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Overview

We will look into several applications of CNNs besides image recognition
Semantic segmentation
Object localization
Object detection
Instance segmentation
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201716

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

So far: Image Classification

This image is CC0 public domain Vector:
4096

Fully-Connected:
4096 to 1000
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201717

Other Computer Vision Tasks

Classification 
+ Localization

Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CATGRASS, CAT, 
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

Single Object Multiple ObjectNo objects, just pixels This image is CC0 public domain
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201718

Semantic Segmentation

CATGRASS, CAT, 
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

Single Object Multiple ObjectNo objects, just pixels This image is CC0 public domain
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201719

Semantic Segmentation

Cow

Grass

SkyTre
es

Label each pixel in the 
image with a category 
label

Don’t differentiate 
instances, only care about 
pixels

This image is CC0 public domain

Grass

Cat

Sky Trees
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201720

Semantic Segmentation Idea: Sliding Window

Full image

Extract patch
Classify center 
pixel with CNN

Cow

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201721

Semantic Segmentation Idea: Sliding Window

Full image

Extract patch
Classify center 
pixel with CNN

Cow

Cow

Grass
Problem: Very inefficient! Not 
reusing shared features between 
overlapping patches Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201722

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional layers 
to  make predictions for pixels all at once!
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201723

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional layers 
to  make predictions for pixels all at once!

Problem: convolutions at 
original image resolution will 
be very expensive ...
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201724

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Predictions:
H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D

1 
x H/2 x W/2

High-res:
D

1 
x H/2 x W/2

Med-res:
D

2 
x H/4 x W/4

Med-res:
D

2 
x H/4 x W/4

Low-res:
D

3 
x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201725

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Predictions:
H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D

1 
x H/2 x W/2

High-res:
D

1 
x H/2 x W/2

Med-res:
D

2 
x H/4 x W/4

Med-res:
D

2 
x H/4 x W/4

Low-res:
D

3 
x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided 
convolution

Upsampling:
???
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Computer vision tasks
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In-Network upsampling: “Unpooling”

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

“Bed of Nails”
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201727

In-Network upsampling: “Max Unpooling”

Input: 4 x 4

1 2 6 3

3 5 2 1

1 2 2 1

7 3 4 8

1 2

3 4

Input: 2 x 2 Output: 4 x 4

0 0 2 0

0 1 0 0

0 0 0 0

3 0 0 4

Max Unpooling
Use positions from 
pooling layer

5 6

7 8

Max Pooling
Remember which element was max!

… 
Rest of the network

Output: 2 x 2

Corresponding pairs of 
downsampling and 
upsampling layers
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201728

Learnable Upsampling: Transpose Convolution

Recall:Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201729

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Dot product 
between filter 
and input
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201730

Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product 
between filter 
and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201731

Input: 4 x 4 Output: 2 x 2

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201732

Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201733

Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Filter moves 2 pixels in 
the input for every one 
pixel in the output

Stride gives ratio between 
movement in input and 
output

Recall: Normal 3 x 3 convolution, stride 2 pad 1
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201734

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201735

Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201736

Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201737

Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201738

Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Other names:
-Deconvolution (bad)
-Upconvolution
-Fractionally strided 
convolution
-Backward strided 
convolution
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201739

Transpose Convolution: 1D Example

a

b

x

y

z

 ax

 ay

az + bx

 by 

bz

Input Filter

Output

Output contains 
copies of the filter 
weighted by the 
input, summing at 
where at overlaps in 
the output

Need to crop one 
pixel from output to 
make output exactly 
2x input
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201744

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Predictions:
H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D

1 
x H/2 x W/2

High-res:
D

1 
x H/2 x W/2

Med-res:
D

2 
x H/4 x W/4

Med-res:
D

2 
x H/4 x W/4

Low-res:
D

3 
x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided 
convolution

Upsampling:
Unpooling or strided 
transpose convolution
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Computer vision tasks

