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Meta Learning: Learn to learn

o Learn meta-knowledge that shares among tasks

e Often associate with few-shot learning

Learning |
task 1

Learning
task 2

@

Learning
task 100

Image credit: Hung-yi Lee

April 14, 2024

Samuel Cheng (University of Oklahoma)



Meta Learning: Learn to learn

o Learn meta-knowledge that shares among tasks

e Often associate with few-shot learning

@

task 1

Learning
task 2

Learning
task 100

Learning

-

J

~

tasks

| can learn task 101
better because | learn
some learning skills

Be a better learner

Life-long: one model for all the

_/ Meta: How to learn a new model

Image credit: Hung-yi Lee

y of Oklahoma)

April 14, 2024



Meta Learning vs Machine Learning

@ Machine learning: given input and output, find a function f that maps input to
output

::-:; f( &) = “Cat”
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Meta Learning vs Machine Learning

@ Machine learning: given input and output, find a function f that maps input to
output

:;:; f( %é!) = “Cat”

e Meta learning: given task training data, find a function F' that maps training data to
a good ML function f

F( E o ) =f

cat dog cat dog

Training Data

Image credit: Hung-Yi Lee
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https://github.com/brendenlake/omniglot

Jargons

o N-ways K-shots: N classes and K samples each
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Jargons

o N-ways K-shots: N classes and K samples each

o In each task,

Support set Query set

Image credit: Hung-yi Lee
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Gradient-based Approach

e Focus only on F' with same network structure but different initialization ¢

Network
Structure
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Gradient-based Approach

e Focus only on F' with same network structure but different initialization ¢
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Gradient-based Approach

e Focus only on F' with same network structure but different initialization ¢
o Minimize L(¢) = 3, 11 (0(™)
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Gradient-based Approach

e Focus only on F' with same network structure but different initialization ¢
o Minimize L(¢) = 3., 1™ (0() (c.f. L(¢) = 3, 1™ (¢) for pre-training)
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(FO)MAML

o MAML (Model Agnostic Meta Learning): optimize task § with only 1 gradient update
o FOMAML (First Order MAML): 1st order approximation. Get rid of 2nd order terms
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o MAML (Model Agnostic Meta Learning): optimize task § with only 1 gradient update
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(FO)MAML

¢ < ¢ —nVyL(p)

N

Lig) =Y _1M(6™)

n=1

0™ = ¢ — ev,17 (9)
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(FO)MAML vs Pretraining

MAML Model Pre-training

o

— : sample from Task m
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(FO)MAML vs Pretraining

MAML Model Pre-training
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(FO)MAML vs Pretraining

MAML Model Pre-training
f(m) f(m)
; o
1 N(n
o %o o
() P2

— : sample from Task m
— : sample from Task n
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MAML vs Pre-training

MAML optimizes the potential of ¢: L(¢) = 3. 1"(5)

I* (Loss
of task 1)

[? (Loss
of task 2)

Small 12(6?)
K

91//5/

(0] 02 Model

o
.
o
*

Parameter

Image credit: Hung-yi Lee
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MAML vs Pre-training

Pre-training optimizes the current ¢ for all tasks: L(¢) = >, (" (¢)

I (Loss 12 (Loss

12(9“2) of task 1) of task 2)

A

/-

"

P -
\/ Model
Parameter

Image credit: Hung-yi Lee
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Reptile

o o1
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— : sample from Task m
— : sample from Task n
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Reptile Result

Pre-train: g4

91\92

Reptile

\ Reptile:
1.0 g1 + 92
. MAML: g,
(simplified)
0.8
91
QO'G 1*(01+0)
é 91+92
< 92
041 1*(01+9:+3)
Pre-train — q1+02+03
g3
021 —%‘(91+92+93+94)
91 +92+05+0a
— 0
0.0

6 50‘00 10600 15600 20600 25600 30600 35600 40600
Iteration Image credit: Hung-yi Lee
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iMAML: Implicit Gradient

For each task 7, we don’t want the model parameter 6 too far from the meta-parameter ¢.
Consequently, consider

mini7)(6) + 20 — 6|
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iMAML: Implicit Gradient

For each task 7, we don’t want the model parameter 6 too far from the meta-parameter ¢.

Consequently, consider
meinl(T)(b’) + %IIH — P = Vol DO+ A0 - ) =0=0=0¢ — %vez“)(e)

20;  9p; 1 ARG

db; 90 A4 801,00; 0

April 14, 2024
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iMAML: Implicit Gradient

For each task 7, we don’t want the model parameter 6 too far from the meta-parameter ¢.

Consequently, consider
meinl(T)(b’) + %IIH — P = Vol DO+ A0 - ) =0=0=0¢ — %vez“)(e)

do

, . 2(7)
90 _ 96 1< 0% 96, db :I—lH(l(T)(())%

96, _ 00; A2~ 00,00, 99,  dd X

April 14, 2024
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iMAML: Implicit Gradient

For each task 7, we don’t want the model parameter 6 too far from the meta-parameter ¢.

