

x̃t = xt + µvt = xt−1 + vt + µvt

= x̃t−1 − µvt−1 + vt + µvt

= x̃t−1 + vt + µ(vt − vt−1)

S. Cheng (OU-ECE) Neural Networks Jan 2019 139 / 204

Optimization Optimizers

NAG

In many cases such as backprop, we only have gradient for the current x. However, NAG
can be “fixed” as follows

vt = µvt−1 − ε∇f(xt−1+µvt−1)

xt = xt−1 + vt

Pick x̃t = xt + µvt,

vt = µvt−1 − ε∇f(x̃t−1)

x̃t = xt + µvt = xt−1 + vt + µvt

= x̃t−1 − µvt−1 + vt + µvt

= x̃t−1 + vt + µ(vt − vt−1)

S. Cheng (OU-ECE) Neural Networks Jan 2019 139 / 204

Optimization Optimizers

NAG

In many cases such as backprop, we only have gradient for the current x. However, NAG
can be “fixed” as follows

vt = µvt−1 − ε∇f(xt−1+µvt−1)

xt = xt−1 + vt

Pick x̃t = xt + µvt,

vt = µvt−1 − ε∇f(x̃t−1)

x̃t = xt + µvt = xt−1 + vt + µvt

= x̃t−1 − µvt−1 + vt + µvt

= x̃t−1 + vt + µ(vt − vt−1)

S. Cheng (OU-ECE) Neural Networks Jan 2019 139 / 204

Optimization Optimizers

NAG

In many cases such as backprop, we only have gradient for the current x. However, NAG
can be “fixed” as follows

vt = µvt−1 − ε∇f(xt−1+µvt−1)

xt = xt−1 + vt

Pick x̃t = xt + µvt,

vt = µvt−1 − ε∇f(x̃t−1)

x̃t = xt + µvt = xt−1 + vt + µvt

= x̃t−1 − µvt−1 + vt + µvt

= x̃t−1 + vt + µ(vt − vt−1)

S. Cheng (OU-ECE) Neural Networks Jan 2019 139 / 204

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

sgd
momentum
nag

S. Cheng (OU-ECE) Neural Networks Jan 2019 140 / 204

Optimization Optimizers

AdaGrad

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201627

AdaGrad update

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

[Duchi et al., 2011]

The idea is to penalize direction that has already have explored a lot (with large
cumulative partial derivative)

S. Cheng (OU-ECE) Neural Networks Jan 2019 141 / 204

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

nag
adagrad

S. Cheng (OU-ECE) Neural Networks Jan 2019 142 / 204

Optimization Optimizers

RMSProp

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201630

RMSProp update [Tieleman and Hinton, 2012]

S. Cheng (OU-ECE) Neural Networks Jan 2019 143 / 204

Optimization Optimizers

RMSProp

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201631

Introduced in a slide in
Geoff Hinton’s Coursera
class, lecture 6

S. Cheng (OU-ECE) Neural Networks Jan 2019 144 / 204

Optimization Optimizers

RMSProp

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201632

Introduced in a slide in
Geoff Hinton’s Coursera
class, lecture 6

Cited by several papers as:

S. Cheng (OU-ECE) Neural Networks Jan 2019 145 / 204

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

nag
adagrad
rmsprop

S. Cheng (OU-ECE) Neural Networks Jan 2019 146 / 204

Optimization Optimizers

ADAM

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201634

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

S. Cheng (OU-ECE) Neural Networks Jan 2019 147 / 204

Optimization Optimizers

ADAM

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201635

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum

S. Cheng (OU-ECE) Neural Networks Jan 2019 148 / 204

Optimization Optimizers

ADAM

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201636

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum

S. Cheng (OU-ECE) Neural Networks Jan 2019 149 / 204

Optimization Optimizers

ADAM

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201737

Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that
first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models!

S. Cheng (OU-ECE) Neural Networks Jan 2019 150 / 204

Optimization Optimizers

Optimizers

10 5 0 5
10

5

0

5

number of steps=10

nag
rmsprop
adam

S. Cheng (OU-ECE) Neural Networks Jan 2019 151 / 204

Optimization Optimizers

Pathological cases

PyTorch Lightning Tutorial 3

S. Cheng (OU-ECE) Neural Networks Jan 2019 152 / 204

https://pytorch-lightning.readthedocs.io/en/stable/notebooks/course_UvA-DL/03-initialization-and-optimization.html

Optimization Optimizers

Pathological cases

S. Cheng (OU-ECE) Neural Networks Jan 2019 153 / 204

Optimization Optimizers

Adam and Local Minima

Several reported that Adam can be
caught in deep local minimum and
doesn’t work well with ResNet (see this
PyTorch tutorial post and here)
Caught in deep minimum can be bad
as the value of testing function can
differ quite a bit for sharp minimum
On the other hand, actual performance
depends significantly with subtle
details. I didn’t see Adam got trapped
by the local minima example. But I
didn’t try train on ResNet myself

S. Cheng (OU-ECE) Neural Networks Jan 2019 154 / 204

https://pytorch-lightning.readthedocs.io/en/stable/notebooks/course_UvA-DL/03-initialization-and-optimization.html
https://firiuza.medium.com/optimizers-for-training-neural-networks-e0196662e21e

Optimization Optimizers

AdamW

In “The Marginal Value of Adaptive
Gradient Methods in Machine
Learning,” the authors question the
effectiveness of adaptive gradient
methods including AdaGrad, RMSProp
and Adam. The debate is not final

Some argued that Adam needs more
regularization

L2 regularization and weight decay
are the same in plain SGD
But L2 regularization and weight
decay are not the same in Adam

AdamW implements weight decay for
Adam, essential just an extra step

S. Cheng (OU-ECE) Neural Networks Jan 2019 155 / 204

Optimization Optimizers

AdamW

In “The Marginal Value of Adaptive
Gradient Methods in Machine
Learning,” the authors question the
effectiveness of adaptive gradient
methods including AdaGrad, RMSProp
and Adam. The debate is not final
Some argued that Adam needs more
regularization

L2 regularization and weight decay
are the same in plain SGD
But L2 regularization and weight
decay are not the same in Adam

AdamW implements weight decay for
Adam, essential just an extra step

S. Cheng (OU-ECE) Neural Networks Jan 2019 155 / 204

Optimization Optimizers

AdamW

In “The Marginal Value of Adaptive
Gradient Methods in Machine
Learning,” the authors question the
effectiveness of adaptive gradient
methods including AdaGrad, RMSProp
and Adam. The debate is not final
Some argued that Adam needs more
regularization