U-Net
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Computer vision tasks

U-Net
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Computer vision tasks

Dice Coefficient

Dice Coefficient is a similarity measure for two sets.
Given sets A and B, the Dice Coefficient is defined as:

Dice(A,B) =
2|A ∩ B|
|A|+ |B|

It ranges from 0 (no overlap) to 1 (perfect overlap).
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Computer vision tasks

Dice Loss

Dice Loss is derived from the Dice Coefficient and used as a loss function for
segmentation tasks.
The Dice Loss for predicted segmentation P and ground truth segmentation G is
defined as:

DiceLoss(P,G) = 1 − Dice(P,G)

Lower values of Dice Loss indicate better overlap between predicted and ground truth
segmentations.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201745

Classification + Localization

CATGRASS, CAT, 
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

Single Object Multiple ObjectNo objects, just pixels This image is CC0 public domain
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201746

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Classification + Localization

This image is CC0 public domain Vector:
4096

Fully
Connected:
4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Treat localization as a 
regression problem!
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201747

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Classification + Localization

Vector:
4096

Fully
Connected:
4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax 
Loss

L2 Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

This image is CC0 public domain

Treat localization as a 
regression problem!
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201748

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Classification + Localization

Vector:
4096

Fully
Connected:
4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax 
Loss

L2 Loss

Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

+

This image is CC0 public domain

Treat localization as a 
regression problem!

Multitask Loss
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201749

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Classification + Localization

Vector:
4096

Fully
Connected:
4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax 
Loss

L2 Loss

Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

+

This image is CC0 public domain Often pretrained on ImageNet
(Transfer learning)

Treat localization as a 
regression problem!
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201750

Aside: Human Pose Estimation

This image is licensed under CC-BY 2.0.

Represent pose as a 
set of 14 joint 
positions:

Left / right foot
Left / right knee
Left / right hip
Left / right shoulder
Left / right elbow
Left / right hand
Neck 
Head top

Johnson and Everingham, "Clustered Pose and Nonlinear Appearance Models 
for Human Pose Estimation", BMVC 2010
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201751

Toshev and Szegedy, “DeepPose: Human Pose 
Estimation via Deep Neural Networks”, CVPR 2014

Aside: Human Pose Estimation

Vector:
4096

Left foot: (x, y)

Right foot: (x, y)

…

Head top: (x, y)
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201752

Toshev and Szegedy, “DeepPose: Human Pose 
Estimation via Deep Neural Networks”, CVPR 2014

Aside: Human Pose Estimation

Vector:
4096

Left foot: (x, y)

Right foot: (x, y)

…

Head top: (x, y)

L2 loss

Correct left 
foot: (x’, y’)

L2 loss

Correct head 
top: (x’, y’)

L2 loss

Loss+
...
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201753

Object Detection

CATGRASS, CAT, 
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

Single Object Multiple ObjectNo objects, just pixels This image is CC0 public domain
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201754

Object Detection: Impact of Deep Learning

Figure copyright Ross Girshick, 2015. 
Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201755

Object Detection as Regression?

CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201756

Object Detection as Regression?

CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….

4 numbers

16 numbers

Many 
numbers!

Each image needs a 
different number of outputs!
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201757

Object Detection as Classification: Sliding Window

Dog? NO
Cat? NO
Background? YES

Apply a CNN to many different crops of the 
image, CNN classifies each crop as object 
or background

S. Cheng (OU-Tulsa) CNN applications Feb 2017 44 / 94



Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201758

Object Detection as Classification: Sliding Window

Dog? YES
Cat? NO
Background? NO

Apply a CNN to many different crops of the 
image, CNN classifies each crop as object 
or background
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201759

Object Detection as Classification: Sliding Window

Dog? YES
Cat? NO
Background? NO

Apply a CNN to many different crops of the 
image, CNN classifies each crop as object 
or background
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201760

Object Detection as Classification: Sliding Window

Dog? NO
Cat? YES
Background? NO

Apply a CNN to many different crops of the 
image, CNN classifies each crop as object 
or background
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201761

