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Meta Learning: Learn to learn

Learn meta-knowledge that shares among tasks
Often associate with few-shot learning

Image credit: Hung-yi Lee
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Meta Learning vs Machine Learning

Machine learning: given input and output, find a function f that maps input to
output

Meta learning: given task training data, find a function F that maps training data to
a good ML function f

Image credit: Hung-Yi Lee
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MNIST of Meta Learning: Omniglot

1623 characters
20 examples each
Github

Other datasets: miniImageNet, CUB
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https://github.com/brendenlake/omniglot


Jargons

N -ways K-shots: N classes and K samples each

In each task,

Image credit: Hung-yi Lee
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Gradient-based Approach

Focus only on F with same network structure but different initialization φ

Minimize L(φ) =
∑

n l
(n)(θ̂(n))

(c.f. L(φ) =
∑

n l
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(FO)MAML

MAML (Model Agnostic Meta Learning): optimize task θ with only 1 gradient update
FOMAML (First Order MAML): 1st order approximation. Get rid of 2nd order terms
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(FO)MAML

φ← φ− η∇φL(φ)

L(φ) =

N∑
n=1

l(n)(θ̂(n))

θ̂(n) = φ− ε∇φl
(n)(φ)

∇φL(φ) = ∇φ

N∑
n=1

l(n)(θ̂(n)) =
N∑

n=1

∇φl
(n)(θ̂(n))

∂l(θ̂)

∂φi
=

∑
j

∂l(θ̂)

∂θ̂j

∂θ̂j
∂φi
≈ ∂l(θ̂)

∂θ̂i

θ̂j = φj − ε
∂l(φ)

∂φj

∇φl(θ̂) =



∂l(θ̂)/∂φ1

∂l(θ̂)/∂φ2

...
∂l(θ̂)/∂φi

...

≈


∂l(θ̂)/∂θ̂1
∂l(θ̂)/∂θ̂2

...
∂l(θ̂)/∂θ̂i

...

 = ∇θ̂l(θ̂)



i 6= j :
∂θ̂j
∂φi

= −ε ∂2l(φ)
∂φi∂φj

≈ 0

i = j :
∂θ̂j
∂φi

= 1− ε ∂2l(φ)
∂φi∂φj

≈ 1
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(FO)MAML vs Pretraining
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MAML vs Pre-training

MAML optimizes the potential of φ: L(φ) =
∑

n l
(n)(θ̂(n))

Image credit: Hung-yi Lee
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MAML vs Pre-training

Pre-training optimizes the current φ for all tasks: L(φ) =
∑

n l
(n)(φ)

Image credit: Hung-yi Lee
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Reptile Result

Image credit: Hung-yi Lee
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iMAML: Implicit Gradient
For each task τ , we don’t want the model parameter θ too far from the meta-parameter φ.
Consequently, consider

min
θ

l(τ)(θ) +
λ

2
‖θ − φ‖2

⇒ ∇θl
(τ)(θ) + λ(θ − φ) = 0 ⇒ θ = φ− 1

λ
∇θl

(τ)(θ)

∂θi
∂φj

=
∂φi

∂φj
− 1

λ

∑
k

∂2l(τ)

∂θk∂θi

∂θk
∂φj

⇒ dθ

dφ
= I − 1

λ
H(l(τ)(θ)

dθ

dφ
⇒ dθ

dφ
=

(
I +

H(l(τ)(θ))

λ

)−1

Thus, the meta-gradient (from task τ) is

∇φl
(τ)(θ) =

dθ

dφ
∇θl

(τ)(θ) =

(
I +

H(l(τ)(θ))

λ

)−1

∇θl
(τ)(θ) , g

This involves inverting n2-size matrix, which is infeasible to compute directly. Consider instead(
I +

H(l(τ)(θ))

λ

)
︸ ︷︷ ︸

A

g = ∇θl
(τ)(θ)︸ ︷︷ ︸
b

,

which can be solved using conjugate gradient method
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A-conjugacy

