Self-supervised learning and self-training

Samuel Cheng Image credits: Ishan Misra, Amit Chaudhary

University of Oklahoma

April 3, 2024

Sam Cheng (University of Oklahoma) Self-supervised learning and self-training

▲□ ▷ ▲ ⓓ ▷ ▲ ≧ ▷ ▲ ≧ ▷
April 3, 2024

Self-Supervised Learning vs. Other Techniques

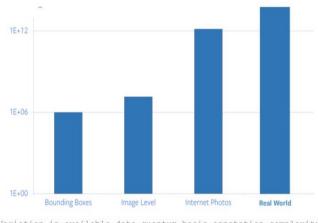
- Supervised learning: requires labeled data for training
- Unsupervised learning: learns representations without using any labels
- Semi-supervised learning: uses a mixture of labeled and unlabeled data for training
- Self-supervised learning: a subcategory of unsupervised learning that creates surrogate tasks by using the data itself as a source of supervision
 - A useful technique to achieve semi-supervised learning

- Computer vision: image inpainting, object detection, segmentation.
- Natural language processing: language modeling, machine translation, sentiment analysis.
- Speech recognition: speaker identification, emotion recognition, speech enhancement.

A D A A B A A B A A B A

Introduction

Why self-supervised learning?

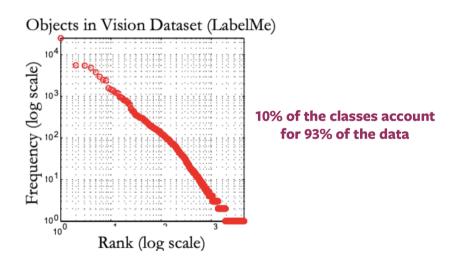


Variation in available data quantum basis annotation complexity

・ロト ・回ト ・モト ・モン

Introduction

Why self-supervised learning?



April 3, 2024

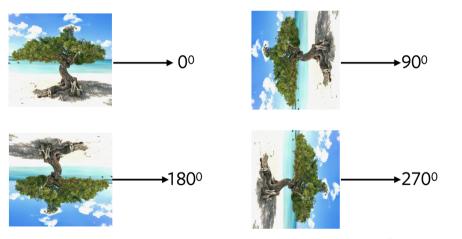
Image: A math a math

Pretext tasks vs downstream tasks

- Pretext task: Auxiliary task to learn representations
- Examples:
 - Image rotation task
 - Image inpainting
 - Relative position task
 - Jigsaw puzzle solving
 - Contrastive learning

- Downstream task: Main task where learned representations are utilized
- Examples:
 - Image classification
 - Object detection
 - Semantic segmentation

Image rotation task



Gidaris et al., 2018, Predicting Image Rotations

Sam Cheng (University of Oklahoma) Self

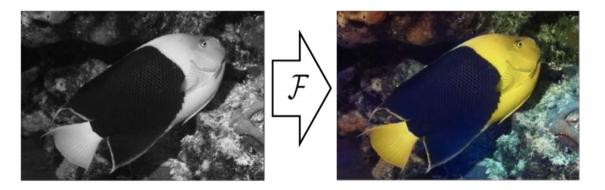
Self-supervised learning and self-training

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶
 April 3, 2024

7/79

3

Coloring task



Sam Cheng (University of Oklahoma)

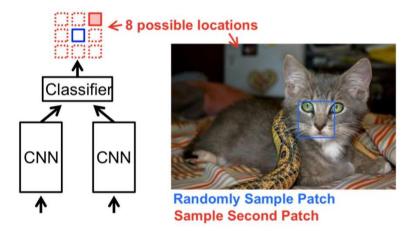
Self-supervised learning and self-training

▲ □ ▶ < □ ▶ < □ ▶ < □ ▶
 April 3, 2024

8/79

э

Relative position task



Pretext task for predicting relative position of patches

Sam Cheng (University of Oklahoma)

Self-supervised learning and self-training

▲□ ▷ ▲ ⓓ ▷ ▲ ≧ ▷ ▲ ≧ ▷
April 3, 2024

Evaluation with clustering

Comparison of nearest neighbours for relative positioning with ImageNet pretrained and random initialized networks

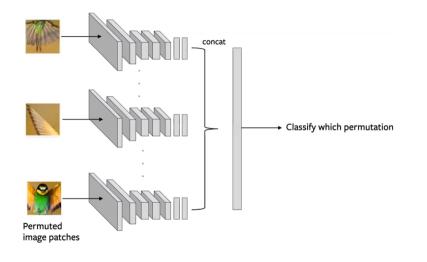
Sam Cheng (University of Oklahoma)

Self-supervised learning and self-training

▲□▶ ▲ □▶ ▲ ■ ▶ ▲ ■ April 3, 2024

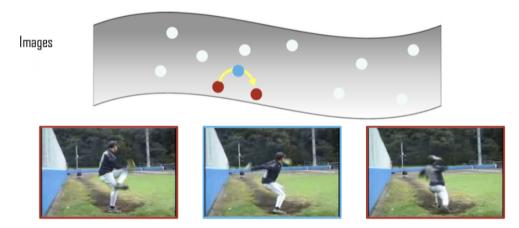
10/79

Jigsaw task



Self-supervised learning and self-training

Interpolation task for videos



Given a start and an end, can this point lie in between?