L2 regularization and weight decay
are the same in plain SGD

But L2 regularization and weight
decay are not the same in Adam

AdamW implements weight decay for
Adam, essential just an extra step

S. Cheng (OU-ECE) Neural Networks Jan 2019 155 / 204

Optimization Optimizers

AdamW

In “The Marginal Value of Adaptive
Gradient Methods in Machine
Learning,” the authors question the
effectiveness of adaptive gradient
methods including AdaGrad, RMSProp
and Adam. The debate is not final
Some argued that Adam needs more
regularization

L2 regularization and weight decay
are the same in plain SGD
But L2 regularization and weight
decay are not the same in Adam

AdamW implements weight decay for
Adam, essential just an extra step

S. Cheng (OU-ECE) Neural Networks Jan 2019 155 / 204

Optimization Optimizers

AdamW

In “The Marginal Value of Adaptive
Gradient Methods in Machine
Learning,” the authors question the
effectiveness of adaptive gradient
methods including AdaGrad, RMSProp
and Adam. The debate is not final
Some argued that Adam needs more
regularization

L2 regularization and weight decay
are the same in plain SGD
But L2 regularization and weight
decay are not the same in Adam

AdamW implements weight decay for
Adam, essential just an extra step

S. Cheng (OU-ECE) Neural Networks Jan 2019 155 / 204

Optimization Optimizers

LR Scheduler

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201638

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these
learning rates is best to use?

S. Cheng (OU-ECE) Neural Networks Jan 2019 156 / 204

Optimization Optimizers

LR Scheduler

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201639

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

S. Cheng (OU-ECE) Neural Networks Jan 2019 157 / 204

Optimization Optimizers

LR Scheduler

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201742

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!

More critical with SGD+Momentum,
less common with Adam

S. Cheng (OU-ECE) Neural Networks Jan 2019 158 / 204

Optimization Optimizers

LR Scheduler

Many more schedulers are available
Check out torch.optim.lr_scheduler
optimizer = optim.SGD(parms,lr)
scheduler = lr_scheduler.CyclicLR ...
...
loss.backward()
optimizer.step()
scheduler.step()

In particular, check out
OneCycleLR

Recommended by FastAI
CosineAnnealingWarmRestartsLR

Try to escape local minima

S. Cheng (OU-ECE) Neural Networks Jan 2019 159 / 204

Optimization Optimizers

2nd order optimizers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201640

Second order optimization methods

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: what is nice about this update?
S. Cheng (OU-ECE) Neural Networks Jan 2019 160 / 204

Optimization Optimizers

2nd order optimizer

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Inverting Hessian is very expensive (O(N3)). Avoiding that resulting in so-called
Quasi-Newton methods

Rank-1 inverse Hessian update (simple but not too commonly used)
Rank-2 inverse Hessian update

BFGS (most popular) and DFS
LBFGS

Does not store the entire inverse Hessian
Tradeoff space with time and accuracy

S. Cheng (OU-ECE) Neural Networks Jan 2019 161 / 204

Optimization Optimizers

2nd order optimizer

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Inverting Hessian is very expensive (O(N3)). Avoiding that resulting in so-called
Quasi-Newton methods

Rank-1 inverse Hessian update (simple but not too commonly used)

Rank-2 inverse Hessian update
BFGS (most popular) and DFS
LBFGS

Does not store the entire inverse Hessian
Tradeoff space with time and accuracy

S. Cheng (OU-ECE) Neural Networks Jan 2019 161 / 204

Optimization Optimizers

2nd order optimizer

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Inverting Hessian is very expensive (O(N3)). Avoiding that resulting in so-called
Quasi-Newton methods

Rank-1 inverse Hessian update (simple but not too commonly used)
Rank-2 inverse Hessian update

BFGS (most popular) and DFS
LBFGS

Does not store the entire inverse Hessian
Tradeoff space with time and accuracy

S. Cheng (OU-ECE) Neural Networks Jan 2019 161 / 204

Optimization Optimizers

2nd order optimizer

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Inverting Hessian is very expensive (O(N3)). Avoiding that resulting in so-called
Quasi-Newton methods

Rank-1 inverse Hessian update (simple but not too commonly used)
Rank-2 inverse Hessian update

BFGS (most popular) and DFS

LBFGS
Does not store the entire inverse Hessian
Tradeoff space with time and accuracy

S. Cheng (OU-ECE) Neural Networks Jan 2019 161 / 204

Optimization Optimizers

2nd order optimizer

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201642

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Inverting Hessian is very expensive (O(N3)). Avoiding that resulting in so-called
Quasi-Newton methods

Rank-1 inverse Hessian update (simple but not too commonly used)
Rank-2 inverse Hessian update

BFGS (most popular) and DFS
LBFGS

Does not store the entire inverse Hessian
Tradeoff space with time and accuracy

S. Cheng (OU-ECE) Neural Networks Jan 2019 161 / 204

Optimization Optimizers

Quasi-Newton methods (watch this)
Ref:

1 https://www.youtube.com/watch?v=uo2z0AT_83k
2 Nocedal & Wright - Numerical Optimization (B ↔ H)
3 http://users.ece.utexas.edu/ cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.fi-

nal.pdf
The inverse of Hessian H is expensive to compute. Want to approximate it iteratively
instead

Quasi-Newton methods:
1 Approximate Newton direction

dk ← −Bkgk,

where Bk ≈ H−1
k and gk = ∇J(θk)

2 Line search: θk+1 = θk + αkdk
3 Update gk+1 = ∇J(θk+1)
4 Approximate inverse Hessian

Bk+1 = update_formula(Bk, θk+1 − θk, gk+1 − gk)

S. Cheng (OU-ECE) Neural Networks Jan 2019 162 / 204

https://www.youtube.com/watch?v=uo2z0AT_83k
https://www.youtube.com/watch?v=uo2z0AT_83k#https://www.youtube.com/watch?v=uo2z0AT_83k
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf

Optimization Optimizers

Quasi-Newton methods (watch this)
Ref:

1 https://www.youtube.com/watch?v=uo2z0AT_83k
2 Nocedal & Wright - Numerical Optimization (B ↔ H)
3 http://users.ece.utexas.edu/ cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.fi-

nal.pdf
The inverse of Hessian H is expensive to compute. Want to approximate it iteratively
instead
Quasi-Newton methods:

1 Approximate Newton direction
dk ← −Bkgk,

where Bk ≈ H−1
k and gk = ∇J(θk)

2 Line search: θk+1 = θk + αkdk
3 Update gk+1 = ∇J(θk+1)
4 Approximate inverse Hessian

Bk+1 = update_formula(Bk, θk+1 − θk, gk+1 − gk)