Consequently, consider
meinl(T)(b’) + %IIH — P = Vol DO+ A0 - ) =0=0=0¢ — %vez“)(e)

o do H(I™T(0))
%= 5= (1152

—1

) ) 27(7)
O = S e S Y 1 Ha ()

005 0d; A4 80,00, 0¢;  do
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iMAML: Implicit Gradient

For each task 7, we don’t want the model parameter 6 too far from the meta-parameter ¢.

Consequently, consider
meinl(T)(b’) + %IIH — P = Vol DO+ A0 - ) =0=0=0¢ — %vez“)(e)

o do H(I™T(0))
%= 5= (1152

—1

) ) 27(7)
O = S e S Y 1 Ha ()

005 0p; AL~ 90,00, 8¢;  do
Thus, the meta-gradient (from task 7) is

do
Vsl (0) = %vgz“)(e)
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iMAML: Implicit Gradient

For each task 7, we don’t want the model parameter 6 too far from the meta-parameter ¢.
Consequently, consider

min1'" (0) + %IIH — 9P =Vl D@+ A0 - ) =0=0=¢ — %vez“)(e)

—1

20;  9p; 1 A 90, do S N H(I™T(0))
96, _ 90; AL 90000, 90, ~dp L AT = g = U )
Thus, the meta-gradient (from task 7) is

-1

Vol (0) = %V()l(”(ﬁ) = (I+ H(Z(T)(G))) Vol () 2 ¢

A
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iMAML: Implicit Gradient

For each task 7, we don’t want the model parameter 6 too far from the meta-parameter ¢.
Consequently, consider

meinl(T)(H) + %IIH — P = Vol DO+ A0 - ) =0=0=0¢ — %vez“)(e)

—1

20;  9p; 1 A 90, do S N H(I™T(0))
96, _ 90; AL 90000, 90, ~dp L AT = g = U )
Thus, the meta-gradient (from task 7) is

-1

a0 ) Vi (0) 2 g

VM (0) = %voz“)(e) = (1+ HO()

A

This involves inverting n2-size matrix, which is infeasible to compute directly. Consider instead

(I - H(Z(;(e))) g=Vol7(0),
N——

b
A

which can be solved using conjugate gradient method
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A-conjugacy

o Let Abe N x N
o We say p A-conjugate with ¢ if p" Ag = 0. And denote pL aq
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A-conjugacy

o Let Abe N x N
We say p A-conjugate with ¢ if p" Ag = 0. And denote pL aq

A-conjugate directions are linearly independent if A is positive definite
o Assume a1pi + agpy + -+ agpr = 0, p] A(aipr +azps + -+ agpr) = 0= pf Ap; =0

@ Let x¢ be an initial estimate of x, such that Az = b. Assume x — xg = Zgzo Dk

Samuel Cheng (University of Oklahoma) April 14, 2024



A-conjugacy

o Let Abe N x N
We say p A-conjugate with ¢ if p" Ag = 0. And denote pL aq

A-conjugate directions are linearly independent if A is positive definite
o Assume a1pi + agpy + -+ agpr = 0, p] A(aipr +azps + -+ agpr) = 0= pf Ap; =0

@ Let x¢ be an initial estimate of x, such that Az = b. Assume x — xg = Zgzo Dk

o p;'—A(x —x9) = ZZ:[) akp;rApk

Samuel Cheng (University of Oklahoma) April 14, 2024



A-conjugacy

o Let Abe N x N
We say p A-conjugate with ¢ if p" Ag = 0. And denote pL aq

A-conjugate directions are linearly independent if A is positive definite
o Assume a1pi + agpy + -+ agpr = 0, p] A(aipr +azps + -+ agpr) = 0= pf Ap; =0

@ Let x¢ be an initial estimate of x, such that Az = b. Assume x — xg = Zgzo Dk
T

p; (b—Axzo) _ (pi,b—Axg)
p; Api — (piApi)

o Here we use the bracket notation commonly used in physics, p"q = (p, ¢) and
p" Ag = (p, Ag) = (pAq)

° PZTA(QC —x0) = ZZ:O akP;rApk = OéiPZTAPi = o =
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A-conjugacy

o Let Abe N x N
We say p A-conjugate with ¢ if p" Ag = 0. And denote pL aq

A-conjugate directions are linearly independent if A is positive definite
o Assume a1pi + agpy + -+ agpr = 0, p] A(aipr +azps + -+ agpr) = 0= pf Ap; =0

@ Let x¢ be an initial estimate of x, such that Az = b. Assume x — xg = Zgzo Dk
[JIT(I)—A.’I;O) _ {pi,b—Axg)

p; Api — (piApi)

o Here we use the bracket notation commonly used in physics, p"q = (p, ¢) and
p" Ag = (p, Ag) = (pAq)

o If we can keep generating conjugate directions py, we can find the solution x that
(pi,b—Azo)