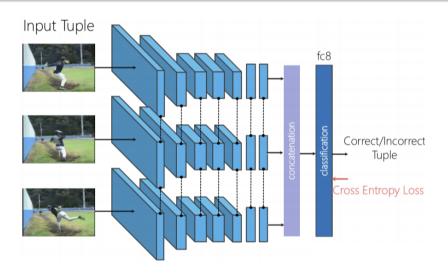
Sam Cheng (University of Oklahoma)

Self-supervised learning and self-training

▲□▶ < □▶ < □▶ < □▶ < □▶</p>
April 3, 2024

12/79

"Shuffle & learn"



Self-supervised learning and self-training

< □ > < □ > < □ > < □ > < □ > < □ >
 April 3, 2024

Return query with nearest neighbor output

ImageNet

Shuffle & Learn

Random

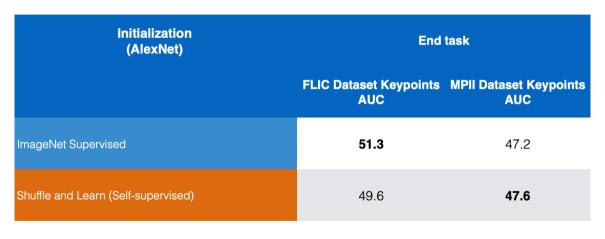
Castral Jamaire

Self-supervised learning and self-training

▲□ ▷ ▲ 🗇 ▷ ▲ 🖹 ▷ ▲ 🖹 ▷ April 3, 2024

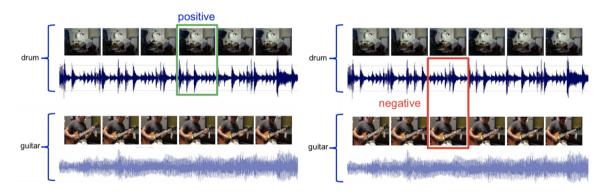
14/79

Great initialization for human pose estimation



Sam Cheng (University of Oklahoma) Self-supervised learning and self-training April 3, 2024 15/79

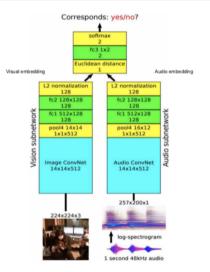
Video + audio pretask



Sam Cheng (University of Oklahoma) Self-supervised learning and self-training April 3, 2024 16/79

э

Video + audio pretask



Sam Cheng (University of Oklahoma)

Self-supervised learning and self-training

< □ > < □ > < □ > < □ > < □ >
 April 3, 2024

э

Some Considerations of Pretext Tasks

- Pretext tasks vary in difficulty and predictive power
 - Relative position: easy, simple classification
 - Masking and fill-in: harder, better representation
 - Contrastive methods: more information, beyond pretext tasks
- A single pretext task may not be enough to learn self-supervised representations
 - How do we train multiple pre-training tasks?

イロト イポト イラト イラト

Swapping Final Layers for Different Pretext Tasks

- Final fully-connected layer can be swapped based on batch type
- Example:
 - Feed a batch of black-and-white images, produce colored images
 - Switch final layer, feed a batch of patches, predict relative position
- How much should we train on a pretext task?

イロト イボト イヨト イヨト

Multiple pretext tasks can boost performance

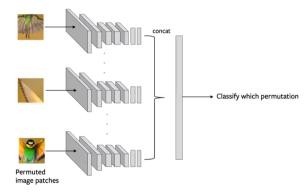
Initialization (ResNet101)		End task				
		ImageNet top-5 accuracy	VOC07 Detection mAP			
Relative Position		59.2	66.8			
Colorization		62.5	65.5			
Relative Position + Colorization (Multi	-task)	66.6	68.8			
Sam Cheng (University of Oklahoma)	Self-supervised lear	ning and self-training	· · · · · · · · · · · · · · · · · · ·			

Some Considerations for Training Pretext Tasks

- Rule of thumb: Choose a difficult pretext task or multiple pretext tasks that improves the downstream task
- In development, train pretext tasks as part of the entire pipeline
- In practice, one usually do not re-train later
 - Retraining may lead to overfitting as downstream task does not necessary align with the pretext tasks

イロト イボト イヨト イヨト

Scaling SSL: jigsaw puzzles



- Use a subset of permutations (e.g., from 9!, use 100)
- N-way ConvNet uses shared parameters
- Problem complexity depends on subset size

22/79

• Can perform better on downstream tasks than supervised methods

Evaluation: Fine-tuning vs. Linear Classifier

- Good representation should transfer with little training \Rightarrow Transfer learning evaluation
 - Fine-tuning: Use entire network as initialization, update all weights
 - Linear Classifier: Train a small linear classifier on top of pretext network
- How each layer is doing as a representation for the downstream task?

イロト イボト イヨト イヨト

What does each layer learn?

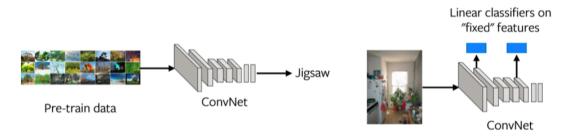


Fig. 1: Feature representations at each layer

Sam Cheng (University of Oklahoma) Self-supervised learning and self-training April 3, 2024

 $24 \, / \, 79$

イロト 不得下 イヨト イヨト

What does each layer learn?

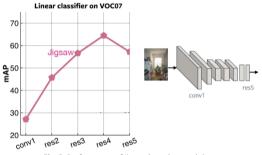


Fig. 2: Performance of Jigsaw based on each layer

- Deeper layers: Higher mAP on downstream tasks
- Final layer: Sharp drop in mAP, overly specialized
 - Contrasts with supervised networks: mAP generally increases with depth

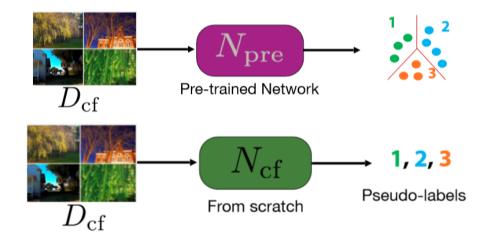
A D N A B N A B N

< E.