S. Cheng (OU-ECE) Neural Networks Jan 2019 162 / 204

https://www.youtube.com/watch?v=uo2z0AT_83k
https://www.youtube.com/watch?v=uo2z0AT_83k#https://www.youtube.com/watch?v=uo2z0AT_83k
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf

Optimization Optimizers

Quasi-Newton methods (watch this)
Ref:

1 https://www.youtube.com/watch?v=uo2z0AT_83k
2 Nocedal & Wright - Numerical Optimization (B ↔ H)
3 http://users.ece.utexas.edu/ cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.fi-

nal.pdf
The inverse of Hessian H is expensive to compute. Want to approximate it iteratively
instead
Quasi-Newton methods:

1 Approximate Newton direction
dk ← −Bkgk,

where Bk ≈ H−1
k and gk = ∇J(θk)

2 Line search: θk+1 = θk + αkdk

3 Update gk+1 = ∇J(θk+1)
4 Approximate inverse Hessian

Bk+1 = update_formula(Bk, θk+1 − θk, gk+1 − gk)

S. Cheng (OU-ECE) Neural Networks Jan 2019 162 / 204

https://www.youtube.com/watch?v=uo2z0AT_83k
https://www.youtube.com/watch?v=uo2z0AT_83k#https://www.youtube.com/watch?v=uo2z0AT_83k
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf

Optimization Optimizers

Quasi-Newton methods (watch this)
Ref:

1 https://www.youtube.com/watch?v=uo2z0AT_83k
2 Nocedal & Wright - Numerical Optimization (B ↔ H)
3 http://users.ece.utexas.edu/ cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.fi-

nal.pdf
The inverse of Hessian H is expensive to compute. Want to approximate it iteratively
instead
Quasi-Newton methods:

1 Approximate Newton direction
dk ← −Bkgk,

where Bk ≈ H−1
k and gk = ∇J(θk)

2 Line search: θk+1 = θk + αkdk
3 Update gk+1 = ∇J(θk+1)

4 Approximate inverse Hessian

Bk+1 = update_formula(Bk, θk+1 − θk, gk+1 − gk)

S. Cheng (OU-ECE) Neural Networks Jan 2019 162 / 204

https://www.youtube.com/watch?v=uo2z0AT_83k
https://www.youtube.com/watch?v=uo2z0AT_83k#https://www.youtube.com/watch?v=uo2z0AT_83k
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf

Optimization Optimizers

Quasi-Newton methods (watch this)
Ref:

1 https://www.youtube.com/watch?v=uo2z0AT_83k
2 Nocedal & Wright - Numerical Optimization (B ↔ H)
3 http://users.ece.utexas.edu/ cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.fi-

nal.pdf
The inverse of Hessian H is expensive to compute. Want to approximate it iteratively
instead
Quasi-Newton methods:

1 Approximate Newton direction
dk ← −Bkgk,

where Bk ≈ H−1
k and gk = ∇J(θk)

2 Line search: θk+1 = θk + αkdk
3 Update gk+1 = ∇J(θk+1)
4 Approximate inverse Hessian

Bk+1 = update_formula(Bk, θk+1 − θk, gk+1 − gk)

S. Cheng (OU-ECE) Neural Networks Jan 2019 162 / 204

https://www.youtube.com/watch?v=uo2z0AT_83k
https://www.youtube.com/watch?v=uo2z0AT_83k#https://www.youtube.com/watch?v=uo2z0AT_83k
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf
http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_10_Scribe_Notes.final.pdf

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpk = qk, where pk = θk+1 − θk and
qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk ⇒ u(vT pk) = qk −Hkpk
⇒ u = 1

vT pk
(qk −Hkpk) ⇒ Hk+1 = Hk +

1
vT pk

(qk −Hkpk)v
T

We are free to pick v. But since we know H has to be symmetric, let’s pick
v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 163 / 204

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively approximate H.

That is (known as secant equation) Hpk = qk, where pk = θk+1 − θk and
qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk ⇒ u(vT pk) = qk −Hkpk
⇒ u = 1

vT pk
(qk −Hkpk) ⇒ Hk+1 = Hk +

1
vT pk

(qk −Hkpk)v
T

We are free to pick v. But since we know H has to be symmetric, let’s pick
v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 163 / 204

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpk = qk, where pk = θk+1 − θk and
qk = ∇J(θk+1)−∇J(θk)

Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk ⇒ u(vT pk) = qk −Hkpk
⇒ u = 1

vT pk
(qk −Hkpk) ⇒ Hk+1 = Hk +

1
vT pk

(qk −Hkpk)v
T

We are free to pick v. But since we know H has to be symmetric, let’s pick
v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 163 / 204

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpk = qk, where pk = θk+1 − θk and
qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT

⇒ (Hk + uvT)pk = qk ⇒ u(vT pk) = qk −Hkpk
⇒ u = 1

vT pk
(qk −Hkpk) ⇒ Hk+1 = Hk +

1
vT pk

(qk −Hkpk)v
T

We are free to pick v. But since we know H has to be symmetric, let’s pick
v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 163 / 204

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpk = qk, where pk = θk+1 − θk and
qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk

⇒ u(vT pk) = qk −Hkpk
⇒ u = 1

vT pk
(qk −Hkpk) ⇒ Hk+1 = Hk +

1
vT pk

(qk −Hkpk)v
T

We are free to pick v. But since we know H has to be symmetric, let’s pick
v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 163 / 204

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpk = qk, where pk = θk+1 − θk and
qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk ⇒ u(vT pk) = qk −Hkpk

⇒ u = 1
vT pk

(qk −Hkpk) ⇒ Hk+1 = Hk +
1

vT pk
(qk −Hkpk)v

T

We are free to pick v. But since we know H has to be symmetric, let’s pick
v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 163 / 204

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpk = qk, where pk = θk+1 − θk and
qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk ⇒ u(vT pk) = qk −Hkpk
⇒ u = 1

vT pk
(qk −Hkpk)

⇒ Hk+1 = Hk +
1

vT pk
(qk −Hkpk)v

T

We are free to pick v. But since we know H has to be symmetric, let’s pick
v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 163 / 204

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpk = qk, where pk = θk+1 − θk and
qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk ⇒ u(vT pk) = qk −Hkpk
⇒ u = 1

vT pk
(qk −Hkpk) ⇒ Hk+1 = Hk +

1
vT pk

(qk −Hkpk)v
T

We are free to pick v. But since we know H has to be symmetric, let’s pick
v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 163 / 204

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpk = qk, where pk = θk+1 − θk and
qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk ⇒ u(vT pk) = qk −Hkpk
⇒ u = 1

vT pk
(qk −Hkpk) ⇒ Hk+1 = Hk +

1
vT pk

(qk −Hkpk)v
T

We are free to pick v. But since we know H has to be symmetric, let’s pick
v = qk −Hkpk.