Let A be N ×N

We say p A-conjugate with q if p>Aq = 0. And denote p⊥Aq

A-conjugate directions are linearly independent if A is positive definite
Assume α1p1 + α2p2 + · · ·+ αkpk = 0, p>j A(α1p1 + α2p2 + · · ·+ αkpk) = 0⇒ p>j Apj = 0

Let x0 be an initial estimate of x, such that Ax = b. Assume x− x0 =
∑N

k=0 αkpk,
p>i A(x− x0) =

∑n
k=0 αkp

>
i Apk = αip

>
i Api ⇒ αi =

p>
i (b−Ax0)

p>
i Api

= 〈pi,b−Ax0〉
〈piApi〉

Here we use the bracket notation commonly used in physics, p>q = 〈p, q〉 and
p>Aq = 〈p,Aq〉 = 〈pAq〉

If we can keep generating conjugate directions pk, we can find the solution x that
satisfies Ax = b by simply computing αi =

〈pi,b−Ax0〉
〈piApi〉
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Conjugate gradient method

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·

From the middle equations, {p0, p1, · · · , pn} and {r0, r1, · · · , rn} span the same space

rk

Apk ∈ span{p0, p1, · · · , pk+1} for k ≥ 0. We can show that with induction

For k = 0, ⇒ Apk = 1
αk

[p0 −
∑k−1

i=0 αiApi + βkpk − pk+1] ∈ span{p0, p1, · · · , pk+1}
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Conjugate gradient method

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·

where αn = 〈pn,b−Ax0〉
〈pnApn〉 = 〈pn,p0〉

〈pnApn〉 and βn = 〈rn+1Apn〉
〈pnApn〉

From the choice of αn, we see that rn → 0 and xn → x as long as pi⊥Apj , i 6= j

We will show that in the next several slides with induction, note that we also have pi⊥rj for
i < j. It is convenient to show them together
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Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·

where αn = 〈pn,b−Ax0〉
〈pnApn〉 = 〈pn,p0〉

〈pnApn〉 , βn =
〈rn+1Apn〉
〈pnApn〉 and rk = −p0 + α0Ap0 + α1Ap1 + · · ·+ αk−1Apk−1

From the choice of β, we have 〈pk+1Apk〉 = 〈−rk+1 + βkpk, Apk〉

Samuel Cheng (University of Oklahoma) Meta Learning April 14, 2024 19 / 23



Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·
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From the choice of β, we have 〈pk+1Apk〉 = 〈−rk+1 +
〈rk+1Apk〉
〈pkApk〉

pk, Apk〉= 0
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
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〈pnApn〉 and rk = −p0 + α0Ap0 + α1Ap1 + · · ·+ αk−1Apk−1

From the choice of β, we have 〈pk+1Apk〉 = 〈−rk+1 + pk, Apk〉= 0 ⇒ pk+1⊥Apk. In particular,
p1⊥Ap0
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·

where αn = 〈pn,b−Ax0〉
〈pnApn〉 = 〈pn,p0〉

〈pnApn〉 , βn =
〈rn+1Apn〉
〈pnApn〉 and rk = −p0 + α0Ap0 + α1Ap1 + · · ·+ αk−1Apk−1

From the choice of β, we have 〈pk+1Apk〉 = 〈−rk+1 + pk, Apk〉= 0 ⇒ pk+1⊥Apk. In particular,
p1⊥Ap0

And 〈p0, r1〉 = 〈p0, p0 − α0Ap0〉
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·

where αn = 〈pn,b−Ax0〉
〈pnApn〉 = 〈pn,p0〉

〈pnApn〉 , βn =
〈rn+1Apn〉
〈pnApn〉 and rk = −p0 + α0Ap0 + α1Ap1 + · · ·+ αk−1Apk−1

For i < j ≤ k, assume that we have pi⊥Apj and pi⊥rj

For i < j = k + 1,

(Api ∈ span{p0, p1, · · · , pi+1})