25/79

• Pretext task not well-aligned to downstream task

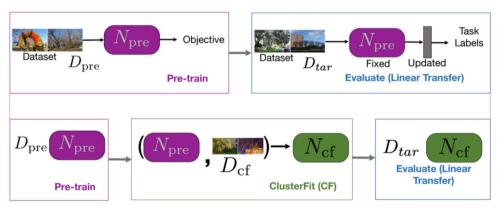
ClusterFit



э

ClusterFit vs "standard" transfer learning

"Standard" Pre-train and Transfer

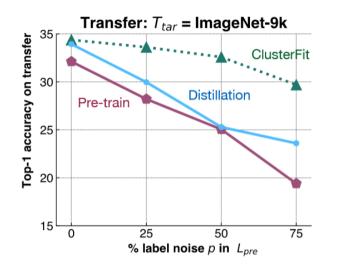


"Standard" Pre-train + ClusterFit

			E *)4(*
Sam Cheng (University of Oklahoma)	Self-supervised learning and self-training	April 3, 2024	27 / 79

-

Gain over distillation when there is label noise



Self-supervised learning and self-training

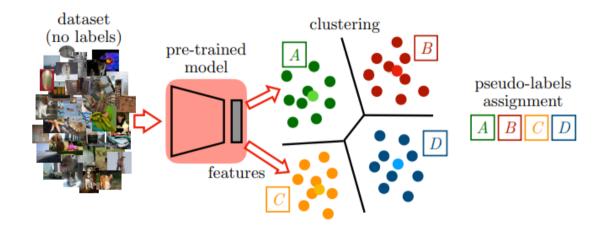
April 3, 2024

	Transfer Dataset					
Method	ImageNet-1M	VOC07	Places205	iNaturalist		
Jigsaw Pretrain	46.0	66.1	39.9	22.1		
Pretrain 2x	45.1	65.4	38.7	21.8		
ClusterFit	55.2 +9	69.5+3	45.0 +5	29.8 +7		

Sam Cheng (University of Oklahoma) Self-supervised learning and self-training April 3, 2024 29/79

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Boosting self-supervised learning via knowledge transfer



イロト 不得下 イヨト イヨト

Boosting self-supervised learning via knowledge transfer

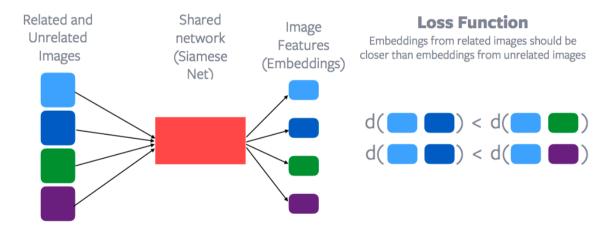
Task	Clustering	Pre-text architecture	Downstrean arch.	n Classif	ication [etection(SS)	Detec	tion(MS)	Segmentatior
Jigsaw	no	AlexNet	AlexNet	67.7	5	3.2	-		-
Jigsaw++	no	AlexNet	AlexNet	69.8	5	5.5	55.7		38.1
Jigsaw++	yes	AlexNet	AlexNet	69.9	5	5.0	55.8		40.0
Jigsaw++	yes	VGG-16	AlexNet	72.5	5	6.5	57.2		42.6
#clusters			500 10	1000	200	2000 5		5000 1000	
mAP on voc-classification		69.1	69.5	69.	9	69.9	70.0		

Sam Cheng (University of Oklahoma)

Self-supervised learning and self-training

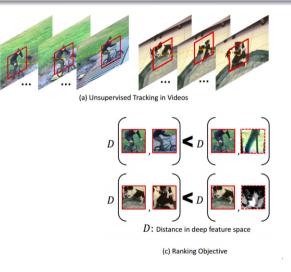
April 3, 2024

Contrastive learning



イロト イボト イヨト イヨト

Video example



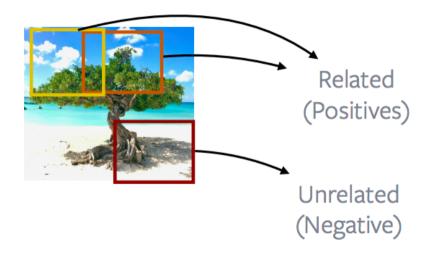
Sam Cheng (University of Oklahoma) Self-supervised learning and self-training April 3, 2024

33 / 79

э

Contrastive learning

Nearby patches vs. distant patches of an Image



Sam Cheng (University of Oklahoma)

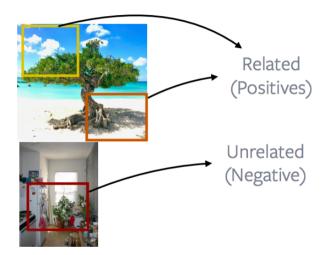
Self-supervised learning and self-training

4 □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ <

34/79

Contrastive learning

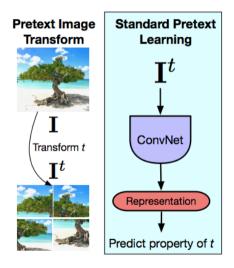
Patches of an image vs. patches of other images



▲□ ▷ ▲ ⓓ ▷ ▲ ≧ ▷ ▲ ≧ ▷
April 3, 2024

35 / 79

Pretext Image Transform and Standard Pretext Learning



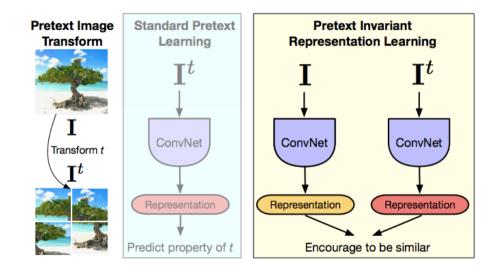
Consider the pretext task of predicting the property of a transform