Thus
Hk+1 = Hk +

1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 163 / 204

Optimization Optimizers

Approximation with rank-1 update

As Hessian is essentially the “derivative” of ∇J , we have
∇J(θk+1) ≈ ∇J(θk) +H(θk+1 − θk)

We may assume the above is satisfied and use this to iteratively approximate H.
That is (known as secant equation) Hpk = qk, where pk = θk+1 − θk and
qk = ∇J(θk+1)−∇J(θk)
Let Hk+1 = Hk + uvT ⇒ (Hk + uvT)pk = qk ⇒ u(vT pk) = qk −Hkpk
⇒ u = 1

vT pk
(qk −Hkpk) ⇒ Hk+1 = Hk +

1
vT pk

(qk −Hkpk)v
T

We are free to pick v. But since we know H has to be symmetric, let’s pick
v = qk −Hkpk. Thus

Hk+1 = Hk +
1

vT pk
vvT

with v = qk −Hkpk

S. Cheng (OU-ECE) Neural Networks Jan 2019 163 / 204

Optimization Optimizers

Updating B

Recall that we need Bk = H−1
k to approximate the Newton direction (dk ← −Bkgk)

We don’t need to invert the matrix Hk directly. Note that Hpk = qk give us
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Similarly, since Hpk = qk ⇒ Bqk = pk, we have

Bk+1 = Bk +
1

wT qk
wwT

with w = pk −Bkqk

S. Cheng (OU-ECE) Neural Networks Jan 2019 164 / 204

Optimization Optimizers

Updating B

Recall that we need Bk = H−1
k to approximate the Newton direction (dk ← −Bkgk)

We don’t need to invert the matrix Hk directly. Note that Hpk = qk give us
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Similarly, since Hpk = qk ⇒ Bqk = pk, we have

Bk+1 = Bk +
1

wT qk
wwT

with w = pk −Bkqk

S. Cheng (OU-ECE) Neural Networks Jan 2019 164 / 204

Optimization Optimizers

Updating B

Recall that we need Bk = H−1
k to approximate the Newton direction (dk ← −Bkgk)

We don’t need to invert the matrix Hk directly. Note that Hpk = qk give us
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Similarly, since Hpk = qk ⇒ Bqk = pk, we have

Bk+1 = Bk +
1

wT qk
wwT

with w = pk −Bkqk

S. Cheng (OU-ECE) Neural Networks Jan 2019 164 / 204

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art

Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.
Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk ⇒ Hkpk +
1
αqk(q

T
k pk) +

1
βHkpk(p

T
kH

T
k pk) = qk. By

inspection, this can be satisfied if we pick α = qTk pk and β = −pTkHT
k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 165 / 204

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art
Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.
Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk ⇒ Hkpk +
1
αqk(q

T
k pk) +

1
βHkpk(p

T
kH

T
k pk) = qk. By

inspection, this can be satisfied if we pick α = qTk pk and β = −pTkHT
k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 165 / 204

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art
Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.

Need to pick u and w, qk and Hkpk are reasonable choice
Again, we want Hk+1pk = qk ⇒ Hkpk +

1
αqk(q

T
k pk) +

1
βHkpk(p

T
kH

T
k pk) = qk. By

inspection, this can be satisfied if we pick α = qTk pk and β = −pTkHT
k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 165 / 204

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art
Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.
Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk ⇒ Hkpk +
1
αqk(q

T
k pk) +

1
βHkpk(p

T
kH

T
k pk) = qk. By

inspection, this can be satisfied if we pick α = qTk pk and β = −pTkHT
k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 165 / 204

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art
Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.
Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk ⇒ Hkpk +
1
αqk(q

T
k pk) +

1
βHkpk(p

T
kH

T
k pk) = qk.

By
inspection, this can be satisfied if we pick α = qTk pk and β = −pTkHT

k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 165 / 204

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art
Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.
Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk ⇒ Hkpk +
1
αqk(q

T
k pk) +

1
βHkpk(p

T
kH

T
k pk) = qk. By

inspection, this can be satisfied if we pick α = qTk pk and β = −pTkHT
k pk.

Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 165 / 204

Optimization Optimizers

Rank-2 approximation

BFGS utilizes rank-2 approximation update for H. There are other variations (such
as DFP). But BFGS is considered the state of the art
Recall our rank-1 approximation that
Hk+1 = Hk +

1
vT pk

vvT and v = qk −Hkpk

Consider update Hk+1 = Hk +
1
αuu

T + 1
βww

T instead.
Need to pick u and w, qk and Hkpk are reasonable choice

Again, we want Hk+1pk = qk ⇒ Hkpk +
1
αqk(q

T
k pk) +

1
βHkpk(p

T
kH

T
k pk) = qk. By

inspection, this can be satisfied if we pick α = qTk pk and β = −pTkHT
k pk. Thus we have

Hk+1 = Hk +
qkq

T
k

qTk pk
−

Hkpkp
T
kHk

pTkH
T
k pk

S. Cheng (OU-ECE) Neural Networks Jan 2019 165 / 204

Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT)−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT)
(
A−1 − A−1uvTA−1

1+vTA−1u

)

= AA−1 + uvTA−1−AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u
= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1 = I

S. Cheng (OU-ECE) Neural Networks Jan 2019 166 / 204

Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT)−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT)
(
A−1 − A−1uvTA−1

1+vTA−1u

)
= AA−1 + uvTA−1

−AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u
= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1 = I

S. Cheng (OU-ECE) Neural Networks Jan 2019 166 / 204

Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT)−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT)
(
A−1 − A−1uvTA−1

1+vTA−1u

)
= AA−1 + uvTA−1−AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u
= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1 = I

S. Cheng (OU-ECE) Neural Networks Jan 2019 166 / 204

Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT)−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT)
(
A−1 − A−1uvTA−1

1+vTA−1u

)
= AA−1 + uvTA−1−AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1 = I

S. Cheng (OU-ECE) Neural Networks Jan 2019 166 / 204

Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT)−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT)
(
A−1 − A−1uvTA−1

1+vTA−1u

)
= AA−1 + uvTA−1−AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u
= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1 = I

S. Cheng (OU-ECE) Neural Networks Jan 2019 166 / 204

Optimization Optimizers

Sherman-Morrison-formula

But we are interested in Bk = H−1
k

Sherman-Morrison-formula:

(A+ uvT)−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Proof.