〈pi, rk+1〉
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·

where αn = 〈pn,b−Ax0〉
〈pnApn〉 = 〈pn,p0〉

〈pnApn〉 , βn =
〈rn+1Apn〉
〈pnApn〉 and rk = −p0 + α0Ap0 + α1Ap1 + · · ·+ αk−1Apk−1

For i < j ≤ k, assume that we have pi⊥Apj and pi⊥rj

For i < j = k + 1,

(Api ∈ span{p0, p1, · · · , pi+1})

〈pi, rk+1〉 = −〈pi, p0〉+ αi〈piApi〉

Samuel Cheng (University of Oklahoma) Meta Learning April 14, 2024 20 / 23



Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·
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〈pnApn〉 , βn =
〈rn+1Apn〉
〈pnApn〉 and rk = −p0 + α0Ap0 + α1Ap1 + · · ·+ αk−1Apk−1

For i < j ≤ k, assume that we have pi⊥Apj and pi⊥rj

For i < j = k + 1,

(Api ∈ span{p0, p1, · · · , pi+1})

〈pi, rk+1〉 = 0
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
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For i < j ≤ k, assume that we have pi⊥Apj and pi⊥rj

For i < j = k + 1,

(Api ∈ span{p0, p1, · · · , pi+1})

〈pi, rk+1〉 = 0
Assume i < k as pk⊥Apk+1 was already shown
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
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For i < j ≤ k, assume that we have pi⊥Apj and pi⊥rj

For i < j = k + 1,

(Api ∈ span{p0, p1, · · · , pi+1})

〈pi, rk+1〉 = 0
Assume i < k as pk⊥Apk+1 was already shown
pk+1 = −rk+1 + βkpk
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·

where αn = 〈pn,b−Ax0〉
〈pnApn〉 = 〈pn,p0〉

〈pnApn〉 , βn =
〈rn+1Apn〉
〈pnApn〉 and rk = −p0 + α0Ap0 + α1Ap1 + · · ·+ αk−1Apk−1

For i < j ≤ k, assume that we have pi⊥Apj and pi⊥rj

For i < j = k + 1,

(Api ∈ span{p0, p1, · · · , pi+1})

〈pi, rk+1〉 = 0
Assume i < k as pk⊥Apk+1 was already shown
pk+1 = −rk+1 − βkrk + βkβk−1pk−1
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·

where αn = 〈pn,b−Ax0〉
〈pnApn〉 = 〈pn,p0〉

〈pnApn〉 , βn =
〈rn+1Apn〉
〈pnApn〉 and rk = −p0 + α0Ap0 + α1Ap1 + · · ·+ αk−1Apk−1

For i < j ≤ k, assume that we have pi⊥Apj and pi⊥rj

For i < j = k + 1,

(Api ∈ span{p0, p1, · · · , pi+1})

〈pi, rk+1〉 = 0
Assume i < k as pk⊥Apk+1 was already shown
pk+1 = −rk+1 − βkrk − βkβk−1rk−1 − · · · − βkβk−1 · · ·βi+1ri+1 + βkβk−1 · · ·βipi
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·

where αn = 〈pn,b−Ax0〉
〈pnApn〉 = 〈pn,p0〉

〈pnApn〉 , βn =
〈rn+1Apn〉
〈pnApn〉 and rk = −p0 + α0Ap0 + α1Ap1 + · · ·+ αk−1Apk−1

For i < j ≤ k, assume that we have pi⊥Apj and pi⊥rj

For i < j = k + 1, (Api ∈ span{p0, p1, · · · , pi+1})

〈pi, rk+1〉 = 0
Assume i < k as pk⊥Apk+1 was already shown
pk+1 = −rk+1 − βkrk − βkβk−1rk−1 − · · · − βkβk−1 · · ·βi+1ri+1 + βkβk−1 · · ·βipi

⇒ 〈piApk+1〉
?
= −(βkβk−1 · · ·βi+1)(〈piAri+1〉 − βi〈piApi〉)
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Conjugacy proof

Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·

where αn = 〈pn,b−Ax0〉
〈pnApn〉 = 〈pn,p0〉

〈pnApn〉 , βn =
〈rn+1Apn〉
〈pnApn〉 and rk = −p0 + α0Ap0 + α1Ap1 + · · ·+ αk−1Apk−1

For i < j ≤ k, assume that we have pi⊥Apj and pi⊥rj

For i < j = k + 1, (Api ∈ span{p0, p1, · · · , pi+1})

〈pi, rk+1〉 = 0
Assume i < k as pk⊥Apk+1 was already shown
pk+1 = −rk+1 − βkrk − βkβk−1rk−1 − · · · − βkβk−1 · · ·βi+1ri+1 + βkβk−1 · · ·βipi

⇒ 〈piApk+1〉
?
= −(βkβk−1 · · ·βi+1)(〈piAri+1〉 − βi〈piApi〉) = 0
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Conjugacy proof
Consider an initial guess x0 for the problem Ax = b. And iterate as follow

r0 = Ax0 − b, p0 = −r0, x1 = x0 + α0p0 (1)
r1 = Ax1 − b, p1 = −r1 + β0p0, x2 = x1 + α1p1 (2)
r2 = Ax2 − b, p2 = −r2 + β1p1, x3 = x2 + α2p2 (3)

· · ·

where αn = 〈pn,b−Ax0〉
〈pnApn〉 = 〈pn,p0〉

〈pnApn〉 , βn =
〈rn+1Apn〉
〈pnApn〉 and rk = −p0 + α0Ap0 + α1Ap1 + · · ·+ αk−1Apk−1

For i < j ≤ k, assume that we have pi⊥Apj and pi⊥rj

For i < j = k + 1, (Api ∈ span{p0, p1, · · · , pi+1})

〈pi, rk+1〉 = 0
Assume i < k as pk⊥Apk+1 was already shown
pk+1 = −rk+1 − βkrk − βkβk−1rk−1 − · · · − βkβk−1 · · ·βi+1ri+1 + βkβk−1 · · ·βipi

⇒ 〈piApk+1〉
?
= −(βkβk−1 · · ·βi+1)(〈piAri+1〉 − βi〈piApi〉) = 0

Thus, by induction, pi⊥Apj (and pi⊥rj) for all i < j

Samuel Cheng (University of Oklahoma) Meta Learning April 14, 2024 20 / 23



Remark

Equivalent of minimizing f(x) = 1
2x

>Ax− x>b+ c

Given initial x = x0, the gradient is Ax0 − b ∝ p0. The remaining search directions
are all conjugate to p0. Thus the name conjugate gradient
There is no need to actually compute the Hessian, the update only involves
Hessian-vector product Hv, we can compute

Hv =
d

dt

∣∣∣∣
t=0

∇f(x+ tv)
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Conclusion
Meta Learning: learn to learn

Learn shared meta-knowledge among different tasks
Often associated with few-shot learning

Gradient-based approach
Optimize learning algorithm (parametrized by initial parameter) with gradients directly
Meta-level learning (outer loop): learn meta-knowledge (initial parameter)
Task-level learning (inner loop): learn task specific parameter
MAML: only one inner loop update
Reptile: use multiple inner updates but only cares the final state
iMAML: can use any methods to optimize task model. Use CG to solve meta-gradient
effectively

Other meta learning approaches
Optimization-based approach: learn optimizer directly (e.g., learning to learn by gradient
descent by gradient descent, use RNN to learn task-specific update rules for optimizer)
Metric-based approach: learn metric useful for classification
Model-based approach: design network that avoids overfitting
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Reptile: use multiple inner updates but only cares the final state
iMAML: can use any methods to optimize task model. Use CG to solve meta-gradient
effectively

Other meta learning approaches
Optimization-based approach: learn optimizer directly (e.g., learning to learn by gradient
descent by gradient descent, use RNN to learn task-specific update rules for optimizer)
Metric-based approach: learn metric useful for classification
Model-based approach: design network that avoids overfitting
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