- The pretext task always reasons about a single image
- Pretext task captures some property of the transform
 - One usually wants representations to be invariant to transform
 - Representation from pretext task does the exact opposite thing

4 □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ <

Contrastive learning PIRL

Pretext Invariant Representation Learning (PIRL)



Sam Cheng (University of Oklahoma)

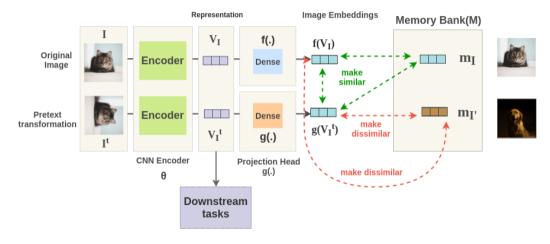
Self-supervised learning and self-training

▲□ ▷ ▲ 🗇 ▷ ▲ 🖹 ▷ ▲ 🖹 ▷ April 3, 2024

PIRL Goals

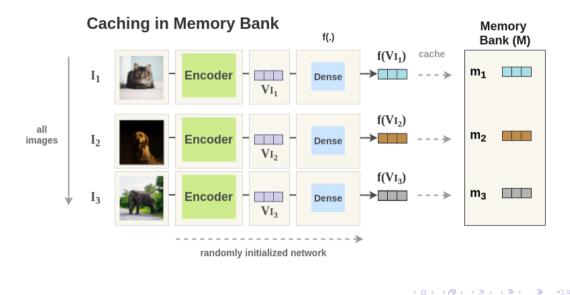
Sam Cheng (University of Oklahoma) Self-supervised learning and self-training April 3, 2024

PIRL Generic Framework



Sam Cheng (University of Oklahoma) Self-supervised learning and self-training April 3, 2024

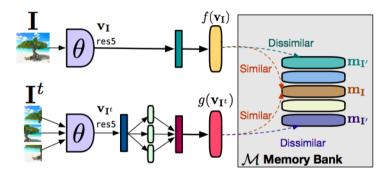
э



Self-supervised learning and self-training

April 3, 2024

Net loss



$L_{\mathrm{NCE}}(g(\mathbf{v_{I^{t}}}),\mathbf{m_{I}}) + L_{\mathrm{NCE}}(f(\mathbf{v_{I}}),\mathbf{m_{I}})$

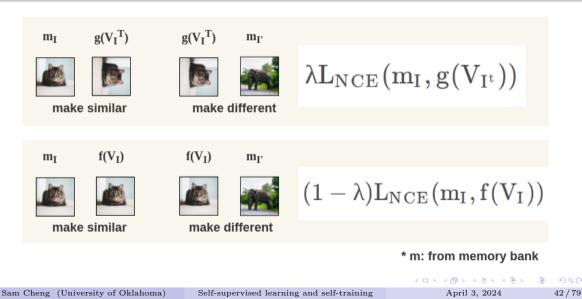
Rep. It and **m**I should be similar

Rep. I and mI should be similar

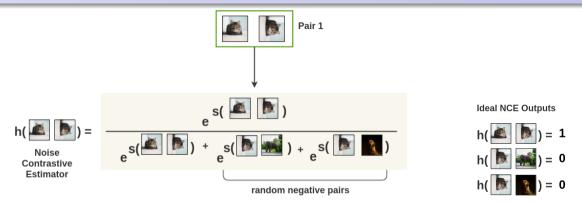
Sam Cheng (University of Oklahoma) Self-supervised learning and self-training

イロト 不得下 イヨト イヨト

Net loss



Noise contrastive estimator loss



$$L_{NCE}(f_1, f_2) = -\log[h(f_1, f_2)] - \sum_{f'} \log[1 - h(f', f_2)]$$

Sam Cheng (University of Oklahoma)

Self-supervised learning and self-training

< □ > < □ > < □ > < □ > < □ > < □ >
 April 3, 2024

э

Initialization	VOC07+12		VOC07			
	AP ^{all}	AP ⁵⁰	AP ⁷⁵	AP all	AP ⁵⁰	AP ⁷⁵
ImageNet Supervised	52.6	81.1	57.4	43.8 2.3	74.5	45.9
PIRL	54.0	<u>80.7</u>	59.7	44.7	73.4	47.0

Sam Cheng (University of Oklahoma)

Self-supervised learning and self-training

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�? April 3, 2024

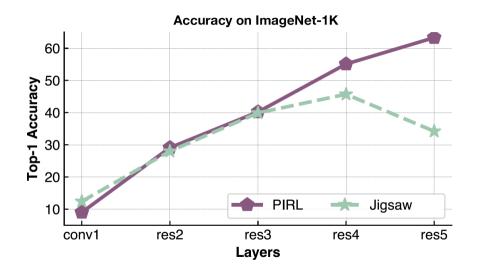
44 / 79

Method	# Pretrain Images	Evaluation	
		ImageNet	Places-205
DeeperCluster (Caron et al., 2019)	100M	45.6	42.1
Jigsaw (Goyal et al., 2019)	100M	48.3	44.8
PIRL	1M 100	57.8 +9	51.0 +6

 Sam Cheng (University of Oklahoma)
 Self-supervised learning and self-training
 April 3, 2024
 45/79