(A+ uvT)
(
A−1 − A−1uvTA−1

1+vTA−1u

)
= AA−1 + uvTA−1−AA−1uvTA−1+uvTA−1uvTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1+uvTA−1uvTA−1

1+vTA−1u
= I + uvTA−1 − u(1+vTA−1u)vTA−1

1+vTA−1u

= I + uvTA−1 − uvTA−1 = I

S. Cheng (OU-ECE) Neural Networks Jan 2019 166 / 204

Optimization Optimizers

BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and (A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))
= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D− HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p
⇒ Bk+1 =

(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 167 / 204

Optimization Optimizers

BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and (A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))
= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D− HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p
⇒ Bk+1 =

(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 167 / 204

Optimization Optimizers

BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and (A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))

= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D− HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p
⇒ Bk+1 =

(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 167 / 204

Optimization Optimizers

BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and (A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))
= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D− HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p
⇒ Bk+1 =

(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 167 / 204

Optimization Optimizers

BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and (A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))
= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D− HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p
⇒ Bk+1 =

(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 167 / 204

Optimization Optimizers

BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and (A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))
= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)

· · ·

(D− HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p
⇒ Bk+1 =

(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 167 / 204

Optimization Optimizers

BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and (A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))
= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D− HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p
⇒ Bk+1 =

(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 167 / 204

Optimization Optimizers

BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and (A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))
= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D− HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p
⇒ Bk+1 =

(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 167 / 204

Optimization Optimizers

BFGS

Recall Hk+1 = Hk +
qkq

T
k

qTk pk︸ ︷︷ ︸
D

− Hkpkp
T
k Hk

pT
k HT

k pk
and (A+ uvT)−1 = A−1 + A−1uvTA−1

1−vTA−1u

D−1 = (H + qqT

qT p
)−1 = H−1 + H−1qqTH−1

(qT p)(1−qTH−1q/(qT p))
= B + BqqTB

qT p−qTBq

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pTHT p(1−pTHD−1Hp/(pTHT p))
= D−1 − D−1HppTHD−1

pTHp−pTHD−1Hp

D−1Hp = (BHp+ BqqTBHp
qT p−qTBq

) = (p+ BqqT p
qT p−qTBq

)

(D − HppTH
pTHT p

)−1 = D−1 − D−1HppTHD−1

pT qqT p(qT p−qTBq)
· · ·

(D− HppTH
pTHT p

)−1 =
(
I − pqT

qT p

)
B
(
I − qpT

qT p

)
+ ppT

qT p
⇒ Bk+1 =

(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk

Bounty: 3% bonus to complete the algebra

S. Cheng (OU-ECE) Neural Networks Jan 2019 167 / 204

Optimization Optimizers

Summary of BFGS

Initialize Initialize inverse Hessian approximation B ← B0. Can set B ← I if no initial
estimate; k ← 0; Pick a random starting point θ0

Loop 1 Get search direction dk = −Bk∇J(θk)
2 Conduct line search to find optimum θk+1 = θk + αkdk
3 pk ← θk+1 − θk; qk ← ∇J(θk+1)−∇J(θk);

Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
4 k ← k + 1; Exit if ‖∇J(θk)‖ < ε

S. Cheng (OU-ECE) Neural Networks Jan 2019 168 / 204

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed, set
x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume the
“spacing” of each iteration is proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 169 / 204

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed, set
x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume the
“spacing” of each iteration is proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 169 / 204

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed, set
x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume the
“spacing” of each iteration is proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 169 / 204

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed, set
x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume the
“spacing” of each iteration is proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 169 / 204

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed, set
x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume the
“spacing” of each iteration is proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 169 / 204

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed, set
x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to pick x4

How to pick x2 given x1 and x3?

Golden-section search simply assume the
“spacing” of each iteration is proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 169 / 204

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed, set
x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume the
“spacing” of each iteration is proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 169 / 204

Optimization Optimizers

Golden-section search

If we have f4a, minimum is in [x1, x4]

If we have f4b, minimum is in [x2, x3]

To maximize expected search speed, set
x4 − x1 = x3 − x2 ⇒ a + c = b

Given x1, x2, x3, we know how to pick x4

How to pick x2 given x1 and x3?
Golden-section search simply assume the
“spacing” of each iteration is proportional

That is, c
a = a

b

S. Cheng (OU-ECE) Neural Networks Jan 2019 169 / 204

Optimization Optimizers

Golden-section search

a + c = b and c
a = a

b

⇒ b−a
a = a

b
⇒ b

a − 1 = 1
b/a

⇒
(b

a
)2 − b

a − 1 = 0

b
a
=

1 +
√
5

2
= 1.618034 . . . , ϕ

↑
golden
ratio

S. Cheng (OU-ECE) Neural Networks Jan 2019 170 / 204

Optimization Optimizers

Golden-section search

a + c = b and c
a = a

b
⇒ b−a

a = a
b

⇒ b
a − 1 = 1

b/a

⇒
(b

a
)2 − b

a − 1 = 0

b
a
=

1 +
√
5

2
= 1.618034 . . . , ϕ

↑
golden
ratio

S. Cheng (OU-ECE) Neural Networks Jan 2019 170 / 204

Optimization Optimizers

Golden-section search

a + c = b and c
a = a

b
⇒ b−a

a = a
b

⇒ b
a − 1 = 1

b/a

⇒
(b

a
)2 − b

a − 1 = 0

b
a
=

1 +
√
5

2
= 1.618034 . . . , ϕ

↑
golden
ratio

S. Cheng (OU-ECE) Neural Networks Jan 2019 170 / 204

Optimization Optimizers

Golden-section search

a + c = b and c
a = a

b
⇒ b−a

a = a
b

⇒ b
a − 1 = 1

b/a

⇒
(b

a
)2 − b

a − 1 = 0

b
a
=

1 +
√
5

2
= 1.618034 . . . , ϕ

↑
golden
ratio

S. Cheng (OU-ECE) Neural Networks Jan 2019 170 / 204

Optimization Optimizers

Golden-section search

a + c = b and c
a = a

b
⇒ b−a

a = a
b

⇒ b
a − 1 = 1

b/a

⇒
(b

a
)2 − b

a − 1 = 0

b
a
=

1 +
√
5

2
= 1.618034 . . . , ϕ

↑
golden
ratio

S. Cheng (OU-ECE) Neural Networks Jan 2019 170 / 204

Optimization Optimizers

Inverse Hessian update for BFGS

Like rank-1 update, we can also rearrange the variables to obtain an update rule for
B = H−1

Instead of Hk+1pk = qk, we want Bk+1qk = pk.