Object Detection as Classification: Sliding Window

Dog? NO
Cat? YES
Background? NO

Apply a CNN to many different crops of the 
image, CNN classifies each crop as object 
or background

Problem: Need to apply CNN to huge 
number of locations and scales, very 
computationally expensive!
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201762

Region Proposals
● Find “blobby” image regions that are likely to contain objects
● Relatively fast to run; e.g. Selective Search gives 1000 region 

proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012
Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013
Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201763

R-CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201764

R-CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201765

R-CNN

 

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201766

R-CNN

 

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201767

R-CNN

 

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201768

R-CNN

 

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201769

R-CNN: Problems

• Ad hoc training objectives
• Fine-tune network with softmax classifier (log loss)

• Train post-hoc linear SVMs (hinge loss)

• Train post-hoc bounding-box regressions (least squares)

• Training is slow (84h), takes a lot of disk space

• Inference (detection) is slow
• 47s / image with VGG16 [Simonyan & Zisserman. ICLR15]

• Fixed by SPP-net [He et al. ECCV14]

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Slide copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201770

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201771

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201772

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201773

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201774

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

S. Cheng (OU-Tulsa) CNN applications Feb 2017 61 / 94



Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201775

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201776

Fast R-CNN
(Training)

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201777

Fast R-CNN
(Training)

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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R-CNN vs SPP vs Fast R-CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015
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R-CNN vs SPP vs Fast R-CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015

Problem:
Runtime dominated 
by region proposals!
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Faster R-CNN: 
Make CNN do proposals!

Insert Region Proposal 
Network (RPN) to predict 
proposals from features

Jointly train with 4 losses:
1. RPN classify object / not object
2. RPN regress box coordinates
3. Final classification score (object 

classes)
4. Final box coordinates

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission
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Faster R-CNN: 
Make CNN do proposals!
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Still many computations are not shared for RCNN-like methods
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Region-based fully convolutional network (R-FCN)

Fully connected
layers are replaced by average poolingS. Cheng (OU-Tulsa) CNN applications Feb 2017 70 / 94

https://medium.com/@jonathan_hui/understanding-region-based-fully-convolutional-networks-r-fcn-for-object-detection-828316f07c99
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Region-based fully convolutional network (R-FCN)

k = 3
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Region-based fully convolutional network (R-FCN)

S. Cheng (OU-Tulsa) CNN applications Feb 2017 72 / 94



Computer vision tasks

Region-based fully convolutional network (R-FCN)
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Region-based fully convolutional network (R-FCN)

S. Cheng (OU-Tulsa) CNN applications Feb 2017 74 / 94



Computer vision tasks

Feature pyramid network (FPN)

a) hand-engineered features
c) Multiscale prediction (e.g. ssd)
e) U-Net

b) Alexnet-like
d) Feature pyramid network
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Feature pyramid network (FPN)
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Detection without Proposals: YOLO / SSD

Divide image into grid
7 x 7

Image a set of base boxes 
centered at each grid cell

Here B = 3

Input image
3 x H x W

Within each grid cell:
- Regress from each of the B 

base boxes to a final box with 
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C 
classes (including 
background as a class)

Output:
7 x 7 x (5 * B + C)

Redmon et al, “You Only Look Once: 
Unified, Real-Time Object Detection”, CVPR 2016
Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
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Detection without Proposals: YOLO / SSD

Divide image into grid
7 x 7

Image a set of base boxes 
centered at each grid cell

Here B = 3

Input image
3 x H x W

Within each grid cell:
- Regress from each of the B 

base boxes to a final box with 
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C 
classes (including 
background as a class)

Output:
7 x 7 x (5 * B + C)

Go from input image to tensor of scores with one big convolutional network!