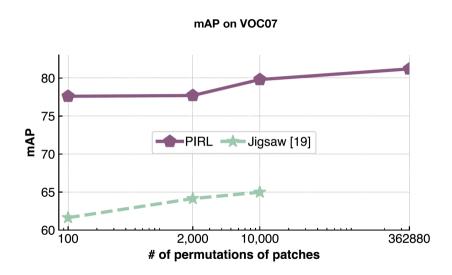
・ロト ・四ト ・ヨト ・ヨト

5 DQC



April 3, 2024

• • = • • =



イロト 不得下 イヨト イヨト

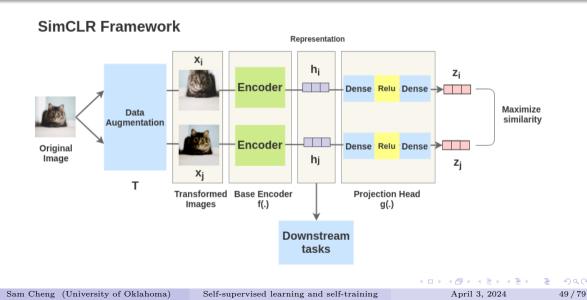
э

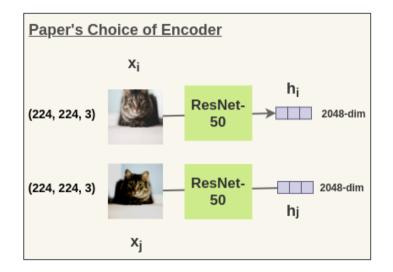
	Transfer Dataset				
Method	ImageNet-1M	VOC07	Places205	iNaturalist	
Jigsaw	46.0	66.1	41.4	22.1	
Rotation	48.9	63.9	47.6	23	
PIRL (Rot)	60.2	77.1	47.6	31.2	
PIRL (Jigsaw + Rot)	63.1	80.3	49.7	33.6	

・ロト ・四ト ・ヨト ・ヨト

∃ ∽ へ (~

SimCLR



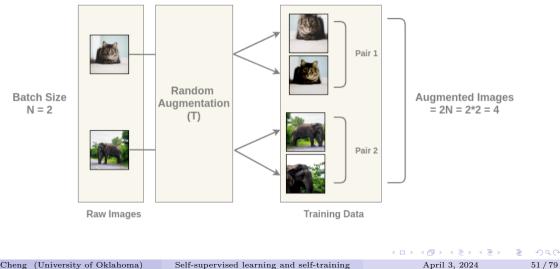


イロト イボト イヨト イヨト

э

SimCLR.

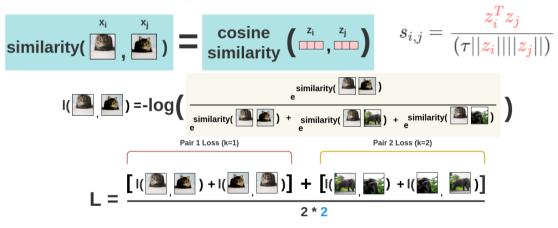
Preparing similar pairs in a batch



Sam Cheng (University of Oklahoma) Self-supervised learning and self-training April 3, 2024

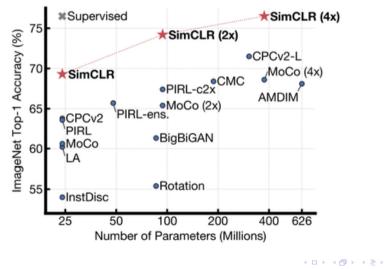
Loss

Similarity Calculation of Augmented Images



Sam Cheng (University of Oklahoma) Self-supervised learning and self-training April 3, 2024 52/79

Result



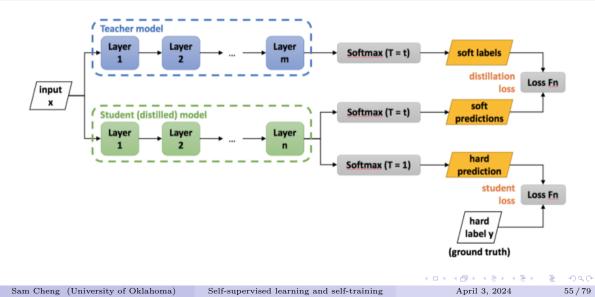
< 3

- An effective technique to achieve semi-supervised learning (train a model with a mixture of labeled and unlabeled data)
 - A pre-trained model will learn from labeled data
 - Use the pre-trained model to label the unlabeled data
 - Refine the model with additional data
- Unlike self-supervised learning, no surrogate/pretext task is involved

イロト イボト イヨト イヨト

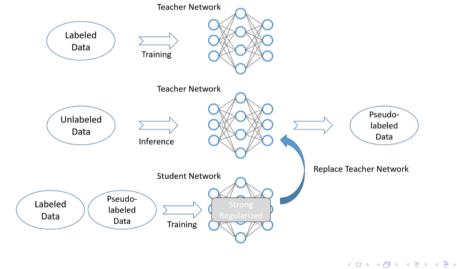
Self-training

Recall: Knowledge Distillation



Self-training Noisy student

Self-training with Noisy Student improves ImageNet classification



Sam Cheng (University of Oklahoma)

Self-supervised learning and self-training

April 3, 2024

э

Difference from standard self-training

- Adding noise to training procedure to prevent student model from simply memorizing the training data
- Noise can be injected into the student model in two ways
 - input noise: data augmentation with RandAugment is used
 - model noise: dropout and stochastic depth are used. Dropout randomly drops out some of the neurons during training to prevent overfitting, while stochastic depth randomly skips some of the layers during training to improve generalization
- Unlike typical self-training cycle, iteratively increases the student model's capacity