Thus we have

Bk+1 = Bk +
pkp

T
k

pTk qk
−

Bkqkq
T
k Bk

qTk B
T
k qk

Note that this update rule of B is different from before. Actually this is the update
rule of DFP. An older approach that is considered worse compared with BFGS

S. Cheng (OU-ECE) Neural Networks Jan 2019 171 / 204

Optimization Optimizers

Inverse Hessian update for BFGS

Like rank-1 update, we can also rearrange the variables to obtain an update rule for
B = H−1

Instead of Hk+1pk = qk, we want Bk+1qk = pk. Thus we have

Bk+1 = Bk +
pkp

T
k

pTk qk
−

Bkqkq
T
k Bk

qTk B
T
k qk

Note that this update rule of B is different from before. Actually this is the update
rule of DFP. An older approach that is considered worse compared with BFGS

S. Cheng (OU-ECE) Neural Networks Jan 2019 171 / 204

Optimization Optimizers

Some theoretical notes

A prettier but more technical explanation of BFGS/DFP involves weighted matrix
norm

Comparing with rank-1 update, we have more degree of freedom and thus can impose
more requirement. Besides

1 Bk+1qk = pk (secant equation)
2 Bk+1 � 0 (symmetric and positive definite),

we also require each update to be small. Namely,

‖Bk+1 −Bk‖W → min,

where ‖A‖W = ‖W 1/2AW 1/2‖F is the weighted Frobenius norm

⇒

{
BFGS W = H

DFP W = H−1

S. Cheng (OU-ECE) Neural Networks Jan 2019 172 / 204

Optimization Optimizers

Some theoretical notes

A prettier but more technical explanation of BFGS/DFP involves weighted matrix
norm
Comparing with rank-1 update, we have more degree of freedom and thus can impose
more requirement. Besides

1 Bk+1qk = pk (secant equation)
2 Bk+1 � 0 (symmetric and positive definite),

we also require each update to be small.

Namely,

‖Bk+1 −Bk‖W → min,

where ‖A‖W = ‖W 1/2AW 1/2‖F is the weighted Frobenius norm

⇒

{
BFGS W = H

DFP W = H−1

S. Cheng (OU-ECE) Neural Networks Jan 2019 172 / 204

Optimization Optimizers

Some theoretical notes

A prettier but more technical explanation of BFGS/DFP involves weighted matrix
norm
Comparing with rank-1 update, we have more degree of freedom and thus can impose
more requirement. Besides

1 Bk+1qk = pk (secant equation)
2 Bk+1 � 0 (symmetric and positive definite),

we also require each update to be small. Namely,

‖Bk+1 −Bk‖W → min,

where ‖A‖W = ‖W 1/2AW 1/2‖F is the weighted Frobenius norm

⇒

{
BFGS W = H

DFP W = H−1

S. Cheng (OU-ECE) Neural Networks Jan 2019 172 / 204

Optimization Optimizers

Some theoretical notes

A prettier but more technical explanation of BFGS/DFP involves weighted matrix
norm
Comparing with rank-1 update, we have more degree of freedom and thus can impose
more requirement. Besides

1 Bk+1qk = pk (secant equation)
2 Bk+1 � 0 (symmetric and positive definite),

we also require each update to be small. Namely,

‖Bk+1 −Bk‖W → min,

where ‖A‖W = ‖W 1/2AW 1/2‖F is the weighted Frobenius norm

⇒

{
BFGS W = H

DFP W = H−1

S. Cheng (OU-ECE) Neural Networks Jan 2019 172 / 204

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or inverse Hessian

The matrix is too big to be stored in deep learning setting (millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk and qk are much

smaller
Instead of storing Bk, we can store the previous last several p and q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead of just once) and the
estimate is less accurate
Storage requirement decreases drastically

LBFGS works very well in full batch, function is more or less deterministic
But does not seem to work very well to mini-batch setting

S. Cheng (OU-ECE) Neural Networks Jan 2019 173 / 204

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
The matrix is too big to be stored in deep learning setting (millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk and qk are much

smaller
Instead of storing Bk, we can store the previous last several p and q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead of just once) and the
estimate is less accurate
Storage requirement decreases drastically

LBFGS works very well in full batch, function is more or less deterministic
But does not seem to work very well to mini-batch setting

S. Cheng (OU-ECE) Neural Networks Jan 2019 173 / 204

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
The matrix is too big to be stored in deep learning setting (millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk and qk are much

smaller

Instead of storing Bk, we can store the previous last several p and q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead of just once) and the
estimate is less accurate
Storage requirement decreases drastically

LBFGS works very well in full batch, function is more or less deterministic
But does not seem to work very well to mini-batch setting

S. Cheng (OU-ECE) Neural Networks Jan 2019 173 / 204

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
The matrix is too big to be stored in deep learning setting (millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk and qk are much

smaller
Instead of storing Bk, we can store the previous last several p and q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead of just once) and the
estimate is less accurate
Storage requirement decreases drastically

LBFGS works very well in full batch, function is more or less deterministic
But does not seem to work very well to mini-batch setting

S. Cheng (OU-ECE) Neural Networks Jan 2019 173 / 204

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
The matrix is too big to be stored in deep learning setting (millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk and qk are much

smaller
Instead of storing Bk, we can store the previous last several p and q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead of just once) and the
estimate is less accurate

Storage requirement decreases drastically
LBFGS works very well in full batch, function is more or less deterministic

But does not seem to work very well to mini-batch setting

S. Cheng (OU-ECE) Neural Networks Jan 2019 173 / 204

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
The matrix is too big to be stored in deep learning setting (millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk and qk are much

smaller
Instead of storing Bk, we can store the previous last several p and q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead of just once) and the
estimate is less accurate
Storage requirement decreases drastically

LBFGS works very well in full batch, function is more or less deterministic
But does not seem to work very well to mini-batch setting

S. Cheng (OU-ECE) Neural Networks Jan 2019 173 / 204

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
The matrix is too big to be stored in deep learning setting (millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk and qk are much

smaller
Instead of storing Bk, we can store the previous last several p and q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead of just once) and the
estimate is less accurate
Storage requirement decreases drastically

LBFGS works very well in full batch, function is more or less deterministic

But does not seem to work very well to mini-batch setting

S. Cheng (OU-ECE) Neural Networks Jan 2019 173 / 204

Optimization Optimizers

LBFGS

BFGS requires us to store the complete estimate of the Hessian or inverse Hessian
The matrix is too big to be stored in deep learning setting (millions of variables)