(pi Aps)

° PZTA(QC —x0) = ZZ:O akP;rApk = OéiPZTAPi = o =

satisfies Az = b by simply computing «o; =

Samuel Cheng (University of Oklahoma) April 14, 2024



Conjugate gradient method

Consider an initial guess xq for the problem Az = b. And iterate as follow

ro = Axg — b, Do = —To, T1 = To + QoPo (1)

ry = Axy — b, p1 = —7r1 + Bopo, To =1 + Q1P1 (2)

ro = AIQ — b, p2 = —Tro + ﬂ1p1, T3 = X2 + Qa2 (3)
@ From the middle equations, {pg,p1, -+ ,pn} and {rg,r1, - ,7,} span the same space
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Conjugate gradient method

Consider an initial guess xq for the problem Az = b. And iterate as follow

ro = Axg — b, Do = —To, T1 = To + QoPo (1)

ry = Ax1 — b, p1 = —r1 + Bopo, To =1+ a1p1 (2)

ro = AIQ — b, p2 = —Tro + ﬂ1p1, T3 = X2 + Qa2 (3)
@ From the middle equations, {pg,p1, -+ ,pn} and {rg,r1, - ,7,} span the same space

@ 1, =Ax, -0
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Conjugate gradient method

Consider an initial guess xq for the problem Az = b. And iterate as follow

ro = Axg — b, Do = —To, T1 = To + QoPo (1)

ry = Ax1 — b, p1 = —r1 + Bopo, To =1+ a1p1 (2)

ro = AIQ — b, p2 = —Tro + ﬂ1p1, T3 = X2 + Qa2 (3)
@ From the middle equations, {pg,p1, -+ ,pn} and {rg,r1, - ,7,} span the same space

° 1y =Axp_1 +ap_1Apr—1 — b

Samuel Cheng (University of Oklahoma) April 14, 2024



Conjugate gradient method

Consider an initial guess xq for the problem Az = b. And iterate as follow

ro = Axg — b, Do = —To, T1 = To + QoPo (1)

ry = Ax1 — b, p1 = —r1 + Bopo, To =1+ a1p1 (2)

ro = AIQ — b, p2 = —Tro + ﬂ1p1, T3 = X2 + Qa2 (3)
@ From the middle equations, {pg,p1, -+ ,pn} and {rg,r1, - ,7,} span the same space

@ rp=Axp o+ oy 2Apy_2+ap_1Apr_1 —b
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Conjugate gradient method

Consider an initial guess xq for the problem Az = b. And iterate as follow

ro = Axg — b, Do = —To, T1 = To + QoPo (1)

ry = Ax1 — b, p1 = —r1 + Bopo, To =1+ a1p1 (2)

ro = AIQ — b, p2 = —Tro + ﬂ1p1, T3 = X2 + Qa2 (3)
@ From the middle equations, {pg,p1, -+ ,pn} and {rg,r1, - ,7,} span the same space

® rp = Axg + agApo + a1 Apy + - -+ a1 Apr—1 — b

Samuel Cheng (University of Oklahoma) April 14, 2024



Conjugate gradient method

Consider an initial guess xq for the problem Az = b. And iterate as follow

ro = Axg — b, Do = —To, T1 = To + QoPo (1)

ry = Axy — b, p1 = —7r1 + Bopo, To =1 + Q1P1 (2)

ro = AIQ — b, p2 = —Tro + ﬂ1p1, T3 = X2 + Qa2 (3)
@ From the middle equations, {pg,p1, -+ ,pn} and {rg,r1, - ,7,} span the same space

@ 7y = —po+ aApy + a1 Apr + -+ g1 Apk-_1.
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Conjugate gradient method

Consider an initial guess xq for the problem Az = b. And iterate as follow

ro = Axg — b, Do = —To, T1 = To + QoPo (1)

ry = Axy — b, p1 = —7r1 + Bopo, To =1 + Q1P1 (2)

ro = AIQ — b, p2 = —Tro + ﬂ1p1, T3 = X2 + Qa2 (3)
@ From the middle equations, {pg,p1, -+ ,pn} and {rg,r1, - ,7,} span the same space

@ 1y = —po+ agApo+ 1 Apr + - 4+ 1 Apr—_1.
e Apy € span{po,p1,--- ,prt1} for k> 0.
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Conjugate gradient method

Consider an initial guess x( for the problem Az = b. And iterate as follow

ro = Axg — b, po = —To, T1 = To + Do (1)

ry = Az — b, p1 = —r1 + Bopo, Ty =21+ a1p1 (2)

ro = Axg — b, p2 = —ro + B1p1, T3 = X2 + QoP2 (3)
@ From the middle equations, {pg,p1,--- ,pn} and {ro,r1,--- ,7,} span the same space