イロト 不同 ト イヨト イヨト ヨー うらつ

Result

Method	# Params	Extra Data	Top-1 Acc.	Top-5 Acc.
ResNet-50 [30]	26M		76.0%	93.0%
ResNet-152 [30]	60M	-	77.8%	93.8%
DenseNet-264 [36]	34M		77.9%	93.9%
Inception-v3 [81]	24M		78.8%	94.4%
Xception [15]	23M		79.0%	94.5%
Inception-v4 [79]	48M		80.0%	95.0%
Inception-resnet-v2 [79]	56M		80.1%	95.1%
ResNeXt-101 [92]	84M	-	80.9%	95.6%
PolyNet [100]	92M	-	81.3%	95.8%
SENet [35]	146M		82.7%	96.2%
NASNet-A [104]	89M	-	82.7%	96.2%
AmoebaNet-A [65]	87M	-	82.8%	96.1%
PNASNet [50]	86M		82.9%	96.2%
AmoebaNet-C [17]	155M	-	83.5%	96.5%
GPipe [38]	557M	-	84.3%	97.0%
EfficientNet-B7 [83]	66M	-	85.0%	97.2%
EfficientNet-L2 [83]	480M		85.5%	97.5%
ResNet-50 Billion-scale [93]	26M		81.2%	96.0%
ResNeXt-101 Billion-scale [93]	193M	2 CD increase labeled with them	84.8%	-
ResNeXt-101 WSL [55]	829M	3.5B images labeled with tags	85.4%	97.6%
FixRes ResNeXt-101 WSL [86]	829M		86.4%	98.0%
Big Transfer (BiT-L) [43] [†]	928M	300M weakly labeled images from JFT	87.5%	98.5%
Noisy Student Training (EfficientNet-L2)	480M	300M unlabeled images from JFT	88.4%	98.7%

Table 2: Top-1 and Top-5 Accuracy of Noisy Student Training and previous state-of-the-art methods on ImageNet. EfficientNet-L2 with Noisy Student Training is the result of iterative training for multiple iterations by putting back the student model as the new teacher. It has better tradeoff in terms of accuracy and model size compared to previous state-ofthe-art models. ¹: Big Transfer is a concurrent work that performs transfer learning from the JFT dataset.

Sam Cheng (University of Oklahoma)

Self-supervised learning and self-training

< □ > < □ > < □ > < ≡ > < ≡ >
 April 3, 2024

3

Noisy student

Noisy student increases robustness

Method	Top-1 Acc.	Top-5 Acc
ResNet-101 [32]	4.7%	
ResNeXt-101 [32] (32x4d)	5.9%	-
ResNet-152 [32]	6.1%	-
ResNeXt-101 [32] (64x4d)	7.3%	-
DPN-98 [32]	9.4%	-
ResNeXt-101+SE [32] (32x4d)	14.2%	-
ResNeXt-101 WSL [55, 59]	61.0%	
EfficientNet-L2	49.6%	78.6%
Noisy Student Training (L2)	83.7%	95.2%

Table 3: Robustness results on ImageNet-A.

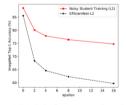


Figure 4: Noisy Student Training improves adversarial robustness against an FGSM attack though the model is not optimized for adversarial robustness. The accuracy is improved by 11% at $\epsilon = 2$ and gets better as ϵ gets larger.

Method	Res.	Top-1 Acc.	mCE
ResNet-50 [31]	224	39.0%	76.7
SIN [23]	224	45.2%	69.3
Patch Gaussian [51]	299	52.3%	60.4
ResNeXt-101 WSL [55, 59]	224		45.7
EfficientNet-L2	224	62.6%	47.5
Noisy Student Training (L2)	224	76.5%	30.0
EfficientNet-L2	299	66.6%	42.5
Noisy Student Training (L2)	299	77.8%	28.3

Table 4: Robustness results on ImageNet-C. mCE is the weighted average of error rate on different corruptions, with A lex Net's error rate as a baseline (lower is better).

Method	Res.	Top-1 Acc.	mFR
ResNet-50 [31]	224	-	58.0
Low Pass Filter Pooling [99]	224	-	51.2
ResNeXt-101 WSL [55, 59]	224	-	27.8
EfficientNet-L2	224	80.4%	27.2
Noisy Student Training (L2)	224	85.2%	14.2
EfficientNet-L2	299	81.6%	23.7
Noisy Student Training (L2)	299	86.4%	12.2

Table 5: Robustness results on ImageNet-P, where images are generated with a sequence of perturbations. mFR measures the model's probability of flipping predictions under perturbations with AlexNet as a baseline (lower is better).

- ImageNet-A: naturally adversarial examples
- ImageNet-C: Corruption from noise, blur, pixelate (intentional downsampling + upsampling)
- ImageNet-P: Perturbations (distortion from motion)
- FGSM: Fast gradient sign method

 $X_{Adversarial} = X + \varepsilon . sign(\nabla_X I(X, Y)),$

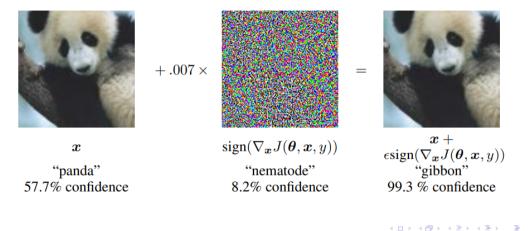
イロト イボト イヨト イヨト April 3, 2024

59/79

Self-training Noisy student

Explaining and harnessing adversarial examples (FGSM)

$$X_{Adversarial} = X + \varepsilon . sign(\nabla_X J(X, Y)),$$



Sam Cheng (University of Oklahoma)

Self-supervised learning and self-training

April 3, 2024

Self-training Tf-KD

Revisiting Knowledge Distillation via Label Smoothing Regularization

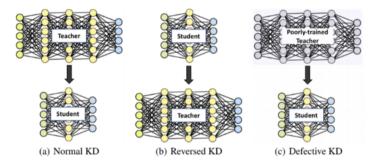


Figure 1: (a) Normal KD framework. (b)(c) Diagrams of exploratory experiments we conduct.