Recall that Bk+1 =
(
I − pkq

T
k

qTk pk

)
Bk

(
I − qkp

T
k

qTk pk

)
+

pkp
T
k

qTk pk
, size of pk and qk are much

smaller
Instead of storing Bk, we can store the previous last several p and q to estimate Bk+1

Let say we store the last r pairs, we need to iterate r times (instead of just once) and the
estimate is less accurate
Storage requirement decreases drastically

LBFGS works very well in full batch, function is more or less deterministic
But does not seem to work very well to mini-batch setting

S. Cheng (OU-ECE) Neural Networks Jan 2019 173 / 204

Optimization Optimizers

Summary
ADAM is a good default choice in most cases

Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)
If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

Learning rate depends on implementations. One has to be careful to transfer that
from one package to another

LR for SGD with momentum for PyTorch is effectively 1
1−µ more than original

Sutskever’s or SGD implementation
E.g., if SGD works well with LR 1, you may want to change LR to 0.1 if a momentum
µ = 0.9 is applied

Many more parameters besides LR, e.g., weight decay (L2 penalty). Check doc
For nearly deterministic objective function (full-batch), one may try to use LBFGS as
well. But it probably needs too much computational resources in most applications (a
few exception can be style transfer)

S. Cheng (OU-ECE) Neural Networks Jan 2019 174 / 204

https://arxiv.org/abs/1609.04836
https://openreview.net/forum?id=ryQu7f-RZ

Optimization Optimizers

Summary
ADAM is a good default choice in most cases

Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)

If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

Learning rate depends on implementations. One has to be careful to transfer that
from one package to another

LR for SGD with momentum for PyTorch is effectively 1
1−µ more than original

Sutskever’s or SGD implementation
E.g., if SGD works well with LR 1, you may want to change LR to 0.1 if a momentum
µ = 0.9 is applied

Many more parameters besides LR, e.g., weight decay (L2 penalty). Check doc
For nearly deterministic objective function (full-batch), one may try to use LBFGS as
well. But it probably needs too much computational resources in most applications (a
few exception can be style transfer)

S. Cheng (OU-ECE) Neural Networks Jan 2019 174 / 204

https://arxiv.org/abs/1609.04836
https://openreview.net/forum?id=ryQu7f-RZ

Optimization Optimizers

Summary
ADAM is a good default choice in most cases

Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)
If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

Learning rate depends on implementations. One has to be careful to transfer that
from one package to another

LR for SGD with momentum for PyTorch is effectively 1
1−µ more than original

Sutskever’s or SGD implementation
E.g., if SGD works well with LR 1, you may want to change LR to 0.1 if a momentum
µ = 0.9 is applied

Many more parameters besides LR, e.g., weight decay (L2 penalty). Check doc
For nearly deterministic objective function (full-batch), one may try to use LBFGS as
well. But it probably needs too much computational resources in most applications (a
few exception can be style transfer)

S. Cheng (OU-ECE) Neural Networks Jan 2019 174 / 204

https://arxiv.org/abs/1609.04836
https://openreview.net/forum?id=ryQu7f-RZ

Optimization Optimizers

Summary
ADAM is a good default choice in most cases

Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)
If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

Learning rate depends on implementations. One has to be careful to transfer that
from one package to another

LR for SGD with momentum for PyTorch is effectively 1
1−µ more than original

Sutskever’s or SGD implementation
E.g., if SGD works well with LR 1, you may want to change LR to 0.1 if a momentum
µ = 0.9 is applied

Many more parameters besides LR, e.g., weight decay (L2 penalty). Check doc
For nearly deterministic objective function (full-batch), one may try to use LBFGS as
well. But it probably needs too much computational resources in most applications (a
few exception can be style transfer)

S. Cheng (OU-ECE) Neural Networks Jan 2019 174 / 204

https://arxiv.org/abs/1609.04836
https://openreview.net/forum?id=ryQu7f-RZ

Optimization Optimizers

Summary
ADAM is a good default choice in most cases

Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)
If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

Learning rate depends on implementations. One has to be careful to transfer that
from one package to another

LR for SGD with momentum for PyTorch is effectively 1
1−µ more than original

Sutskever’s or SGD implementation

E.g., if SGD works well with LR 1, you may want to change LR to 0.1 if a momentum
µ = 0.9 is applied

Many more parameters besides LR, e.g., weight decay (L2 penalty). Check doc
For nearly deterministic objective function (full-batch), one may try to use LBFGS as
well. But it probably needs too much computational resources in most applications (a
few exception can be style transfer)

S. Cheng (OU-ECE) Neural Networks Jan 2019 174 / 204

https://arxiv.org/abs/1609.04836
https://openreview.net/forum?id=ryQu7f-RZ

Optimization Optimizers

Summary
ADAM is a good default choice in most cases

Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)
If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

Learning rate depends on implementations. One has to be careful to transfer that
from one package to another

LR for SGD with momentum for PyTorch is effectively 1
1−µ more than original

Sutskever’s or SGD implementation
E.g., if SGD works well with LR 1, you may want to change LR to 0.1 if a momentum
µ = 0.9 is applied

Many more parameters besides LR, e.g., weight decay (L2 penalty). Check doc
For nearly deterministic objective function (full-batch), one may try to use LBFGS as
well. But it probably needs too much computational resources in most applications (a
few exception can be style transfer)

S. Cheng (OU-ECE) Neural Networks Jan 2019 174 / 204

https://arxiv.org/abs/1609.04836
https://openreview.net/forum?id=ryQu7f-RZ

Optimization Optimizers

Summary
ADAM is a good default choice in most cases

Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)
If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

Learning rate depends on implementations. One has to be careful to transfer that
from one package to another

LR for SGD with momentum for PyTorch is effectively 1
1−µ more than original

Sutskever’s or SGD implementation
E.g., if SGD works well with LR 1, you may want to change LR to 0.1 if a momentum
µ = 0.9 is applied

Many more parameters besides LR, e.g., weight decay (L2 penalty). Check doc

For nearly deterministic objective function (full-batch), one may try to use LBFGS as
well. But it probably needs too much computational resources in most applications (a
few exception can be style transfer)

S. Cheng (OU-ECE) Neural Networks Jan 2019 174 / 204

https://arxiv.org/abs/1609.04836
https://openreview.net/forum?id=ryQu7f-RZ

Optimization Optimizers

Summary
ADAM is a good default choice in most cases

Some reported that Momentum SGD works better for ResNet, where some contested
that they can have sharp minimum (see this)
If you worry about stucking in local minimum, you may set amsgrad to True, that try to
prevent ADAM from getting stuck (see this)