@ 1y = —po+ agApy +arApy + -+ ap_1Apr_1.
o Apy € span{po,p1,- - ,pr+1} for k > 0. We can show that with induction
o For k=0, p1 = —r1 + Bopo
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Conjugate gradient method

Consider an initial guess x( for the problem Az = b. And iterate as follow

ro = Axg — b, po = —To, T1 = To + Do (1)

ry = Az — b, p1 = —r1 + Bopo, Ty =21+ a1p1 (2)

ro = Axg — b, p2 = —ro + B1p1, T3 = X2 + QoP2 (3)
@ From the middle equations, {pg,p1,--- ,pn} and {ro,r1,--- ,7,} span the same space

@ ry =—po+ (XoApO + alAp1 + -+ akflApka
o Apy, € span{po,p1,--- ,pry1} for k > 0. We can show that with induction
o For k=0, p1 =b— Az + Bopo

Samuel Cheng (University of Oklahoma) April 14, 2024



Conjugate gradient method

Consider an initial guess xg for the problem Ax = b. And iterate as follow

ro = Axg — b, po = —To, T1 = To + QoPo (1)

r = Axq — b, p1=-—-r1+ ﬁopm To = X1 + a1p1 (2)

ro = Axg — b, p2 = —7ro + Bip1, T3 = Tg + q2p2 (3)
@ From the middle equations, {po,p1,--- ,pn} and {ro,r1,--- ,7,} span the same space

@ 7y = —po+ (,Y()Ap() + oqul 4+ (thflApkfl-
o Apy € span{po,p1,- - ,pr+1} for k > 0. We can show that with induction
o For k=0, p1=0b—Azy— agApo + Bopo

Samuel Cheng (University of Oklahoma) April 14, 2024



Conjugate gradient method

Consider an initial guess x( for the problem Az = b. And iterate as follow

ro = Axg — b, po = —To, T1 = To + Do (1)

ry = Az — b, p1 = —r1 + Bopo, Ty =21+ a1p1 (2)

ro = Axg — b, p2 = —ro + B1p1, T3 = X2 + QoP2 (3)
@ From the middle equations, {pg,p1,--- ,pn} and {ro,r1,--- ,7,} span the same space

@ 1y, = —po+ apApo+ a1 Apy + -+ ap_1 Apr_1.
o Apy, € span{po,p1,--- ,pry1} for k > 0. We can show that with induction
o For k=0, p1=po— aoApo+ Bopo

Samuel Cheng (University of Oklahoma) April 14, 2024



Conjugate gradient method

Consider an initial guess xo for the problem Az =b. And iterate as follow

ro = Axg — b, Po = —To, T1 = To + QoPo (1)

ry = Ax1 — b, p1 = —r1 + Bopo, To =21+ a1p1 (2)

ro = Axg — b, p2 = —ro + B1p1, T3 = T2 + Q2p2 (3)
@ From the middle equations, {pg,p1,--- ,pn} and {ro,r1,--- ,7,} span the same space

@ ry = —po+ apdpy+ ot Apr + -+ ap_1Api_1.
o Apy € span{po,p1,- - ,pr+1} for k > 0. We can show that with induction
o For k=0, p1 =po— apApo+ Popo = Apo = O%O[PO + Bopo — p1] € span{po,p1}

Samuel Cheng (University of Oklahoma) April 14, 2024



Conjugate gradient method

Consider an initial guess x( for the problem Az =b. And iterate as follow

ro = Axg — b, Po = —To, T1 = To + oo (1)

ry = Az — b, p1 = —11+ Bopo, T2 =z + 01 (2)

ro = Axg — b, p2 = —ro + B1p1, T3 = X2 + Qop2 (3)
@ From the middle equations, {pg,p1,--- ,pn} and {ro,r1,--- ,r,} span the same space

@ rp = —po+ aoApy +aApy + -+ a1 Api_1.
o Apy, € span{po,p1,--- ,pr+1} for k > 0. We can show that with induction

o For k=0, pi1=po—aodpo+fopo = Apo = 5-[po + Bopo — p1] € span{po, p1}
o Assume Apk‘—l S Span{p07p17 e 7pk}7

Samuel Cheng (University of Oklahoma) April 14, 2024



Conjugate gradient method

Consider an initial guess x( for the problem Ax = b. And iterate as follow

ro = Axg — b, Po = —To, T = xo + agPo (1)

ry = Az — b, p1 = —71 + Bopo, Ty =T + a1y (2)

ro = Axg — b, p2 = —T2 + Bip1, T3 = Ty + P2 (3)
@ From the middle equations, {pg,p1,- -+ ,pn} and {rg,r1, - ,7,} span the same space

@ 1y = —po+ agApo+ 1 Apr + - 4+ 1 Apr—_1.