Tf-KD

Teacher: baseline	Student: baseline	$\left \text{ Normal KD } (T \rightarrow S) \right \text{Re-KD } (S \rightarrow T)$
ResNet18: 95.12	Plain CNN: 87.14 MobileNetV2: 90.98	87.67±0.17 (+0.53) 95.33±0.12 (+0.21) 91.69±0.14 (+0.71) 95.71±0.11 (+0.59)
MobileNetV2: 90.98	Plain CNN: 87.14	$\left \begin{array}{c} 87.45{\pm}0.18\ \textbf{(+0.31)}\end{array}\right \ 91.81{\pm}0.23\ \textbf{(+0.92)}$
ResNeXt29: 95.76	ResNet18: 95.12	95.80±0.13 (+0.68) 96.49±0.15 (+0.73)

Table 3. Re-KD experiment results (accuracy, in %) on Tiny-ImageNet.

Teacher: baseline	Student: baseline	Normal KD (T \rightarrow S)	Re-KD (S→T)
ResNet18: 63.44	MobileNetV2: 55.06 ShuffleNetV2: 60.51	56.70 (+1.64) 61.19 (+0.68)	64.12 (+0.68) 64.35 (+0.91)
ResNet50: 67.47	MobileNetV2: 55.06 ShuffleNetV2: 60.51 ResNet18: 63.44	56.02 (+0.96) 60.79 (+0.28) 64.23 (+0.79)	67.68 (+0.21) 67.62 (+0.15) 67.89 (+0.42)

Sam Cheng (University of Oklahoma) Self-supervised learning and self-training э

Table 4. De-KD accuracy (in %) on two datasets. Pt-Teacher is "Poorly-trained Teacher".

Dataset	Pt-Teacher: baseline	Student: baseline	De-KD		
	DerNet19, 15 49	MobileNetV2: 68.38	70.65±0.35 (+2.27)		
	ResNet18: 15.48	ShuffleNetV2: 70.34	71.82±0.11 (+1.48)		
		MobileNetV2: 68.38	71.45±0.23 (+3.09)		
CIFAR100	ResNet50: 45.82	ShuffleNetV2: 70.34	72.11±0.09 (+1.77)		
		ResNet18: 75.87	4 72.11±0.09 (+1.77) 77.23±0.11 (+1.23) 8 71.52±0.27 (+3.14)		
	ResNeXt29: 51.94	MobileNetV2: 68.38	71.52±0.27 (+3.14)		
		ShuffleNetV2:70.34	72.26±0.36 (+1.92)		
		ResNet18: 75.87	77.28±0.17 (+1.41)		
	BarNet18: 0.41	MobileNetV2: 55.06	56.22 (+1.16)		
Tiny-ImageNet	ResNet18: 9.41	ShuffleNetV2: 60.51	60.66 (+0.15)		
	ResNet50: 31.01	MobileNetV2:55.06	56.02 (+0.96)		
	Keshel50: 51.01	ShuffleNetV2: 60.51	61.09 (+0.58)		

Sam Cheng (University of Oklahoma)

Self-supervised learning and self-training

4 □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ <

э

Rethinking Pre-training and Self-training

This work experiments self-training and compare with pre-training

- Dataset:
 - Pretext: ImageNet/OpenImage
 - Target: COCO
- Control parameters:
 - Data augmentation:
 - Augment-S1: flip and scale jitter
 - Augment-S2: AutoAugment + Augment-S1
 - Augment-S3: Large scale jittering + Augment-S2
 - Augment-S4: Use RandAugment rather than AutoAugment in Augment-S3
 - Pre-training: Rand Init (no-pretraining) < ImageNet Init < ImageNet++ Init (better checkpoint)
 - Target domain labeled data quantity: $20\%,\,50\%,\,100\%$

Observation 1

Pretraining can be counterproductive when target domain data $\gg 0$ and augmentation $\gg 0$

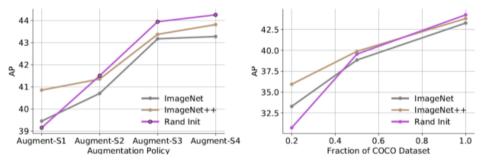


Figure 1: The effects of data augmentation and dataset size on pre-training. Left: Supervised object detection performance under various ImageNet pre-trained checkpoint qualities and data augmentation strengths on COCO. Right: Supervised object detection performance under various COCO dataset sizes and ImageNet pre-trained checkpoint qualities. All models use Augment-S4 (for similar results with other augmentation methods see Appendix C).

April 3, 2024

Observation 2

Self-training is better than trained from scratch and pre-training

Setup	Augment-S1	Augment-S2	Augment-S3	Augment-S4
Rand Init	39.2	41.5	43.9	44.3
ImageNet Init	(+0.3) 39.5	(-0.7) 40.7	(-0.8) 43.2	(-1.0) 43.3
Rand Init w/ ImageNet Self-training	(+1.7) 40.9	(+1.5) 43.0	(+1.5) 45.4	(+1.3) 45.6

Table 2: In regimes where pre-training hurts, self-training with the same data source helps. All models are trained on the full COCO dataset.

Setup	20% Dataset	50% Dataset	100% Dataset
Rand Init	30.7	39.6	44.3
Rand Init w/ ImageNet Self-training	(+3.4) 34.1	(+1.8) 41.4	(+1.3) 45.6
ImageNet Init	33.3	38.8	43.3
ImageNet Init w/ ImageNet Self-training	(+2.7) 36.0	(+1.7) 40.5	(+1.3) 44.6
ImageNet++ Init	35.9	39.9	43.8
ImageNet++ Init w/ ImageNet Self-training	(+1.3) 37.2	(+1.6) 41.5	(+0.8) 44.6

Table 3: Self-training improves performance for all model initializations across all labeled dataset sizes. All models are trained on COCO using Augment-S4.

