Knowledge Distillation in Machine Learning

Samuel Cheng

University of Oklahoma

March 29, 2024

Samuel Cheng (University of Oklahoma) Knowledge Distillation in Machine Learning

March 29, 2024

- Definition: A process in machine learning that transfers knowledge from a large, complex model (teacher) to a smaller, simpler model (student).
- Purpose: Reduce computational resources, improve efficiency, and maintain accuracy.
- Applications: Deploying models on devices with limited hardware, improving inference speed, reducing energy consumption.

- Definition: A process in machine learning that transfers knowledge from a large, complex model (teacher) to a smaller, simpler model (student).
- Purpose: Reduce computational resources, improve efficiency, and maintain accuracy.
- Applications: Deploying models on devices with limited hardware, improving inference speed, reducing energy consumption.

- Definition: A process in machine learning that transfers knowledge from a large, complex model (teacher) to a smaller, simpler model (student).
- Purpose: Reduce computational resources, improve efficiency, and maintain accuracy.
- Applications: Deploying models on devices with limited hardware, improving inference speed, reducing energy consumption.

• Train a larger, more complex model (teacher model).

- ② Use the teacher model to generate soft labels on a dataset.
- (1) Train the smaller, simpler model (student model) using the soft labels.
- The student model learns to mimic the teacher's behavior and generalization capabilities.

- Train a larger, more complex model (teacher model).
- **2** Use the teacher model to generate soft labels on a dataset.
- Train the smaller, simpler model (student model) using the soft labels.
- The student model learns to mimic the teacher's behavior and generalization capabilities.

イロト イボト イヨト イヨト

- Train a larger, more complex model (teacher model).
- **2** Use the teacher model to generate soft labels on a dataset.
- **③** Train the smaller, simpler model (student model) using the soft labels.
- The student model learns to mimic the teacher's behavior and generalization capabilities.

- Train a larger, more complex model (teacher model).
- **2** Use the teacher model to generate soft labels on a dataset.
- **③** Train the smaller, simpler model (student model) using the soft labels.
- The student model learns to mimic the teacher's behavior and generalization capabilities.

- Hard Labels: Ground truth, discrete class labels (e.g., dog, cat, car).
- Soft Labels: Probability distributions over class labels generated by the teacher model.
- Benefits: Soft labels provide more information about the relationships between classes, making it easier for the student model to learn.

- Hard Labels: Ground truth, discrete class labels (e.g., dog, cat, car).
- Soft Labels: Probability distributions over class labels generated by the teacher model.
- Benefits: Soft labels provide more information about the relationships between classes, making it easier for the student model to learn.

- Hard Labels: Ground truth, discrete class labels (e.g., dog, cat, car).
- Soft Labels: Probability distributions over class labels generated by the teacher model.
- Benefits: Soft labels provide more information about the relationships between classes, making it easier for the student model to learn.

• Hinton et al 2015 introduces temperature to control the "smoothness" of the soft labels.

$$[\sigma(\mathbf{x}; \mathbf{T})]_i = \frac{e^{T\mathbf{x}_i}}{\sum_j e^{T\mathbf{x}_j}}$$

- Higher temperatures: Produce smoother probability distributions, making it easier for the student model to learn.
- Lower temperatures: Produce more peaky probability distributions, closer to hard labels.
- Hyperparameter tuning is necessary to find the optimal temperature.

• Hinton et al 2015 introduces temperature to control the "smoothness" of the soft labels.

$$[\sigma(\mathbf{x}; \mathbf{T})]_i = \frac{e^{Tx_i}}{\sum_j e^{Tx_j}}$$

- Higher temperatures: Produce smoother probability distributions, making it easier for the student model to learn.
- Lower temperatures: Produce more peaky probability distributions, closer to hard labels.
- Hyperparameter tuning is necessary to find the optimal temperature.