@ Apy € span{po,p1,- - ,pry1} for k > 0. We can show that with induction

o For k=0, p1=po—aoApo+fopo = Apo = 2=[po + Bopo — 1] € span{po, p1}

o Assume Apy_1 € span{po,p1, - , Pk} Pk+1 = —Th+1 + BrDk

Samuel Cheng (University of Oklahoma) April 14, 2024



Conjugate gradient method

Consider an initial guess x( for the problem Az =b. And iterate as follow

ro = Axg — b, Po = —To, T1 = To + oPo (1)

ry = Az — b, p1 = —r1 + Bopo, Ty =21 + a1p1 (2)

ro = Axg — b, p2 = —ro + B1p1, T3 = X2 + QoP2 (3)
@ From the middle equations, {pg,p1,--- ,pn} and {ro,r1,--- ,7,} span the same space

@ 1 = —po+ (XOAPO + (¥1Ap1 R Oék—lApk—l-
o Apy € span{po,p1,- - ,pr+1} for k > 0. We can show that with induction

o For k=0, p1=po— agdpy+ Bopo = Apg = C%O[po + Bopo — p1] € span{po,p1}
k_
o Assume Apy_1 € span{po,p1,- - , Pk} Pkt1 = Po — Zi:ol a; Ap; — ap Api, + Brpr
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Conjugate gradient method

Consider an initial guess x( for the problem Az =b. And iterate as follow

ro = Axg — b, Po = —To, T1 = To + oPo (1)
ry = Az — b, p1 = —r1 + Bopo, Ty =21 + a1p1 (2)
ro = Axg — b, p2 = —ro + B1p1, T3 = X2 + QoP2 (3)
@ From the middle equations, {pg,p1,--- ,pn} and {ro,r1,--- ,7,} span the same space
@ 1 = —po+ (XOAPO + (¥1Ap1 R Oék—lApk—l-

o Apy € span{po,p1,- - ,pr+1} for k > 0. We can show that with induction

o For k=0, p1=po—aoApo+fopo = Apo = 5=[po + Bopo — p1] € span{po, p1}

k=1
o Assume Apy_1 € span{po,p1, - , Pk} Pht1 = Po — 2o ®iApi — apApy + Brpr
k-1
= Apr = fk[po — > i @i Api + Brpr — Pr+1) € span{po,p1, -, Pri1}

Samuel Cheng (University of Oklahoma)

April 14, 2024



Conjugate gradient method

Consider an initial guess xq for the problem Az = b. And iterate as follow

To = A.’L‘O - b, Po = —To, 1 = To + agpo (1)

r = A.Tl - b, p1=-—-r1+ Bopo, Ty = X1+ a1p1 (2)

ro = A$2 — b7 P2 = —To + ﬂ1p1, T3 = T + QoPo (3)
Where oy = <pn’7b7Am“> = <p"'p0> and ﬂ” — M

(PnApn) (pnApn) (pnApn)
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Conjugate gradient method

Consider an initial guess xq for the problem Az = b. And iterate as follow

ro = Axg — b, Po = —To, T1 = To + QoPo (1)
ry = Axy — b, p1 = —r1 + Bopo, To = X1+ o1pr (2)
ro = Axg — b, p2 = —ro + Pip1, T3 = X2 + Qo2 (3)
(Prsb—Azo) _ (Pn.po) (rnt1Apn)

where «,, = and 3, =

(PnApn)

@ From the choice of a,, we see that r, — 0 and z,, — = as long as p; Lap;,¢ # j

(PnApn) (pnApn)
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Conjugate gradient method

Consider an initial guess xq for the problem Az = b. And iterate as follow

To = A.’L‘O - b, Po = —To, 1 = To + agpo (1)

r = A.Tl - b, p1=-—-r1+ Bopo, Ty = X1+ a1p1 (2)

ro = A$2 — b7 P2 = —To + ﬁ1p1, T3 = T + QoPo (3)
Where oy = <pn’7b7Am“> = <p"'p0> and ﬂ” — M

(PnApn)

@ From the choice of a,, we see that r, — 0 and z,, — = as long as p; Lap;,¢ # j

(PnApn) (pnApn)

@ We will show that in the next several slides with induction, note that we also have p; Lr; for
t < j. It is convenient to show them together

Samuel Cheng (University of Oklahoma) April 14, 2024



Conjugacy proof

Consider an initial guess zo for the problem Ax = b. And iterate as follow

ro = Axg — b, Po = —To, 1 = Zo + QoPo (1)
r1 = Ax1 — b, p1 = —7r1 + Bopo, T2 =21+ aip1 (2)
ro = Axo — b, p2 = —T2 + Bip1, T3 = X2 + Q2p2 (3)
where a, = (Prb=Azo) _ (Pupo) g = {rnt1dPn) ang rp = —po + aoApo + Ap1 + -+ ar—14p
" (pnApn) (pnApn)? I (PnApn) k Po 04Po i k—14Pk—1