Sam Cheng (University of Oklahoma)

Self-supervised pre-training and supervised pre-training is similar in performance

Setup	COCO AP
Rand Init	41.1
ImageNet Init (Supervised)	(-0.7) 40.4
ImageNet Init (SimCLR)	(-0.7) 40.4
Rand Init w/ Self-training	(+0.8) 41.9

Table 4: Self-supervised pre-training (SimCLR) hurts performance on COCO just like standard supervised pre-training. Performance of ResNet-50 backbone model with different model initializations on full COCO. All models use Augment-S4.

Observation 4

Even targeted pre-training might not help (OpenImages have bounding box label)

Method	Pretrain Dataset	Iters	mmAP
FPN	None	540K	39.4
FPN	ImageNet	90K	36.4
FPN	ImageNet	180K	38.3
FPN	ImageNet	540K	39.3
FPN	OpenImages	90k	37.4
FPN	Objects365 w/o COCO 80	90K	39.6
FPN	Objects365	90K	42.0
FPN	ImageNet -> Objects365	90K	42.3
RetinaNet	ImageNet	180K	37.0
RetinaNet	Objects365	180K	39.5
RetinaNet	ImageNet -> Objects365	90K	41.0

Table 6. Generalization ability of general object detection results on the COCO dataset. "Iters" denotes the number of iterations for finetuning the models on the COCO dataset.

3

イロト 不得下 イヨト イヨト

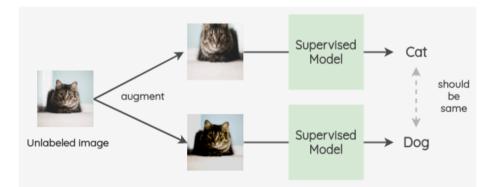
Joint training probably is helpful

Setup	Sup. Training	w/ Self-training	w/ Joint Training	w/ Self-training w/ Joint Training
Rand Init	30.7	(+3.4) 34.1	(+2.9) 33.6	(+4.4) 35.1
ImageNet Init	33.3	(+2.7) 36.0	(+0.7) 34.0	(+3.3) 36.6
Table 7: Comparison of pre-training, self-training and joint-training on COCO. All three methods use				

ImageNet as the additional dataset source. All models are trained on 20% COCO with Augment-S4.

A D A A B A A B A A B A

Consistency regularization



Similar to contrastive learning, but focus on classifier outputs rather than encoded features

			= -0.40
Sam Cheng (University of Oklahoma)	Self-supervised learning and self-training	April 3, 2024	70 / 79

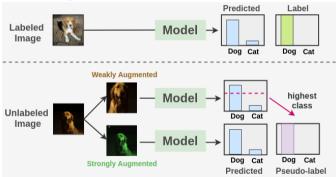
-

Self-training FixMatch

FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence

Main idea: combining consistency regularization with knowledge distillation

FixMatch Pipeline



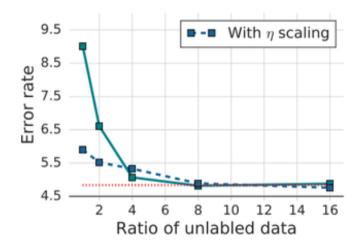
- Weakly Augmented:
 - Random flipping
 - Random translation (up to 12.5%)
- Strongly Augmented
 - Cutout
 - RandAugment
 - CTAugment

Step 1: preparing batches

Labeled batch Unlabeled batch

72/79

イロト イボト イヨト イヨト

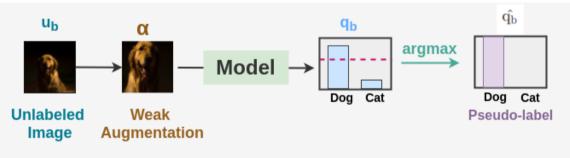


э

Self-training FixMatch

Steps 2 and 3: Supervised learning and pseudo-labeling

Pseudo-label generation



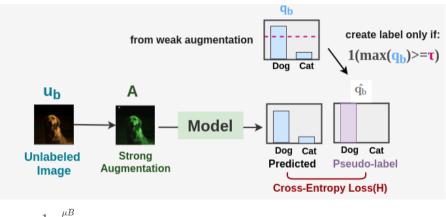
Sam Cheng (University of Oklahoma) Self-supervised learning and self-training April 3, 2024

74/79

イロト 不得下 イヨト イヨト

Self-training FixMatch

Step 4: Consistency regularization



Sam Cheng (University of Oklahoma)

Self-supervised learning and self-training

< □ > < □ > < □ > < □ > < □ > < □ >
 April 3, 2024

STL-10

- MNIST of unspervised learning
- 96x96 pixels, 10 classes
- 5,000 labeled images
- 100,000 unlabeled images

SOTA on STL-10 dataset

Table 3: Error rates for STL-10 on 1000-label splits. All baseline models are tested using the same codebase.

Method	Error rate	Method	Error rate
Π-Model	26.23±0.82	MixMatch	10.41 ± 0.61
Pseudo-Labeling	27.99 ± 0.80	UDA	7.66 ± 0.56
Mean Teacher	$21.43 {\pm} 2.39$	ReMixMatch	5.23±0.45
FixMatch (RA)	$7.98 {\pm} 1.50$	FixMatch (CTA)	5.17±0.63

< E

Summary

- Self-supervised learning: create surrogate task for pre-training
 - Pretext tasks
 - Coloring
 - Jigsaw
 - Sample clustering (e.g., ClusterFit)
 - Contrastive learning
 - PIRL
 - SimCLR
- Self-training: no surrogate task
 - Noisy student with knowledge distillation
 - Given sufficient unlabeled data, self-training usually works better than pre-training
 - Joint training is usually helpful
 - Fixmatch: consistency regularization + knowledge distillation

- Self-supervised learning pretext tasks
- Self-supervised learning ClusterFit and PIRL
- Knowledge Transfer in Self Supervised Learning
- FixMatch semi-supervised learning

イロト イボト イヨト イヨト