Redmon et al, “You Only Look Once: 
Unified, Real-Time Object Detection”, CVPR 2016
Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
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https://youtu.be/aoiAIlz2QIo
https://youtu.be/aoiAIlz2QIo
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Focal loss
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RetinaNet
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https://arxiv.org/pdf/1708.02002.pdf
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RetinaNet
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Precision and recall

Precision and recall are important metrics to evaluate classification models.
They are particularly useful when the dataset is imbalanced.

i.e., one class has significantly more samples than another class
These metrics give a better understanding of model performance compared to
accuracy.
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Confusion Matrix

A confusion matrix is a table that helps to visualize the performance of a
classification model.
It shows the actual and predicted classes.
The confusion matrix consists of four elements: True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN).
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Precision

Definition (Precision)
Precision is the ratio of correctly predicted positive instances to the total predicted
positive instances. It is also known as Positive Predictive Value (PPV).

Precision =
TP

TP + FP
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Recall

Definition (Recall)
Recall is the ratio of correctly predicted positive instances to the total actual positive
instances. It is also known as Sensitivity, Hit Rate, or True Positive Rate (TPR).

Recall = TP
TP + FN
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Mean Average Precision (mAP)

mAP is a widely used evaluation metric for object detection tasks.
It measures both precision (how many predicted objects are actually objects) and
recall (how many objects are detected by the model).
Average precision (AP) is computed for each class and then averaged to obtain mAP.
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Intersection over Union (IoU)

IoU is a measure of the overlap between the predicted bounding box and the ground
truth bounding box.
IoU ranges from 0 (no overlap) to 1 (perfect overlap).
A higher IoU threshold requires tighter overlap between predicted and ground truth
bounding boxes.
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mAP@0.5:0.95

mAP@0.5:0.95 evaluates the model’s performance across a range of IoU thresholds.
It computes the AP at IoU thresholds from 0.5 to 0.95 with a step of 0.05.
The final mAP@0.5:0.95 is the average of the AP values computed at each IoU
threshold.
This metric provides a better understanding of the model’s performance at various
levels of bounding box overlap.

S. Cheng (OU-Tulsa) CNN applications Feb 2017 88 / 94



Computer vision tasks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201785

Object Detection: Lots of variables ...

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

Base Network
VGG16
ResNet-101
Inception V2
Inception V3
Inception 
ResNet
MobileNet

R-FCN: Dai et al, “R-FCN: Object Detection via Region-based Fully Convolutional Networks”, NIPS 2016
Inception-V2: Ioffe and Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, ICML 2015
Inception V3: Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, arXiv 2016
Inception ResNet: Szegedy et al, “Inception-V4, Inception-ResNet and the Impact of Residual Connections on Learning”, arXiv 2016
MobileNet: Howard et al, “Efficient Convolutional Neural Networks for Mobile Vision Applications”, arXiv 2017

Object Detection 
architecture
Faster R-CNN
R-FCN
SSD

Image Size
# Region Proposals
… 

Takeaways
Faster R-CNN is 
slower but more 
accurate

SSD is much 
faster but not as 
accurate
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Instance Segmentation

CATGRASS, CAT, 
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

Single Object Multiple ObjectNo objects, just pixels This image is CC0 public domain
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Mask R-CNN

He et al, “Mask R-CNN”, arXiv 2017

RoI Align
Conv

Classification Scores: C 
Box coordinates (per class): 4 * C

CNN Conv

Predict a mask for 
each of C classes

C x 14 x 14

256 x 14 x 14 256 x 14 x 14
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Mask R-CNN: Very Good Results!

He et al, “Mask R-CNN”, arXiv 2017
Figures copyright Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick, 2017. 
Reproduced with permission. 
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Mask R-CNN
Also does pose

He et al, “Mask R-CNN”, arXiv 2017

RoI Align
Conv

Classification Scores: C 
Box coordinates (per class): 4 * C
Joint coordinates 

CNN Conv

Predict a mask for 
each of C classes

C x 14 x 14

256 x 14 x 14 256 x 14 x 14
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Mask R-CNN
Also does pose

He et al, “Mask R-CNN”, arXiv 2017
Figures copyright Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick, 2017. 
Reproduced with permission. 
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