@ From the choice of 3, we have (pri1Apk) = (—Tk+1 + Brpr, Apk)
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Conjugacy proof

Consider an initial guess xo for the problem Az =b. And iterate as follow

ro = Axo — b, Po = —To, T1 = To + opo (1)

r. = Ax1 — b, p1 = —r1 + Bopo, T2 = T1 + o1p1 (2)

ro = Axo — b, p2 = —Tr2 + Pip1, T3 = T2 + Q2p2 (3)
pn,b— Az Pn,pP Tnt1Apn

@ From the choice of 3, we have (pr+1Apr) = (—rk41 + %pk, Apr)=10
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Conjugacy proof

Consider an initial guess xo for the problem Az =b. And iterate as follow

ro = Az — b, po = —To, T1 = xo + cwpo (1)
r1 = Az — b, p1 = —r1 + Bopo, T2 =21 + aap1 (2)
Ty = Azs — b, p2 = —712 + Bip1, T3 = T2 + 2p2 (3)
pn,b—Ax Pn P Tnt1A4pn
where a,, = <1<17:A;7,>“> = <;‘;A]p‘;>>7 Bn = {rnt1Apn) @Izpi)) and 7, = —po + aoApo + a1 Ap1 + - + ax_1Apr_1
@ From the choice of 3, we have (pr+1Apr) = (—Tk+1 + Pk, Apr)= 0 = pr1+1 Lapy. In particular,
p1Lapo
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Conjugacy proof

Consider an initial guess xo for the problem Az =b. And iterate as follow

ro = Axg — b, Po = —To, xr1 = To + @opo (1)
ri = Az, — b, p1 = —7r1 + Bopo, T2 = X1+ a1p1 (2)
ro = Axo — b, p2 = —T2 + Pip1, T3 = T2 + azp2 (3)
where ay, = Liloe = (P, 5, = % and 1, = —po + aoApo + a1 Apr + -+ + a1 APk
@ From the choice of 3, we have (pr+1Apk) = (—Tk+1 + Pr, Apr)= 0 = pry1 L apr. In particular,
p1lapo

@ And (po,71) = (Po, po — o Apo)

1wel Cheng (Univi r of Oklahoma) April 14, 2024 19/23



Conjugacy proof

Consider an initial guess zo for the problem Ax = b. And iterate as follow

ro = Azo — b, Po = —To, L1 = Zo + aopo (1)
ry = Az, — b, p1 = —r1 + Bopo, T2 =21 + a1p1 (2)
ro = Axy — b, p2 = —r2 + Bip1, T3 = Ta + Q2p2 (3)
where a,, = <p<"')'b;éz>0> = <57"Ap0 , Bn = %%p; and 7, = —po + aoApo + 1 Ap1 + - - + ag—1Apr—1
PnAPn Pn Pn 1 nAaPn
@ From the choice of 8, we have (pr+1A4pr) = (—rk+1 + Pk, Apr)= 0 = pry1-Lapi. In particular,
p1-Lapo

@ And <p()7’l“1> <p07p0 - (;700;11;00)14;00)
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Conjugacy proof

Consider an initial guess zo for the problem Ax = b. And iterate as follow

ro = Azo — b, Po = —To, L1 = Zo + aopo (1)
ry = Az, — b, p1 = —r1 + Bopo, T2 =21 + a1p1 (2)
ro = Axy — b, p2 = —r2 + Bip1, T3 = Ta + Q2p2 (3)
where a,, = <p<"')'b;éz>0> = <57"Ap0 , Bn = %%p; and 7, = —po + aoApo + 1 Ap1 + - - + ag—1Apr—1
PnAPn Pn Pn 1 nAaPn
@ From the choice of 8, we have (pr+1A4pr) = (—rk+1 + Pk, Apr)= 0 = pry1-Lapi. In particular,
p1-Lapo

® And (po,m1) = (po, po — {22E2% Apy) = 0. Thus, po Lr

1wel Cheng (Univi r of Oklahoma) April 14, 2024 19/23



Conjugacy proof

Consider an initial guess xo for the problem Az = b. And iterate as follow

0o = Azo — b, Po = —To, 1 = o + aoPo (1)
rn = Ax1 — b, p1 = —r1 + Bopo, T2 =21+ a1p1 (2)
ro = Axo — b, p2 = —r2 + Pip1, T3 = X2 + Q2p2 (3)
where a, = @nb2AT) _  (Pnpo) 75 Bn = M and 7, = —po + awApo + a1 Ap1 + - - + ar—1Apr—1

(PnApn) — (PnApn) (PnApn)
@ For i < j <k, assume that we have p; L ap; and p;Lr;
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Conjugacy proof