• Hinton et al 2015 introduces temperature to control the "smoothness" of the soft labels.

$$[\sigma(\mathbf{x}; \mathbf{T})]_i = \frac{e^{Tx_i}}{\sum_j e^{Tx_j}}$$

- Higher temperatures: Produce smoother probability distributions, making it easier for the student model to learn.
- Lower temperatures: Produce more peaky probability distributions, closer to hard labels.
- Hyperparameter tuning is necessary to find the optimal temperature.

イロト 不得下 イヨト イヨト

• Hinton et al 2015 introduces temperature to control the "smoothness" of the soft labels.

$$[\sigma(\mathbf{x}; \mathbf{T})]_i = \frac{e^{Tx_i}}{\sum_j e^{Tx_j}}$$

- Higher temperatures: Produce smoother probability distributions, making it easier for the student model to learn.
- Lower temperatures: Produce more peaky probability distributions, closer to hard labels.
- Hyperparameter tuning is necessary to find the optimal temperature.

Loss Functions for Knowledge Distillation

• Combine two types of loss functions:

Student loss: Cross-entropy loss between the ground-truth and student's predictions
Distillation loss: Cross-entropy loss between soft labels (teacher's predictions) and student's prediction with temperature > 1

$$L(x; W) = \alpha H(y, \sigma(z_s; T = 1)) + \beta H(\sigma(z_t; T = \tau), \sigma(z_s, T = \tau))$$

student loss

distillation loss

Loss Functions for Knowledge Distillation

• Combine two types of loss functions:

- **③** Student loss: Cross-entropy loss between the ground-truth and student's predictions
- ② Distillation loss: Cross-entropy loss between soft labels (teacher's predictions) and student's prediction with temperature > 1

$$L(x; W) = \alpha H(y, \sigma(z_s; T = 1)) + \beta H(\sigma(z_t; T = \tau), \sigma(z_s, T = \tau))$$

student loss

distillation loss

6/11

Loss Functions for Knowledge Distillation

- Combine two types of loss functions:
 - Student loss: Cross-entropy loss between the ground-truth and student's predictions
 - ² Distillation loss: Cross-entropy loss between soft labels (teacher's predictions) and student's prediction with temperature > 1

$$L(x; W) = \alpha \underbrace{H(y, \sigma(z_s; T = 1))}_{student \ loss} + \beta \underbrace{H(\sigma(z_t; T = \tau), \sigma(z_s, T = \tau))}_{distillation \ loss}$$

distillation loss

イロト イボト イヨト イヨト

Knowledge distillation (Hinton et al 2015)

Samuel Cheng (University of Oklahoma) Knowledge Distillation in Machine Learning March 29, 2024

Result

System	Test Frame Accuracy	WER
Baseline	58.9%	10.9%
10xEnsemble	61.1%	10.7%
Distilled Single model	60.8%	10.7%

Table 1: Frame classification accuracy and WER showing that the distilled single model performs about as well as the averaged predictions of 10 models that were used to create the soft targets.

System & training set	Train Frame Accuracy	Test Frame Accuracy
Baseline (100% of training set)	63.4%	58.9%
Baseline (3% of training set)	67.3%	44.5%
Soft Targets (3% of training set)	65.4%	57.0%

Table 5: Soft targets allow a new model to generalize well from only 3% of the training set. The soft targets are obtained by training on the full training set.

Samuel Cheng (University of Oklahoma)	Knowledge Distillation in Machine Learning	March 29, 2024	8/11

- Faster inference times for the student model.
- Reduced memory and computational requirements.
- Maintains accuracy close to the teacher model.
- Enables deployment on devices with limited hardware resources.
- Generalize well even with a fraction of training data

- Choosing appropriate teacher and student model architectures.
- Determining the optimal temperature scaling value.
- Exploring the potential of distilling multiple teacher models.
- Investigating new loss functions and distillation techniques.

イロト イボト イヨト イヨト

- Neural network distiller explanation
- Hinton's presentation and video

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶
 March 29, 2024