Learning rate depends on implementations. One has to be careful to transfer that
from one package to another

LR for SGD with momentum for PyTorch is effectively 1
1−µ more than original

Sutskever’s or SGD implementation
E.g., if SGD works well with LR 1, you may want to change LR to 0.1 if a momentum
µ = 0.9 is applied

Many more parameters besides LR, e.g., weight decay (L2 penalty). Check doc
For nearly deterministic objective function (full-batch), one may try to use LBFGS as
well. But it probably needs too much computational resources in most applications (a
few exception can be style transfer)

S. Cheng (OU-ECE) Neural Networks Jan 2019 174 / 204

https://arxiv.org/abs/1609.04836
https://openreview.net/forum?id=ryQu7f-RZ

Optimization Babysitting learning process

Babysitting learning process

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201672

Step 1: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

S. Cheng (OU-ECE) Neural Networks Jan 2019 175 / 204

Optimization Babysitting learning process

Babysitting learning process

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201673

Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

input
layer hidden layer

output layer
CIFAR-10
images, 3072
numbers

10 output
neurons, one
per class

50 hidden
neurons

S. Cheng (OU-ECE) Neural Networks Jan 2019 176 / 204

Optimization Babysitting learning process

Babysitting learning process

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201674

Double check that the loss is reasonable:

returns the loss and the
gradient for all parameters

disable regularization

loss ~2.3.
“correct “ for
10 classes

S. Cheng (OU-ECE) Neural Networks Jan 2019 177 / 204

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201675

Double check that the loss is reasonable:

crank up regularization

loss went up, good. (sanity check)

S. Cheng (OU-ECE) Neural Networks Jan 2019 178 / 204

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201676

Lets try to train now…

Tip: Make sure that
you can overfit very
small portion of the
training data The above code:

- take the first 20 examples from
CIFAR-10

- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

S. Cheng (OU-ECE) Neural Networks Jan 2019 179 / 204

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201677

Lets try to train now…

Tip: Make sure that
you can overfit very
small portion of the
training data

Very small loss,
train accuracy 1.00,
nice!

S. Cheng (OU-ECE) Neural Networks Jan 2019 180 / 204

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201678

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

S. Cheng (OU-ECE) Neural Networks Jan 2019 181 / 204

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201679

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

Loss barely changing

S. Cheng (OU-ECE) Neural Networks Jan 2019 182 / 204

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201680

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is
probably too low

S. Cheng (OU-ECE) Neural Networks Jan 2019 183 / 204

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201681

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is
probably too low

Notice train/val accuracy goes to 20%
though, what’s up with that? (remember
this is softmax)

S. Cheng (OU-ECE) Neural Networks Jan 2019 184 / 204

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201682

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Okay now lets try learning rate 1e6. What could
possibly go wrong?

S. Cheng (OU-ECE) Neural Networks Jan 2019 185 / 204

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201683

cost: NaN almost
always means high
learning rate...

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

S. Cheng (OU-ECE) Neural Networks Jan 2019 186 / 204

Optimization Babysitting learning process

Debugging optimizer

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201684

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we
should be cross-validating is
somewhere [1e-3 … 1e-5]

S. Cheng (OU-ECE) Neural Networks Jan 2019 187 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201685

Hyperparameter Optimization

S. Cheng (OU-ECE) Neural Networks Jan 2019 188 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201690

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012

S. Cheng (OU-ECE) Neural Networks Jan 2019 189 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201686

Cross-validation strategy

I like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

S. Cheng (OU-ECE) Neural Networks Jan 2019 190 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201687

For example: run coarse search for 5 epochs

nice

note it’s best to optimize
in log space!

S. Cheng (OU-ECE) Neural Networks Jan 2019 191 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201688

Now run finer search...

adjust range

53% - relatively good
for a 2-layer neural net
with 50 hidden neurons.

S. Cheng (OU-ECE) Neural Networks Jan 2019 192 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201689

Now run finer search...

adjust range

53% - relatively good
for a 2-layer neural net
with 50 hidden neurons.

But this best cross-
validation result is
worrying. Why?

S. Cheng (OU-ECE) Neural Networks Jan 2019 193 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201691

Hyperparameters to play with:
- network architecture
- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function

S. Cheng (OU-ECE) Neural Networks Jan 2019 194 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201692

My cross-validation
“command center”

S. Cheng (OU-ECE) Neural Networks Jan 2019 195 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201693

Monitor and visualize the loss curve

S. Cheng (OU-ECE) Neural Networks Jan 2019 196 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201694

Loss

time

S. Cheng (OU-ECE) Neural Networks Jan 2019 197 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201695

Loss

time

Bad initialization
a prime suspect

S. Cheng (OU-ECE) Neural Networks Jan 2019 198 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201696

lossfunctions.tumblr.com Loss function specimen

S. Cheng (OU-ECE) Neural Networks Jan 2019 199 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201697

lossfunctions.tumblr.com

S. Cheng (OU-ECE) Neural Networks Jan 2019 200 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201698

lossfunctions.tumblr.com

S. Cheng (OU-ECE) Neural Networks Jan 2019 201 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201699

Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?

S. Cheng (OU-ECE) Neural Networks Jan 2019 202 / 204

Optimization Hyperparameter optimization

Hyperparameter optimization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016
10

0

Track the ratio of weight updates / weight magnitudes:

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

S. Cheng (OU-ECE) Neural Networks Jan 2019 203 / 204

Conclusions

Conclusions

BP is just chain rule in calculus
Use ReLU. Never use Sigmoid (use Tanh instead)
Input preprocessing is no longer very important

Do subtract mean
Whitening and normalizing are not much needed

Weight initialization on the other hand is extremely important for deep networks
Use batch normalization if you can
Use dropout
Use Adam (or maybe RMSprop) for optimizer. If you don’t have much data, can
consider LBFGS
Need to babysit your learning for real-world problems
Never use grid search for tuning your hyperparameters

S. Cheng (OU-ECE) Neural Networks Jan 2019 204 / 204

	Review
	Introduction to neural networks
	Network architectures

	Back-propagation
	Initialization
	Input preprocessing
	Weight initialization

	Regularization
	Batch normalization
	Dropout

	Activation functions
	Threshold-based activation function
	ReLU
	ELU
	Gated activation function
	Lesson Learned

	Optimization
	Optimizers
	Babysitting learning process
	Hyperparameter optimization

	Conclusions