Consider an initial guess xo for the problem Az = b. And iterate as follow

ro = Az — b, po = —To, T1 = 2o + aopo (1)
= Ax1 — b, p1 = —r1 + Bopo, T2 = X1+ aip1 (2)
ro = Axo — b, p2 = —r2 + Pip1, T3 = X2 + Q2p2 (3)
where o, = @(2;?2;430) = (IZ’QXZ‘L , Bn = %’2”’;) and 1 = —po + @ Apo + a1 Apr + - + ap—1Apr—1

@ For i < j <k, assume that we have p; L ap; and p;Lr;
@ Fori<j=k+1,
o (pisTry1) = (Pi, —po + g Apo + - - - +  Apy)
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Conjugacy proof

Consider an initial guess xo for the problem Az = b. And iterate as follow

ro = Az — b, po = —To, T1 = 2o + aopo (1)
= Ax1 — b, p1 = —r1 + Bopo, T2 = X1+ aip1 (2)
ro = Axo — b, p2 = —r2 + Pip1, T3 = X2 + Q2p2 (3)
where o, = @(2;?2;430) = (IZ’QXZ‘L , Bn = %’2”’;) and 1 = —po + @ Apo + a1 Apr + - + ap—1Apr—1

@ For i < j <k, assume that we have p; L ap; and p;Lr;
@ Fori<j=k+1,
o (pi,Tkt1) = —(pi, Po) + i(piAp;)

ty of Oklahoma) April 14, 2024



Conjugacy proof

Consider an initial guess xo for the problem Az = b. And iterate as follow

0o = Azo — b, Po = —To, 1 = o + aoPo (1)
rn = Ax1 — b, p1 = —r1 + Bopo, T2 =21+ a1p1 (2)
ro = Axo — b, p2 = —r2 + Pip1, T3 = X2 + Q2p2 (3)
where a, = @nb2AT) _  (Pnpo) 75 Bn = M and 7, = —po + awApo + a1 Ap1 + - - + ar—1Apr—1

(PnApn) — (PnApn) (PnApn)
@ For i < j <k, assume that we have p; L ap; and p;Lr;

@ Fori<j=k+1,
o (pi,Tkt1) =0

1wel Cheng (Univy r of Oklahoma) April 14, 2024



Conjugacy proof

Consider an initial guess zo for the problem Az = b. And iterate as follow

ro = Axg — b, Po = —To, 1 = Zo + QoPo (1)
ry = Az, — b, p1 = —7r1 + Bopo, To =T1 + a1p1 (2)
= Azy — b, p2 = —r2 + Bip1, T3 = Ta + Q2p2 (3)
(Pn,b=Az0) _ (pn,po (rnt1A4pn) _
where a,, = = , Bn = and 7, = —po + aoApo + 1 Ap1 + -+ - + ar_1Apr_1

(pnApn) pnApn (pnApn)
@ For i < j <k, assume that we have p; L ap; and p;Lr;

@ Fori<j=k+1,

o (pi,Try1) =0
o Assume i < k as pr L apry1 was already shown
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Conjugacy proof

Consider an initial guess zo for the problem Ax = b. And iterate as follow

ro = Azo — b7 Po = —To, Tr1 = To + QoPo (1)
= A1 — b, p1 = —r1+ Bopo, T2 =1+ oupr (2)
r2 = Az — b, p2 = —r2+ Pip1, X3 = T2 + q2p2 (3)
(Pn,b=Azg) _ (Pn,Po (rn+1ApPn) _
where o, = = , B = 222 and vy = —po + aoApo + a1 Apr + - + ag—1Apr—1

<Pn,Apn> PnAPn Pn.Apn>

@ For i < j <k, assume that we have p; L ap; and p; Lr;
@ Fori<j=k+1,

o (pi,Trs1) =0
o Assume i < k as pr L apry1 was already shown

Ph+1 = —Tht1 + Brbr
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Conjugacy proof

Consider an initial guess zo for the problem Ax = b. And iterate as follow

ro = Azo — b7 Po = —To, Tr1 = To + QoPo (1)
= A1 — b, p1 = —r1+ Bopo, T2 =1+ oupr (2)
r2 = Az — b, p2 = —r2+ Pip1, X3 = T2 + q2p2 (3)
(Pn,b=Azg) _ (Pn,Po (rn+1ApPn) _
where o, = = , B = 222 and vy = —po + aoApo + a1 Apr + - + ag—1Apr—1

<Pn,Apn> PnAPn Pn.Apn>

@ For i < j <k, assume that we have p; L ap; and p; Lr;
@ Fori<j=k+1,

o (pi,Trs1) =0
o Assume i < k as pr L apry1 was already shown
DPh+1 = —Tht1 — BTk + BeBr—1Pr—1
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Conjugacy proof

Consider an initial guess zo for the problem Ax = b. And iterate as follow

ro = Azo — b7 Po = —To, Tr1 = To + QoPo (1)
= A1 — b, p1 = —r1+ Bopo, T2 =1+ oupr (2)
r2 = Az — b, p2 = —r2+ Pip1, X3 = T2 + q2p2 (3)
(Pn,b=Azg) _ (Pn,Po (rn+1ApPn) _
where o, = = , B = 222 and vy = —po + aoApo + a1 Apr + - + ag—1Apr—1

<Pn,Apn> PnAPn Pn.Apn>

@ For i < j <k, assume that we have p; L ap; and p; Lr;
@ Fori<j=k+1,

o (pi,Trs1) =0
o Assume i < k as pr L apry1 was already shown

Pkl = —Tht1 — BTk — BrBr—1Tk—1 — - — BrBr—1- - Bi+1Ti+1 + BrBr—1 - Bibi

ty of Oklahoma) April 14, 2024



Conjugacy proof

Consider an initial guess zo for the problem Ax = b. And iterate as follow

ro = Axo — b, Po = —To, T1 = To + Qopo (1)
r1 = Ax1 — b, p1 = —71 + Bopo, T2 = X1+ a1p1 (2)
= Axa — b, p2 = —r2 + Bips, T3 = T2 + Q2p2 (3)
where a,, = {rb2Az0) — {pnpo) g 7”“'4”’” and 7y = —po + awApo + a1 Ap1 + -+ + agp—14pr—1

(pnApn) (pnApn (PnApn)

@ For i < j <k, assume that we have p; L ap; and p; Lr;
@ Fori<j=k+1, (Ap; € span{po,p1, - ,pPi+1})

o (pi,Trs1) =0
o Assume i < k as pr L apry1 was already shown
Prtt = Thi1 — Brre — BrBr—1Tk—1 — =+ — PrBr—1 - Bix1Ti+1 + BeBr—1- - Bipi

= (PiApr+1) = —(Bebr—1- - Bit1)((piArig1) — Bi(piAps))
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Conjugacy proof

Consider an initial guess xo for the problem Az = b. And iterate as follow

ro = Axo — b, Po = —To, T1 = To + opo (1)
= Az — b, p1 = —r1 + Bopo, To2 =21+ aup1 (2)
= Axa — b, p2 = —7r2 + Pip1, T3 = T2 + Q2p2 (3)
where a, = #rb=Ar0) _ {pn.po) 75 Bn = 7”“’413") and rp = —po + awApo + a1 Ap1 + -+ + a1 Apr_1

(pnApn) (pnApn) (pnApn)
@ For i < j <k, assume that we have p; L ap; and p;Lr;

@ Fori<j=k+1, (Ap; € span{po,p1, - ,piti})

o (pi;Tkt1) =0
o Assume i < k as pr L apry1 was already shown

Pri1l = "Thi1 BTk — BeBr—1Tk—1 — -+ — BebBr—1- - Bit1Tix1 + BrBr—1- - Bibi

= (PiApr+1) = —(BkBr—1 - Bit1)((piAriz1) — Bi(piApi)) =0
o Thus, by induction, p; Lap; (and p; Lr;) for all i < j
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Remark

o Equivalent of minimizing f(z) = 32T Az — 2 b+ ¢
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e Given initial x = g, the gradient is Axg — b o< pg. The remaining search directions
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Remark

e Equivalent of minimizing f(x) = %xTAa: —z'b+c
e Given initial x = g, the gradient is Axg — b o< pg. The remaining search directions
are all conjugate to pp. Thus the name conjugate gradient

@ There is no need to actually compute the Hessian, the update only involves
Hessian-vector product Hv, we can compute

d
Hv= — Vv t
v= o i flz+tv)

Samuel Cheng (University of Oklahoma) April 14, 2024



Conclusion

@ Meta Learning: learn to learn

e Learn shared meta-knowledge among different tasks
o Often associated with few-shot learning
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Conclusion

@ Meta Learning: learn to learn

e Learn shared meta-knowledge among different tasks
o Often associated with few-shot learning

e Gradient-based approach

Optimize learning algorithm (parametrized by initial parameter) with gradients directly
Meta-level learning (outer loop): learn meta-knowledge (initial parameter)

Task-level learning (inner loop): learn task specific parameter

MAML: only one inner loop update

Reptile: use multiple inner updates but only cares the final state

iMAML: can use any methods to optimize task model. Use CG to solve meta-gradient
effectively

@ Other meta learning approaches
o Optimization-based approach: learn optimizer directly (e.g., learning to learn by gradient
descent by gradient descent, use RNN to learn task-specific update rules for optimizer)
o Metric-based approach: learn metric useful for classification
e Model-based approach: design network that avoids overfitting
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Reference

e Hung-yi Lee’s MAML lecture

e An Interactive Introduction to Model-Agnostic Meta-Learning

Samuel Cheng (University of Oklahoma) April 14, 2024


https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/Meta1 (v6).pdf
https://interactive-maml.github.io/meta-learning.html#start

